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Waterfall Model

1. Requirements Elicitation: Analyse the problem domain and

determine what the program is required to do

2. Design: Develop the overall structure of the program

3. Implementation: Write source code to implement the design in

a particular programming language

4. Verification: Run tests and debugging

5. Maintenance: Any modifications required after delivery to

correct faults, improve performance, or adapt the product to

a modified environment
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Proving Correctness

Program testing can be used to show the presence of bugs, but

never to show their absence — Dijkstra 1970.

To prove that a program is correct we need two things:

1. A precise mathematical specification which defines what the

program is supposed to do, and

2. A mathematical proof that the program satisfies the

specification
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Verification of a Loop

1. Determine the loop termination condition;

2. Determine the loop body;

3. Determine a suitable loop invariant;

4. Prove that the loop invariant is preserved by the loop body;

5. Determine a variant function for the loop;

6. Prove that the variant function is reduced by the loop body

(thereby proving termination of the loop);

7. Prove that the combination of the invariant plus the

termination condition satisfies the specification for the loop.
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Common Factors

All these development methods require the invention of loop

invariants.

In all these methods, the final step is Verification

The program under development is not guaranteed to be

correct until verification is complete

Introducing a loop requires developing a loop invariant and

variant expression
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Transformational Programming Stages

1. Formal Specification: A WSL specification statement.

2. Elaboration: Elaborate the specification statement by taking

out simple cases

3. Divide and Conquer: Tackle the general case via some form of

“divide and conquer” strategy Use the informal ideas to guide

the selection of transformations

4. Recursion Introduction: Apply the Recursive Implementation

Theorem to produce a recursive program with no remaining

copies of the specification

5. Recursion Removal: Apply the Generic Recursion Removal

Theorem

6. Optimisation: As required.



Formal Specification

A formal specification defines precisely what the program is

required to accomplish, without necessarily giving any indication

as to how the task is to be accomplished.

A formal specification for a factorial program could be written as:

r := n!

A formal specification for the Quicksort algorithm for sorting the

array A[a . . b] is the statement SORT(a, b):

A[a . . b] := A′[a . . b].(sorted(A′[a . . b]) ∧ permutation(A[a . . b], A′[a . . b]))



Formal Specification

The form of the specification should mirror the real-world nature

of the requirements. Construct suitable abstractions such that

local changes to the requirements involve local changes to the

specification.

The notation used for the specification should permit

unambiguous expression of requirements and support rigorous

analysis to uncover contradictions and omissions.



Elaboration

The Elaboration stage is the process of applying transformations

to take out the simple cases.

Typically, this uses Splitting a Tautology to duplicate the

specification, then insert assertions, then use the assertions to

refine the appropriate copy of the specification to the trivial

implementation.

For the factorial program, the simplest case is 0! = 1, so we split

on the test n = 0:

if n = 0 then r := n! else r := n! fi

and simplify the case where n = 0:

if n = 0 then r := 1 else r := n! fi
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Elaboration

For the sort function, the simplest case is when a > b. In this case,

the array has zero or one elements and is therefore already sorted.

SORT(a, b) is transformed to:

if a > b then SORT(a, b)

else SORT(a, b) fi

Add assertions:

if a > b then {a > b}; SORT(a, b)

else {a < b}; SORT(a, b) fi

Use the assertions:

if a > b then {a > b}; skip

else {a < b}; SORT(a, b) fi
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Divide and Conquer

Use the informal implementation ideas to direct the selection of

transformations.

For the factorial program the “idea” is to use the definition of the

factorial function when n > 0:

n! = n.(n− 1)!

Applying this idea to the elaborated specification we get:

if n = 0 then r := 1

else r := (n− 1)!; r := n.r fi

The statement r := (n− 1)! is expanded into three statements:

n := n− 1; r := n!; n := n+ 1

Note that this contains a copy of the original specification.
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Divide and Conquer

For Quicksort the implementation idea has two stages:

1. Partition the array around a pivot element: so that all the

elements less than the pivot go on one side and the larger

elements go on the other side

2. Sort the two sub-arrays sorted using copies of the original

specification statement.

