
UTC - Software Evolution Software Technology Research Laboratory
http://www.cse.dmu.ac.uk/STRL/

FermaT Maintenance Environment
Tutorial

Document type Tutorial
Author Matthias Ladkau
Date April 22, 2007
Version 0.1
Inspected Prof. Hussein Zedan
Comments

FermaT Maintenance Environment Tutorial

Matthias Ladkau

Abstract

This document gives a brief practical oriented introduction to the FermaT Mainte-
nance Environment (FME). It covers the installation and usage of the program via
practical examples.

Contents

List of Figures 3

List of Listings 3

1 Installation of the FermaT Maintenance Environment 4

1.1 Installation on Unix / Linux. 4

1.1.1 Requirements. 4

1.1.2 Install of Perl and gcc. 4

1.1.3 Installation of a JAVA 6.0 environment. 4

1.1.4 Installation of Bit::Vector for perl. 5

1.1.5 Installation of Set-IntRange for perl. 5

1.1.6 Installation of FermaT Maintenance Environment. 5

1.2 Installation on Windows . 6

1.2.1 Requirements. 6

1.2.2 Install Windows Installer (for older versions of windows) . 6

1.2.3 Installation of a JAVA 6.0 environment. 6

1.2.4 Install active perl. 7

1.2.5 Install of Bit::Vector and Set-IntRange for perl. 7

1.2.6 Install gcc. 7

1.2.7 Installation of FermaT Maintenance Environment. 8

2 Applied Software Evolution With The FermaT toolset 8

2.1 FermaT Transformation System. 8

2.2 The Wide-Spectrum Language. 9

2.3 FermaT Maintenance Environment. 10

3 Getting Started 12

3.1 First experience. 12

3.2 Transformation Example. 14

3.3 Working with the console. 16

3.4 Other functionalities of the FME. 17

Bibliography 18

Web Links 18

List of Figures

1 The FermaT Maintenance Environment. 10

2 Components of the FermaT Maintenance Environment. 11

3 Communication between the Engine and the FME. 11

4 Execution of Hello World. 12

5 Execution of the guessing game. 13

6 Transformation Example. 14

7 Transformation Catalogue Toolbar. 14

8 Transformation Example. 15

9 Console to the transformation engine. 16

10 ActionSystem CallGraph. 17

Listings

1 Installation of the FermaT Maintenance Environment

This chapter gives a guidance through the installation process of the FermaT Main-
tenance Environment. It explains the installation on Unix/Linux and Windows op-
erating systems.

1.1 Installation on Unix / Linux

1.1.1 Requirements

• Perl (version >= 5.6.1)
http://www.cpan.org/

• Bit::Vector (A perl module for efficient sets of integers by Steffen Beyer)
http://search.cpan.org/search?module=Bit::Vector

• Set::IntRange (Perl module based on Bit::Vector for sets ofintegers in a
given range by Steffen Beyer)
http://search.cpan.org/search?module=Set::IntRange

• gcc or a compatible C compiler
http://www.gnu.org/software/gcc/gcc.html

• A working JAVA 6.0 environment
http://java.sun.com/

• The “make” command
http://java.sun.com/

1.1.2 Install of Perl and gcc

Perl and gcc are included in every current linux distribution. See the install in-
structions of your distributions if these components are not already installed in the
standard installation.

1.1.3 Installation of a JAVA 6.0 environment

On order for the FME to work correctly the Java environment ofSUN should be
used. The environment can directly optained from the SUN Microsystems as a
cost-free download.

