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METAWSL

Transformations are implemented in an extension of WSL,

called METAWSL.

WSL has been developed specifically to be a powerful

programming language which is easy to transform.

METAWSL has been developed as a language in which it is

easy to implement program transformations.



METAWSL

For example:

ifmatch Statement if ∼?B then ∼?S1 else ∼?S2 fi

then B := @Not(B);

@Paste Over(fill Statement

if ∼?B then ∼?S2 else ∼?S1 fi endfill) endmatch

in ASCII form this is:

IFMATCH Statement IF ~?B THEN ~?S1 ELSE ~?S2 FI

THEN B := @Not(B);

@Paste_Over(FILL Statement

IF ~?B THEN ~?S2 ELSE ~?S1 FI ENDFILL) ENDMATCH



METAWSL

The IFMATCH construct will test if the currently selected statement

matches the pattern:

if B then S1 else S2 fi

If it does, then new local variables B, S1 and S2 are created. B

contains the condition from the current if statement, S1 contains

the statement sequence from the then part and S2 contains the

statement sequence from the else part.

The function @Not will negate and then simplify the condition.

The construct FILL Statement ...ENDFILL creates a new

statement by filling in the given pattern with the values of the

given variables. This is passed to the @Paste Over procedure which

replaces the current statement with the new one.
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METAWSL: Extensions to WSL

Moving around the abstract syntax tree:

@Up, @Down, @Left, @Right, @To Last, @To(n), @Down Last,

@Down To(n) and @Goto(P )

Examining the tree:

@Item returns the item at the current position

@GT(I) returns the generic type of the item (Statement,

Expression etc.)

@ST(I) returns the specific type (While, Variable etc.)

@V(I) returns the value (eg the name of a Variable)

@Cs(I) returns the list of components for the node I.

@Size(I) returns the number of components for the node I.
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METAWSL Editing Procedures

Editing the tree:

@Delete, @Clever Delete, @Cut,

@Paste Over, @Paste Before, @Paste After,

@Splice Over, @Splice Before, @Splice After

These are applied to the current position in a tree.

Building a tree:

@Make(t, v, L) returns a new item with specific type s, value v

and components L (where L is a list of items). This can be

inserted in the tree using the edit operations.

For example:

@Paste Over(@Make(T Number,@V(@I) + 1, 〈〉)



METAWSL Editing Requirements

Keep multiple versions of the program, stored efficiently

Revert to a previous version very efficiently

Efficient and transparent caching of program analysis results



METAWSL Editing Solution

Store abstract syntax trees as lisp trees

Editing functions create a new tree, sharing subtrees

Caches (of program analysis results) are stored in each tree

node

Use @Edit, @End Edit and @Undo Edit for efficiency



METAWSL Pattern Matching

ifmatch: match the current node against a WSL program schema

fill: creates an abstract syntax tree by filling in the schema

variables in a WSL schema.

Within an ifmatch construct pattern variables are allowed:

1. ∼?x matches any item and puts the matched result into

variable x;

2. ∼*x matches a sequence of zero or more items and puts the

result into x;

3. ∼=(e) matches the current item against the value of the

expression e.



METAWSL Pattern Matching

Within a fill construct,:

1. ∼?x pastes in the current value of x at this position;

2. ∼*x splices the list of items in x over the pattern variable;

3. ∼=(e) pastes in the value of expression e at this position.



METAWSL Looping Constructs

foreach and ateach enable iteration over all components of the

current item.

The body of the loop is executed at each selected component

The components iterated over are specified in the keyword after

the word foreach:

All statements: foreach Statement do S od

Terminal statements: foreach TS do S od

Simple terminal statements: foreach STS do S od

All expressions: foreach Expression do S od

Conditions, Lvalues, variables, etc.



METAWSL Looping Constructs

foreach

Acts “bottom up” (components of an item are processed

before the item itself)

Works as if the current item is the whole program

Therefore, editing is efficient, but little context information is

available.

ateach

Acts “top down” (process each item, then its components)

Moves to each component before processing

Therefore, editing is inefficient, but full context is available.



Looping Example

proc @Delete All Skips Test() ≡

if Skip ∈ @Stat Types(@I)

then @Pass

else @Fail(“No ‘SKIP’ statements to delete.”) fi.;

proc @Delete All Skips Code(Data) ≡

foreach Statement do

if @ST(@I) = Skip then @Delete fi od.