This leads to the program:

if a < b then Partition(a, b,m);

SORT(a,m− 1);

SORT(m+ 1, b) fi

In this case, the elaborated specification contains two copies of

the original specification



Recursion Introduction

Apply the Recursive Implementation Theorem to produce a

recursive procedure.

The Recursive Implementation Theorem can be applied when:

1. The elaborated specification is a refinement of the original

specification; and

2. There exists a variant function which is reduced before each

copy of the original specification

If both these conditions are satisfied, then the elaborated

specification can be transformed into a recursive procedure, with

each copy of the original specification replaced by a recursive call.



Recursion Introduction

For the factorial program, the elaborated specification is:

if n = 0 then r := 1

else n := n− 1; r := n!; n := n+ 1; r := n.r fi

This is equivalent to, and contains one copy of, the original

specification r := n!

Also, the value of n is a non-negative integer and is reduced

before the copy of the specification.

If an elaborated specification is equivalent to the original

specification and there is an expression whose value is reduced

before each copy of the specification, then it can be refined to a

recursive procedure with the internal copies of the specification

replaced by recursive calls.



Recursion Introduction

For the factorial program we get this recursive procedure:

proc fact ≡

if n = 0 then r := 1

else n := n− 1; fact; n := n+ 1; r := n.r fi

The value of the variant function must be “smaller” in terms of a

well-founded partial order on some set of values. Typically this will

be a non-negative integer, but other possibilities include a subset

order and a lexical order on a list of integers.



Recursion Introduction

More formally:

If 4 is a well-founded partial order on some set Γ and t is a term

giving values in Γ and t0 is a variable which does not occur in S or

S′ then if

{P ∧ t 4 t0}; S ≤ S′[{P ∧ t ≺ t0}; S/X ])

then {P}; S ≤ proc X ≡ S′ end

Here, S is the original specification which is elaborated to S′[S/X ].

P is any required precondition: if no precondition is needed, then

let P be true.

The variant function is t. If the value of t is initially no larger than

t0, the before each copy of the specification we know that t is

strictly less than t0.



Recursion Removal

Suppose we have a recursive procedure whose body is a regular

action system in the following form:

proc F (x) ≡

actions A1 :

A1 ≡ S1.

. . . Ai ≡ Si.

. . . Bj ≡ Sj0; F (gj1(x)); Sj1; F (gj2(x));

. . . ; F (gjnj
(x)); Sjnj

.

. . . endactions.

where Sj1, . . . ,Sjnj
preserve the value of x and no S contains a call

to F and the statements Sj0, Sj1, . . . ,Sjnj−1 contain no action

calls.

Note: Any action system can be converted into this form using

the destructuring and restructuring transformations.



Recursion Removal

Stack L records “postponed” operations

A postponed call F (e) is recorded by pushing 〈0, e〉 onto L

A postponed execution of Sjk is recorded by pushing the value

〈〈j, k〉, x〉 onto L.

When then procedure body would normally terminate (via call Z)

we call a new action F̂ which pops the top item off L and carries

out the postponed operation.

If we call F̂ with the stack empty then all postponed operations

have been completed and the procedure terminates by calling Z.



Recursion Removal

proc F ′(x) ≡

var 〈L := 〈〉,m := 0〉 :

actions A1 :

A1 ≡ S1[call F̂ /call Z].

. . . Ai ≡ Si[call F̂ /call Z].

. . . Bj ≡ Sj0;

L := 〈〈〈j, 1〉, x〉, 〈0, gj2(x)〉,

. . . , 〈0, gjnj
(x)〉, 〈〈j, nj〉, x〉〉 ++ L;

x := gj1;

call Aj .

. . . F̂ ≡ if L = 〈〉

then call Z

else 〈m,x〉
pop
←− L;

if m = 0 → call A1

⊓⊔ . . . ⊓⊔ m = 〈j, k〉 → Sjk[call F̂ /call Z]; call F̂

. . . fi fi. endactions end.



Linear Recursion Removal

Consider the special case of a parameterless, linear recursion:

proc F ≡

actions A1 :

A1 ≡ S1.

. . . Ai ≡ Si. . . .

B1 ≡ S0; F ; S11. endactions.