• Download the Java JDK 6 for Unix/Linux from
http://java.sun.com/javase/downloads/index.jsp

4

http://www.cpan.org/
http://search.cpan.org/search?module=Bit::Vector
http://search.cpan.org/search?module=Set::IntRange
http://www.gnu.org/software/gcc/gcc.html
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/javase/downloads/index.jsp

• Install it according to the provided instructions

1.1.4 Installation of Bit::Vector for perl

• Unpack the archive:

tar zxvf Bit-Vector-6.4.tar.gz

• Change directory to the unpacked files:

cd Bit-Vector-6.4

• Make and install the binaries:

perl Makefile.PL
make
make install

1.1.5 Installation of Set-IntRange for perl

• Unpack the archive:

tar zxvf Set-IntRange-5.1.tar

• Change directory to the unpacked files:

cd Set-IntRange-5.1

• Make and install the binaries:

perl Makefile.PL
make
make install

1.1.6 Installation of FermaT Maintenance Environment

• Unpack the archive (note the directory path must not containany space char-
acters) :

5

tar zxvf fme.tar.gz

• Change directory to the unpacked files:

cd fme

• The program should run now by executing thefme.sh script

1.2 Installation on Windows

1.2.1 Requirements

• Active Perl (version >= 5.6)
http://www.activestate.com/ActivePerl/

• Bit::Vector (A perl module for efficient sets of integers by Steffen Beyer)
http://search.cpan.org/search?module=Bit::Vector

• Set::IntRange (Perl module based on Bit::Vector for sets ofintegers in a
given range by Steffen Beyer)
http://search.cpan.org/search?module=Set::IntRange

• MinGW package
http://www.mingw.org/

• Windows Installer >2.0 (if using older versions of windows e.g. Win9x/WinME)
http://downloads.activestate.com/contrib/Microsoft/MSI2.0/

• A working JAVA 6.0 environment
http://java.sun.com/

1.2.2 Install Windows Installer (for older versions of windows)

Install InstMsiA.exe when using Win9x/WinME or InstMsiW.exe for WinNT.

1.2.3 Installation of a JAVA 6.0 environment

The Java environment which is shipped with Windows is insufficient. Java should
be directly optained from the vendor SUN Microsystems.

6

http://www.activestate.com/ActivePerl/
http://search.cpan.org/search?module=Bit::Vector
http://search.cpan.org/search?module=Set::IntRange
http://www.mingw.org/
http://downloads.activestate.com/contrib/Microsoft/MSI2.0/
http://java.sun.com/

• Download the Java JDK 6 for Windows from
http://java.sun.com/javase/downloads/index.jsp

• Install it according to the provided instructions

1.2.4 Install active perl

Install ActivePerl-5.8.8.817-MSWin32-x86-257965.msi.

The command "perl" should now work in a DOS box (Start->Run->cmd). To end
perl press CTRL+C.

1.2.5 Install of Bit::Vector and Set-IntRange for perl

This step requires an internet connection. Open a DOS box andrun "ppm". At the
prompt, type:

ppm: install Bit-Vector
ppm: install Set-IntRange
ppm: quit

If this doesn’t work then the names might have changed. Try tosearch the "Set"
and Bit" modules to get the right name:

ppm: search Bit
or
ppm: search Set

1.2.6 Install gcc

• Install the MinGW (e.g. MinGW-6.0.2.exe)

• Extent the path variable for the gcc compiler

Start->Settings->Control Panel->System

Pick Advanced tab

Click on "Environment Variables"

Search for "Path" variable in the system variables list

Click on edit

7

http://java.sun.com/javase/downloads/index.jsp

Append to the Variable value string the path of the gcc.exe

(e.g. when MinGW was installed to "C:\Program Files\MinGW" then ap-
pend "C:\Program Files\MinGW\bin")

• The command "gcc" should now work in a DOS box

1.2.7 Installation of FermaT Maintenance Environment

• Unpack the archive (with WinZIP or WinRAR) into any directory (note the
directory path must not contain any space characters)

• The program should run now by executing thefme.bat script

2 Applied Software Evolution With The FermaT toolset

2.1 FermaT Transformation System

The objective of the FermaT transformation system is to enable the migration of
large, highly complex legacy systems from Assembler to higher-level language
such as C or COBOL. The FermaT transformation system is builton the transfor-
mation theory that has the following objectives.