Deleting a skip is always a valid transformation.

The syntax of the edited program is automatically “fixed” if

necessary, by the foreach loop.



Effect of Delete All Skips

Before After

while B do skip od {¬B}

if B then skip

else x := 0 fi

if ¬B then x := 0 fi

do skip od abort

var 〈x := 0〉 :

if B then skip fi end;

y := 0

y := 0



Effect of Delete All Skips

An example application of Delete All Skips:

if x = 0

then while y > 0 do skip od

elsif z = 0

then begin

if a = b then skip fi

where

proc F (x) ≡ y := y + x.

end

else skip fi



Effect of Delete All Skips

An example application of Delete All Skips:

if x = 0

then while y > 0 do skip od

elsif z = 0

then begin

if a = b then skip fi

where

proc F (x) ≡ y := y + x.

end

else skip fi

The result is:

if x = 0 then {y 6 0} fi



Meta-Transformations

Part of the source code for WSL to Scheme:

ifmatch Statements ∼*S1; if ∼?B then ∼*S; exit(1) fi; ∼*S2

then @Up;

if @Gen Proper?(@Make(T Statements,

〈〉, S1 ++ S ++ S2),AS)

then B := @Not(B);

@Splice Over(@Cs(fill Statements
∼*S1;

while ∼?B do
∼*S2; ∼*S1 od;

∼*S endfill))

else @Trans(TR Floop To While,“”) fi

else @Up; @Trans(TR Floop To While,“”) endmatch



Meta-Transformations

An example of applying this transformation:

do read(file, record);

if eof?(file)

then close(file);

exit(1) fi;

process(record, total) od

is transformed into:

read(file, record);

while ¬eof?(file) do

process(record, total);

read(file, record) od;

close(file);



Meta-Transformations

Part of the source code for the transformation Floop To While. This

tries to make a statement reducible without duplicating code:

foreach Statements do

if Depth = 1

then @Down Last;

do if @Right? ∧ ¬@Is Proper?

then N := 0;

ateach STS do

if Depth ∈ @Gen TVs(@I,ASType)

then N := N + 1 fi od;

if N > 1 then exit(1) fi;

PRINFLUSH(“a”); done := 0;

@Trans(TR Fully Absorb Right,“”);

exit(1) fi;

if @Left? then @Left else exit(1) fi od fi od



A Sample of METAWSL

Part of the Absorb right transformation:

@Right; @Cut; @Left;

. . .

foreach STS do

if Depth = 0 ∨ (@ST(@I) = Exit ∧ @V(@I) = Depth)

then if @ST(@I) = Exit ∧ Depth > 0

then @Splice Over(@Increment(@Buffer,

AS Type,Depth, 0))

elsif @ST(@I) = Skip

then @Paste Over(@Buffer)

elsif @ST(@I) = Exit ∧ Depth = 0

∨ @Gen Improper?(@I,AS)

then skip

elsif @ST(@I) = Call ∧ @V(@I) = “Z”

then skip

else @Paste After(@Buffer) fi fi od;



Meta-Transformations

Each time FermaT is rebuilt from source, the Floop To While

transformation is applied to its own source code!



Expression/Condition Simplifier

For the industrial strength FermaT transformation system the

requirements for an expression and condition simplifier were:

1. Efficient execution: especially on small expressions;

2. Easily extendible by adding new pattern match and

replacement rules: extensive searching based on a small set of

rules is too expensive

3. Easy to prove correct. If the simplifier is to be easily

extended, then it is important that we can prove the

correctness of the extended simplifier equally easily.



Expression/Condition Simplifier

foreach Expression do

ifmatch Expression (−(−∼?x))

then @Paste Over(x) endmatch;

ifmatch Expression 1/(1/∼?x)

then @Paste Over(x) endmatch;

ifmatch Expression (∼?y ∗ ∼?x) div ∼?x

then @Paste Over(y) endmatch;

ifmatch Expression (∼?y ∗ ∼?x+ ∼?z) div ∼?x

then @Paste Over(fill Expression
∼?y + (∼?z div ∼?x) endfill) endmatch;

. . .

od;



Expression/Condition Simplifier

foreach Condition do

ifmatch Condition ∼?x < ∼?y ∨ ∼?y < ∼?x

then @Paste Over(fill Condition ∼?x 6= ∼?y endfill) endmatch;

ifmatch Condition ∼?z < ∼?x ∨ ∼?x 6 ∼?y ∨ ∼?y 6 ∼?z

then @Paste Over(Mth True) endmatch;

ifmatch Condition ∼?y < ∼?x ∧ ∼?z < ∼?y ∧ ∼?x 6 ∼?z

then @Paste Over(Mth False) endmatch;

. . .

od;



Expression/Condition Simplifier

Specify the simplifier as a list of pattern match and replacement

rules, using ifmatch and fill. This meets requirement (2).