After applying the general recursion removal theorem, the only

value pushed into the stack is 〈〈1, 1〉〉. So the stack can be replaced

by an integer which records how many values are on the stack,



Linear Recursion Removal

The iterative program is:

proc F ′ ≡

var 〈L := 0〉 :

actions A1 :

A1 ≡ S1[call F̂ /call Z].

. . . Ai ≡ Si[call F̂ /call Z]. . . .

B1 ≡ Sj0; L := L+ 1; call A1.

F̂ ≡ if L = 0

then call Z

else L := L− 1;

S11[call F̂ /call Z]; call F̂ fi. endactions end.



Linear Recursion Removal

For example:

proc F ≡

if B then S1 else S2; F ; S3 fi.

is equivalent to the iterative program:

proc F ′ ≡

var 〈L := 0〉 :

actions A1 :

A1 ≡ if B then S1; call F̂ else call B1 fi.

B1 ≡ S2; L := L+ 1; call A1.

F̂ ≡ if L = 0

then call Z

else L := L− 1;

S3; call F̂ fi. endactions end.



Linear Recursion Removal

Remove the recursion in F̂ , unfold into A1, unfold B1 into A1 and

remove the recursion to give:

proc F ′ ≡

var 〈L := 0〉 :

while ¬B do S2; L := L+ 1 od;

S1;

while L 6= 0 do L := L− 1; S3 od.

This restructuring is carried out automatically by FermaT’s

Collapse Action System transformation.



Recursion Removal Example

For the factorial program we derived this recursive procedure:

proc fact ≡

if n = 0 then r := 1

else n := n− 1; fact; n := n+ 1; r := n.r fi

This transforms to the equivalent iterative procedure:

proc F ′ ≡

var 〈L := 0〉 :

while n 6= 0 do n := n− 1; L := L+ 1 od;

r := 1;

while L 6= 0 do L := L− 1; n := n+ 1; r := n.r od.

The first loop just copies n to L and sets n to zero.

The second loop iterates n from 1 to L (which was the initial

value of n).



Recursion Removal Example

proc F ′ ≡

var 〈L := n〉 :

n := 0;

r := 1;

while L 6= 0 do L := L− 1; n := n+ 1; r := n.r od.

If we add a new variable n0 to record the initial value of n then L

is not needed since the test L 6= 0 can be replaced by the

equivalent test n 6= n0:

proc F ′ ≡

var 〈n0 := n〉 :

n := 0;

r := 1;

while n 6= n0 do n := n+ 1; r := n.r od.



Recursion Removal Example

The result can be written as a for loop:

proc F ′ ≡

r := 1;

for i := 1 to n do r := i.r od.



Selection Sort

Define the predicate Sorted(A, i, j) to be true precisely when the

array segment A[i . . j] is sorted:

Sorted(A, i, j) =
DF
∀k. i 6 k < j ⇒ A[k] 6 A[k + 1]

Define the predicate Perm(A,A′) to mean that the elements in

array A form a permutation of the elements in array A′.

The formal specification for a sorting program can now be written

as follows:

SORT(A, i, j) =
DF

A[i . . j] := A′[i . . j].(Sorted(A′, i, j) ∧ Perm(A[i . . j], A′[i . . j])



Selection Sort: Elaboration

If i > j then the array has at most one element and is therefore

already sorted. So in this case:

SORT(A, i, j) ≈ skip

So we can elaborate the specification to:

if i < j then SORT(A, i, j) fi



Selection Sort: Informal Idea

The informal idea behind selection sorting is: “find the smallest

element in the array, and move it to the front”.

Inserting any permutation of A[i . . j] before a copy of SORT(A, i, j)

has no effect, so SORT(A, i, j) is equivalent to:

if i < j

then var 〈s := 0〉 :

s := s′.(i 6 s′ 6 j ∧ ∀k. i 6 k 6 j ⇒ A[s′] 6 A[k]);

〈A[i], A[s]〉 := 〈A[s], A[i]〉 end;

SORT(A, i, j) fi

With this addition to the program, we have the assertion:

∀k. i 6 k 6 j ⇒ A[i] 6 A[k]) just before the copy of SORT.