1. Improving the maintainability (in particular, flexibility and reliability, and

2. hence extending the lifetime) of existing mission-critical software systems;

3. Translating programs to modern programming languages;

4. Developing and maintaining safety-critical applications;

5. Extracting reusable components from current systems, deriving their spec-
ifications, and storing the specification, implementation,and development
strategy in a repository for subsequent reuse;

6. Reverse engineering from existing systems to high-levelspecifications, fol-
lowed by subsequent reengineering and evolutionary development;

Once migrated, these systems are substantially easier to maintain and can evolve
faster to meet the changing needs of the business they support. Unlike simple line
by line language migration technologies, the FermaT transformation’s unique se-
mantics preserving code transformations enable the original application to be auto-
matically cleaned-up, simplified and restructured to its optimum state for migration

8

to the chosen new language [4]. This ensures that only functional code is migrated
to the new language, helping to ensure that the migrated codeis significantly easier
to maintain and adapt than the original.

Because of FermaT’s use of a unique and formally defined high-level language,
Wide Spectrum Language (WSL), and its specifically designedcode transforma-
tions, the migration process can be automated [6]. The migration process of the
FermaT transformation system can be divided into three basic steps:

1. Translation of the assembler to WSL;

2. Translate and restructure data declarations;

3. Apply semantics-preserving WSL to WSL transformations;

4. Translate the high-level WSL to the target language.

2.2 The Wide-Spectrum Language

The core of the FermaT transformation system is the WSL language. It is based
on a wide spectrum language, using Morgan’s specification statement [2] and Di-
jkstra’s guarded commands [1]. The intention is to form a language which acts as
an intermediate language when processing a legacy system [3].

WSL was designed for reengineering tasks and covers:

• Simple, regular and formally defined semantics

• Simple, clear and unambiguous syntax

• A wide range of transformations with simple, mechanically-checkable cor-
rectness conditions

• The ability to express low-level programs and high-level abstract specifica-
tions

The heart of the WSL language is a very small and mathematically tractable ker-
nel language. This language supports already all necessaryoperations needed for
a programming and specification language. In the context of this tiny kernel lan-
guage it is relatively easy to prove the correctness of a transformation, but the
language is not very expressive for programming. For that reason the language is
extended into an expressive programming language by defining new constructs in
terms of the kernel. This extension is carried out in a seriesof layers with each
layer building on the previous language level (see [3] for details).

9

2.3 FermaT Maintenance Environment

The FME is written entirely in the Java language. The choice for the Java language
was made because it is a very safe (strong typed) and flexible language with an
extensive API and a vast amount of open-source libraries foralmost every possible
computer task. When the program starts the following windowshould appear:

Figure 1: The FermaT Maintenance Environment

Primary the FME is a graphical interface to the FermaT transformation engine. It
consists of a text editor which is able to express WSL together with an Abstract
Syntax Tree (AST) viewer. A maintainer can navigate throughthe code via the
source code or via the AST. The environment provides a console to the FermaT
transformation engine which can be used to directly commandthe engine.

The core of the transformation engine is a set of mathematical proven program
transformation to simplify the source code. The transformations can be selected
from a transformation catalogue and performed on a chunk of WSL code. The
transformations will either produce a semantically equivalent or refined version of
the source program construct [3].

10

pics/fme.eps

Figure 2: Components of the FermaT Maintenance Environment

The communication between the FermaT Maintenance Environment and the Fer-
maT transformation engine is provided through a communication pipe provided by
the underlying operation system.

Figure 3: Communication between the Engine and the FME

11

pics/fme_desc.eps
pics/fme_comm.eps

3 Getting Started

3.1 First experience

The followings are two examples written in WSL. First Example: Hello world in
WSL

PRINT("Hello World!")

The output should look something like this when it is directly executed with the
“wsl.pl” script of the engine:

Writing: C:\DOKUME~1\TheUser\LOKALE~1\Temp\t11436.scm
Starting Execution...