Implement the simplifier as a large, deeply-nested set of if

statements which test the specific type of the current item, the

number of components and the types of the components. This

meets requirement (1).

Automatically Transform the specification into the implementation

via a meta-transformation (which transforms the source code of

one transformation into source code for an equivalent, but more

efficient, transformation). This meets requirement (3).

As new rules are added to the specification of the transformation,

the implementation is generated automatically



Expression/Condition Simplifier

Specification: 19,465 bytes of WSL

Implementation: 85,786 bytes of efficient, lower level WSL

Scheme Translation: 274,032 bytes of Scheme

Macro Expansion: 884,943 bytes of Scheme

C Translation: 1,089,448 byte C file plus associated 108,098

byte header file

So the original WSL source file expands into a C implementation

which is 60 times larger.

Which would you rather maintain?



Using FermaT in Reverse Engineering

The next few slides look at

A typical software development process

A typical “maintenance phase” and its output

Using FermaT to reverse engineer the program and produce

an efficient and maintainable improved version

Using FermaT to raise the abstraction level of the program all

the way to a formal specification



Problem Specification

ITEM

Bolt

Net Change

+25Bolt

Bolt

Bolt

Nut

Nut

Wheel

+200

−150

−25

+100

+40

Input Data

Wheel

Widget

Wheel

Management Report

Number Changed: 3
−100

Widget

+30

−500

−10

−500



Design Phase

Sorted

Trans

File

Produce

Report
Report



Design Phase

Process end
of previous

group

Start
new
group

Process first
record in
group

Process
first record
in group

Process
subsequent

record in group

Produce
Heading

Produce
Body

Produce
Summary

Produce
Report

Process
record



Final Functional Decomposition

proc Management Report ≡

Produce Heading;

read(stuff);

while NOT eof(stuff) do

if First Record In Group

then Process End Of Previous Group;

Process Start Of New Group;

Process Record

else

Process Record

fi;

read(stuff)

od;

Produce Summary.
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Problem

Users complain about the line of garbage which appears at the

top of each report.

This is because we call Process End Of Previous Group (which prints a

report line) before any records have been processed.

What is the solution to this “first time through” problem?



First Quick Fix
proc Management Report ≡

var 〈SW1 := 0〉 :

Produce Heading;

read(stuff);

while NOT eof(stuff) do

if First Record In Group

then if SW1 = 1

then Process End Of Previous Group

fi;

SW1 := 1;

Process Start Of New Group;

Process Record

else

Process Record

fi;

read(stuff)

od;

Produce Summary

end.
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The new Zymometers have been on sale for quite a while now,

and selling quite well, but they don’t appear on the report.



Problem

The new Zymometers have been on sale for quite a while now,

and selling quite well, but they don’t appear on the report.

We only call Process End Of Previous Group when we detect the start

of the next group. So the very last group of all is missed off the

report.



Second Quick Fix
proc Management Report ≡

var 〈SW1 := 0〉 :

Produce Heading;

read(stuff);

while NOT eof(stuff) do

if First Record In Group

then if SW1 = 1

then Process End Of Previous Group

fi;

SW1 := 1;

Process Start Of New Group;

Process Record

else

Process Record

fi;

read(stuff)

od;

Process End Of Last Group;

Produce Summary

end.
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Problem

The line of garbage has re-appeared at the top of the report!

It turns out that there was a strike at the warehouse this week:

no items came in our out. So there were no records in the file.

But the program calls Process End Of Last Group anyway.



Third Quick Fix
proc Management Report ≡

var 〈SW1 := 0,SW2 := 0 〉 :

Produce Heading;

read(stuff);

while NOT eof(stuff) do

if First Record In Group

then if SW1 = 1

then Process End Of Previous Group

fi;

SW1 := 1;

Process Start Of New Group;

Process Record

else

Process Record; SW2 := 1

fi;

read(stuff)

od;

if SW2 = 1 then Process End Of Last Group

fi;

Produce Summary

end.
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Problem

The Zymometers have disappeared off the report again!