So SORT(A, i, j) can be refined as SORT(A, i+ 1, j)



Selection Sort: Recursion Introduction

The expression j − i is positive, and is reduced before the copy of

SORT, so we can apply Recursion Introduction to get this recursive

program:

proc sort ≡

if i < j

then var 〈s := 0〉 :

s := s′.(i 6 s′ 6 j ∧ ∀k. i 6 k 6 j ⇒ A[s′] 6 A[k]);

〈A[i], A[s]〉 := 〈A[s], A[i]〉 end;

i := i+ 1;

sort fi.



Selection Sort: Recursion Introduction

This is equivalent to the while loop:

proc sort ≡

while i < j do

var 〈s := 0〉 :

s := s′.(i 6 s′ 6 j ∧ ∀k. i 6 k 6 j ⇒ A[s′] 6 A[k]);

〈A[i], A[s]〉 := 〈A[s], A[i]〉 end;

i := i+ 1 od.



Selection Sort: Refinement

To implement the inner specification statement, first take out a

trivial case:

if i = j then the specification can be implemented as the

assignment s := i:

if i = j

then s := i

else s := s′.(i 6 s′ 6 j ∧ ∀k. i 6 k 6 j ⇒ A[s′] 6 A[k]) fi

Our informal idea for implementing the specification is to first set

s to the index of the smallest element in A[i . . j − 1] and then

compare A[s] against A[j].



Selection Sort: Refinement

This produces the elaborated specification:

if i = j

then s := i

else j := j − 1;

s := s′.(i 6 s′ 6 j ∧ ∀k. i 6 k 6 j ⇒ A[s′] 6 A[k]);

j := j + 1;

if A[j] < A[s] then s := j fi fi

The variable j is our variant function, so we can apply

Recursion Introduction on the copy of the specification:

proc search ≡

if i = j

then s := i

else j := j − 1; search; j := j + 1;

if A[j] < A[s] then s := j fi fi.



Selection Sort: Refinement

Apply Recursion Removal to get:

proc search ≡

var 〈L := 0〉 :

while i 6= j do

j := j − 1; L := L+ 1 od;

s := i;

while L 6= 0 do

L := L− 1; j := j + 1;

if A[j] < A[s] then s := j fi od end.



Selection Sort: Refinement

As above, the variable L is incremented whenever j is

decremented, and vice-versa. So if j0 is the original value of j

then L = j0 − j. The first loop assigns j := i:

proc search ≡

var 〈j0 := j〉 :

j := i;

s := i;

while j < j0 do

j := j + 1;

if A[j] < A[s] then s := j fi od end.



Selection Sort: Refinement

Putting this into the sorting program, instead of the specification

we get the completed program:

proc sort ≡

while i < j do

var 〈s := i, j0 := j〉 :

j := i;

while j < j0 do

j := j + 1;

if A[j] < A[s] then s := j fi od;

〈A[i], A[s]〉 := 〈A[s], A[i]〉 end;

i := i+ 1 od.



String Comparison

Given two character strings a and b, it required to determine

whether they are equal “apart from blanks” (the space character

being regarded as non-significant).

We represent the strings as arrays of characters, with the special

symbol end denoting the end of the string.



String Comparison

Given two character strings a and b, it required to determine

whether they are equal “apart from blanks” (the space character

being regarded as non-significant).

We represent the strings as arrays of characters, with the special

symbol end denoting the end of the string.

Define the function strip(s, i) to return the sequence of all

non-space characters in s from the ith character to the end of the

string:

strip(s, i) =















〈〉 if s[i] = end

strip(s, i+ 1) if s[i] = space

〈s[i]〉 ++ strip(s, i+ 1) otherwise



Formal Specification

With this definition of strip our formal specification is:

COMP =
DF

if strip(a, 1) = strip(b, 1) then R := 1 else R := 0 fi



Informal Ideas

Our informal idea is to step through both arrays a character at a

time until we reach the end, or find a significant difference. This

suggests generalising the specification to compare the strings

from a given index onwards:

COMP(i, j) =
DF

if strip(a, i) = strip(b, j) then R := 1 else R := 0 fi



Elaborated Specification

The obvious special cases to consider are the values of a[i] and b[j].
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Elaborated Specification

The obvious special cases to consider are the values of a[i] and b[j].