Hello World!

Execution time: 0

To get this result in the FME we can type the statement from above into the edi-
tor. We can now save the file by selecting “File”→”Save as WSL File”. Note that
the Abstract Syntax Tree in the FME is only updated after the file has been saved.
When we now select “File”→”Run WSL File” the following window should ap-
pear:

Figure 4: Execution of Hello World

The first line tells the interested reader that a temporary file “t11436.scm” has been
written to the temporary directory of the current user (hereunder the windows

12

pics/fme_exec.eps

operating system). This is because the FermaT transformation engine converts a
WSL program before execution into Scheme. The Scheme interpreter is than used
to execute the program. This technique has a serious drawback: The runtime errors
detected be Scheme will refer to lines in the Scheme programm. So the user isn’t
able to trace the error according to line numbers unless he knows exactly which
WSL statement of his program is mapped to particular Scheme statement(s) in the
executed program. For development language this would be a serious problem but
as mentioned before the WSL language is intended to be an intermediate language
for migration and analysing tasks rather than for software development tasks.

The second Example should demonstrate an interactive program - A simple guess-
ing game in WSL:

VAR <num:=0,guess:=0>:
num := @Random(100);
PRINT("I have thought of a number between 1 and 100");
DO PRINFLUSH("What is your guess? ");
guess := @String_To_Num(@Read_Line(Standard_Input_Port));
IF guess = num THEN PRINT("Correct!"); EXIT(1) FI;
IF guess < num

THEN PRINT("Too low.")
ELSE PRINT("Too high.") FI OD;

PRINT("Goodbye.")
ENDVAR

The output should look something like this:

Figure 5: Execution of the guessing game

A more in-depth reference of all possible WSL statements canbe found in [5].

13

pics/fme_wsl_game.eps

3.2 Transformation Example

To demonstrate the transformation facility of FermaT we introduce a small pro-
gram. The execution will just output “Hello World”. The reader is encouraged to
save the following chunk of code in a file with a filename of his choice.

VAR < x := 0, y := 0 >:
DO DO IF x = 0 THEN PRINT("Hello World")

ELSIF x > (2 + x) - 1
THEN PRINT("Goodby cruel world")
ELSE EXIT(2) FI;

x := x + 1 OD OD ENDVAR

A click onto the firstDO statement should highlight the whole loop:

Figure 6: Transformation Example

We can test now for the available transformations on this node with a click on the
“Test All Transformations” symbol in the transformation catalogue.

Figure 7: Transformation Catalogue Toolbar

14

pics/trans1.eps
pics/trans_toolbar.eps

Now some transformations should be highlighted in green. These transformations
can be applied on the current selected program item (Of course some of them may
have no effect).

Figure 8: Transformation Example

Now we select the transformation “Double to Single Loop”. A click on “Apply
Transformation” should result in the following code:

VAR < x := 0, y := 0 >:
DO IF x = 0

THEN PRINT("Hello World")
ELSIF x > (2 + x) - 1

THEN PRINT("Goodby cruel world")
ELSE EXIT(1) FI;

x := x + 1 OD ENDVAR

The double loop has been eliminated and the exit statement inside the loop have
been decreased by one. After the transformation has been applied the attentive
reader may have recognised that the filename contains now a "-0". Everytime the
source code is modiefied and saved the FME will generate an newfile (called “in-
termediate version”). This includes the case when a transformation is applied. If
all modifications of the file have been finished the user may select the “Save (fi-
nal) WSL File and all intermediate versions of the file will bedeleted and the last
version will replace now the original file. The benefit of thistechnique is that a
maintainer can access in the process of migration all past intermediate versions of
the processed program. If he did something wrong or applied the transformations
in a wrong order he can easily go back to an older version.

If the file is not saved than all modifications can be undone/redone with the “undo”
and “redo” options of the “Edit” menu entry.

15

pics/trans3.eps

Through the “Simplify If” Transformation the program can besimplified to1:

VAR < x := 0, y := 0 >:
DO IF x <> 0 THEN EXIT(1) FI;

PRINT("Hello World");
x := x + 1 OD ENDVAR

3.3 Working with the console

As mentioned before the FME is directly tied to the transformation engine. The
engine itself can be accessed via the console. The current program and the current
item2 is changed when a node in the FME’s Abstract Syntax Tree Window has been
selected. To demonstrate this the reader may open a WSL program of his choice
and select a node in the tree. This node is now the current itemin the transformation
engine. If now the command

(@Print_WSL (@I) "")

is entered in the Console the engine should output a subtree of the AST with the
current item as the root.

Figure 9: Console to the transformation engine

1The interested readers may do this on their own.
2See [5] for details on these concepts

16

pics/console.eps

For all possible commands please see the WSL manual [5].

3.4 Other functionalities of the FME

The FME includes some more functionalities for comfortableusage:

The graphical user interface of the FME consists of internalwindows which may be
minimised, maximised or closed. The “Window” menu entry gives some options
to automatically align these windows.

The “ActionSystem CallGraph” is a very useful feature when analysing action sys-
tems.

Figure 10: ActionSystem CallGraph

The dialog can be activated within the “Analyse” menu entry if an WSL Action
System is present in the current program. It shows the calls in the action system
in a call graph. The user can automatically zoom-in ,hide/collapse several nodes,
print the graphic and export the graphic to a vector/bitmap file format.

17

pics/as_callgraph.eps

References

[1] E. W. Dijkstra.A Discipline of Programming. Prentice-Hall, Englewood Cliffs,
NJ, 1976.

[2] C. Morgan. The specification statement.ACM Transactions on Programming
Languages and Systems, 10(3):403–419, 1988.

[3] Martin Ward. Pigs from sausages? reengineering from assembler to c via
fermat transformations.Science of Computer Programming, Special Issue on
Program Transformation 52, pages 213–255, 2004.

[4] Martin Ward and K. H. Bennett. Formal methods for legacy systems.Journal
of Software Maintenance: Research and Practice, 7(3):203–220, - 1995.

[5] Martin Ward and Tim Hardcastle.WSL Programmer’s Reference Manual, Nov.
2003.

[6] Martin Ward and Hussein Zedan. Analysing and abstracting legacy assembler
code via conditioned semantic slicing. 2006.

Web Links

[web1] The FermaT Engine
http://www.cse.dmu.ac.uk/˜mward/fermat.html

[web2] The Software Technology Research Laboratory (DeMontfort University,
Leicester)
http://www.cse.dmu.ac.uk/STRL/index.html

[web3] Software Migration Ltd.
http://www.smltd.com

[web4] Teach Yourself Scheme in Fixnum Days
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

18

http://www.cse.dmu.ac.uk/~{ }mward/fermat.html
http://www.cse.dmu.ac.uk/STRL/index.html
http://www.smltd.com
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme.html

	List of Figures
	List of Listings
	Installation of the FermaT Maintenance Environment
	Installation on Unix / Linux
	Requirements
	Install of Perl and gcc
	Installation of a JAVA 6.0 environment
	Installation of Bit::Vector for perl
	Installation of Set-IntRange for perl
	Installation of FermaT Maintenance Environment

	Installation on Windows
	Requirements
	Install Windows Installer (for older versions of windows)
	Installation of a JAVA 6.0 environment
	Install active perl
	Install of Bit::Vector and Set-IntRange for perl
	Install gcc
	Installation of FermaT Maintenance Environment

	Applied Software Evolution With The FermaT toolset
	FermaT Transformation System
	The Wide-Spectrum Language
	FermaT Maintenance Environment

	Getting Started
	First experience
	Transformation Example
	Working with the console
	Other functionalities of the FME

	Bibliography
	Web Links