First we consider the case where a[i] = space:

if a[i] = space then COMP(i, j)

else COMP(i, j) fi

By definition, if a[i] = space then strip(a, i) = strip(a, i+ 1) so

COMP(i, j) ≈ COMP(i+ 1, j).

We have:

if a[i] = space then COMP(i+ 1, j)

else COMP(i, j) fi



Recursive Implementation

Let i′ be the first index such that a[i] = end.

Then the variant function i′ − i is reduced before the first copy of

the specification, but (obviously) not before the second copy.

We can still apply Recursive Implementation, provided we only apply

it to the first copy of the specification:

proc comp ≡

if a[i] = space then i := i+ 1; comp

else COMP(i, j) fi



Recursion Removal

This simple tail-recursion is transformed to a while loop:

while a[i] = space do i := i+ 1 od;

COMP(i, j)



Recursion Removal

This simple tail-recursion is transformed to a while loop:

while a[i] = space do i := i+ 1 od;

COMP(i, j)

A similar argument for b[j] produces:

while a[i] = space do i := i+ 1 od;

while b[j] = space do j := j + 1 od;

COMP(i, j)



Further Refinement

Consideration of the cases where a[i] = end and/or b[j] = end gives:

while a[i] = space do i := i+ 1 od;

while b[j] = space do j := j + 1 od;

if a[i] = end ∧ b[j] = end then R := 1

elsif a[i] 6= a[j] then R := 0

else i := i+ 1; j := j + 1; COMP(i, j) fi



Final Program

Apply Recursive Implementation and Recursion Removal to get the final

iterative program:

do while a[i] = space do i := i+ 1 od;

while b[j] = space do j := j + 1 od;

if a[i] = end ∧ b[j] = end then R := 1; exit(1)

elsif a[i] 6= a[j] then R := 0; exit(1) fi;

i := i+ 1; j := j + 1 od



Greatest Common Divisor

The Greatest Common Divisor (GCD) of two numbers is the

largest number which divides both of the numbers with no

remainder.

A specification for a program which computes the GCD is the

following:

r := GCD(x, y)

where:

GCD(x, y) = max { n ∈ N | x mod n = 0 ∧ y mod n = 0 }

(Note that this is undefined when both x and y are zero).
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Implementation Ideas

It is easy to prove the following facts about GCD:

1. GCD(0, y) = y

2. GCD(x, 0) = x
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Specification Elaboration

Split on the conditions x = 0 and y = 0, using Fact (1) and Fact

(2) respectively to show r := GCD(x, y) is refined by:

if x = 0 then r := y

elsif y = 0 then r := x

else r := GCD(x, y) fi

Fact (3) does not appear to make much progress.

If we restrict attention to non-negative integers, then Fact (4)

does not apply. So we are left with Fact (5).

We can only transform r := GCD(x, y) to r := GCD(x− y, y) under

the condition x > y.

Similarly, we can only transform r := GCD(x, y) to r := GCD(x, y − x)

under the condition y > x.



Elaborated Specification

We have the following elaboration of the specification:

if x = 0

then r := y

elsif y = 0

then r := x

elsif x > y then r := GCD(x− y, y)

else r := GCD(x, y − x) fi

The variant function x+ y is reduced before each copy of the

specification.



Recursion Introduction

Applying the recursion introduction gives:

proc gcd(x, y) ≡

if x = 0

then r := y

elsif y = 0

then r := x

elsif x > y then r := gcd(x− y, y)

else r := gcd(x, y − x) fi end

Recursion Removal gives:

proc gcd(x, y) ≡

while x 6= 0 ∧ y 6= 0 do

if x > y then x := x− y

else y := y − x fi od;

if x = 0 then r := y else r := x fi end



Optimisation

This algorithm, although correct, is very inefficient when x and y

are very different in size. For example, if x = 1 and y = 231 then

the program will take 231 − 1 steps.

One solution is to look for other properties of GCD to use: this

involves throwing away all our work so far.

Unfortunately, this is the only option offered by the “Invariant

Based Programming” approach.



Optimisation

With the transformational programming approach, we have

another option: transform the program in order to improve its

efficiency.

Apply Entire Loop Unrolling to the program at the point just after

the assignment x := x− y with the condition x > y:

proc gcd(x, y) ≡

while x 6= 0 ∧ y 6= 0 do

if x > y then x := x− y;

while x > y do

if x > y then x := x− y fi od

else y := y − x fi od;

r := x end



Optimisation

This simplifies to:

proc gcd(x, y) ≡

while x 6= 0 ∧ y 6= 0 do

if x > y then while x > y do x := x− y od

else y := y − x fi od;

if x = 0 then r := y else r := x fi end

Consider the inner while loop. This repeatedly subtracts y from x.

If the loop executes q times, then x = x0 − q.y.

In other words:

while x > y do x := x− y od ≈ x := x mod y



Optimisation

Similarly, entire loop unrolling can be applied after the assignment

y := y − x and the same optimisation applied to give:

proc gcd(x, y) ≡

while x 6= 0 ∧ y 6= 0 do

if x > y then x := x mod y

else y := y mod x fi od;

if x = 0 then r := y else r := x fi end



Alternate Program Derivation

With different informal ideas, the same derivation process can

derive a different algorithm.

For example, suppose the target machine does not have an

efficient integer division instruction, but does have a binary shift.

We make use of the following additional facts about GCD:

1. GCD(x, y) = 2.GCD(x/2, y/2) when x and y are both even;

2. GCD(x, y) = GCD(x/2, y) when x is even and y is odd;

3. GCD(x, y) = GCD(x, y/2) when x is odd and y is even;

4. GCD(x, y) = GCD((x− y)/2, y) when x and y are odd and x > y;

5. GCD(x, y) = GCD(x, (y − x)/2) when x and y are odd and y > x.



Elaborated Specification

Applying Fact (1) above produces:

if x = 0 then r := y

elsif y = 0 then r := x

elsif even?(x) ∧ even?(y)

then r := 2.GCD(x/2, y/2)

else r := GCD(x, y) fi



Recursive Implementation

Applying the recursive implementation theorem plus recursion

removal to the first occurrence only of GCD produces:

if x = 0

then r := y

elsif y = 0

then r := x

else var 〈L := 0〉 :

while even?(x) ∧ even?(y) do

L := L+ 1;

x := x/2; y := y/2 od;

r := GCD(x, y);

r := 2L.r end fi



Recursive Implementation

Applying Fact (1) above, followed by recursion introduction and

recursion removal produces the following result:

if x = 0 then r := y

elsif y = 0 then r := x

else var 〈L := 0〉 :

while even?(x) ∧ even?(y) do

L := L+ 1;

x := x/2; y := y/2 od;

while even?(x) do x := x/2 od;

{x 6= 0 ∧ y 6= 0 ∧ ¬even?(x)};

r := GCD(x, y);

r := 2L.r end fi



Recursive Implementation

Define:

GCDx(x, y) =
DF
{y 6= 0 ∧ ¬even?(x)}; r := GCD(x, y)

By Fact (3) we show that GCDx(x, y) is equivalent to:

while even?(y) do y := y/2 od;

GCDx(x, y)



Recursive Implementation

Now apply Fact (4), and also Fact (3) from the first set of facts,

to ensure that x is odd in every occurrence of GCDx:

while even?(y) do y := y/2 od;

if x = y then r := x

elsif x > y then GCDx(y, (x− y)/2)

else GCDx(x, (y − x)/2) fi



Recursive Implementation

Apply recursion introduction and recursion removal to derive this

implementation of GCDx(x, y):

do while even?(y) do y := y/2 od;

if x = y then r := x; exit fi;

if x > y

then 〈x, y〉 := 〈y, x− y〉

else y := y − x fi;

y := y/2 od



Recursive Implementation

The final program is therefore:

if x = 0 then r := y

elsif y = 0 then r := x

else var 〈L := 0〉 :

while even?(x) ∧ even?(y) do

L := L+ 1;

x := x/2; y := y/2 od;

while even?(x) do x := x/2 od;

do while even?(y) do y := y/2 od;

if x = y then r := x; exit fi;

if x > y

then 〈x, y〉 := 〈y, x− y〉

else y := y − x fi;

y := y/2 od

r := 2L.r end fi
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