It turns out that the warehouse manager decided to consolidate

all orders for each item each day into a single transaction. He also

decided to run the report once a day, instead of once a week. So

there was never more than one record in each group.

So SW1 never gets set, and the last group never gets processed.



Fourth Quick Fix
proc Management Report ≡

var 〈SW1 := 0,SW2 := 0〉 :

Produce Heading;

read(stuff);

while NOT eof(stuff) do

if First Record In Group

then if SW1 = 1

then Process End Of Previous Group

fi;

SW1 := 1;

Process Start Of New Group;

Process Record;

SW2 := 1

else

Process Record; SW2 := 1

fi;

read(stuff)

od;

if SW2 = 1 then Process End Of Last Group

fi;

Produce Summary

end.



After Four Quick Fixes. . .

Now we can all rest assured that it works, right?



After Four Quick Fixes. . .

Now we can all rest assured that it works, right?

What can FermaT do with this program?



WSL Version of Procedure Body
var 〈SW1 := 0,SW2 := 0〉 :

!P Produce Heading( var sys);

!P read( var stuff, sys);

while ¬!XC eof(stuff) do

if !XC First Record In Group?(stuff)

then if SW1 = 1

then !P Process End Of Group( var sys) fi;

SW1 := 1;

!P Process Start Of Group( var sys);

!P Process Record( var sys);

SW2 := 1

else !P Process Record( var sys); SW2 := 1 fi;

!P read( var stuff) od;

if SW2 = 1

then !P Process End Of Group( var sys) fi;

!P Produce Summary( var sys) end



Restructure: Remove SW2

Unroll the loop, absorb the following statement and use Constant Propagation and

Remove Redundant Vars to remove SW2:

var 〈SW1 := 0〉 :

!P Produce Heading( var sys);

!P read( var stuff, sys);

if ¬!XC eof?(stuff)

then if !XC First Record In Group?(stuff)

then SW1 := 1;

!P Process Start Of Group( var sys) fi;

!P Process Record( var sys);

!P read( var stuff);

while ¬!XC eof?(stuff) do

if !XC First Record In Group?(stuff)

then if SW1 = 1

then !P Process End Of Group( var sys) fi;

SW1 := 1;

!P Process Start Of Group( var sys) fi;

!P Process Record( var sys);

!P read( var stuff) od;

!P Process End Of Group( var sys) fi;

!P Produce Summary( var sys) end



Restructure: Remove SW1

Note that !XC First Record In Group?(stuff) is true for the very first record read.

FermaT cannot deduce this from the information in the program, so we have to

edit the code. With this test fixed, we can remove SW1 in the same way:

!P Produce Heading( var sys);

!P read( var stuff, sys);

if ¬!XC eof?(stuff)

then !P Process Start Of Group( var sys);

!P Process Record( var sys);

!P read( var stuff);

while ¬!XC eof?(stuff) do

if !XC First Record In Group?(stuff)

then !P Process End Of Group( var sys);

!P Process Start Of Group( var sys) fi;

!P Process Record( var sys);

!P read( var stuff) od;

!P Process End Of Group( var sys) fi;

!P Produce Summary( var sys)

The next stage is to merge the two copies of Process End Of Group



Restructure: Merge Duplicated Code
Convert the while loop to a do . . . od loop and absorb the second copy of

Process End Of Group (to move it closer to the first copy). This also allows us to

absorb read and Process Record into the loop:

!P Produce Heading( var sys);

!P read( var stuff, sys);

if ¬!XC eof?(stuff)

then !P Process Start Of Group( var sys);

do !P Process Record( var sys);

!P read( var stuff);

if !XC eof?(stuff)

then !P Process End Of Group( var sys);

exit(1) fi;

if !XC First Record In Group?(stuff)

then !P Process End Of Group( var sys);

!P Process Start Of Group( var sys) fi od fi;

!P Produce Summary( var sys)



Restructure: Merge Duplicated Code
In order to absorb Process Start Of Group into the loop, we need the other copy

to appear at the end of the loop body.

Convert the loop to a double loop (via Make Loop), increment the call to

Process Start Of Group and take it out of the inner loop using Take Out Of Loop:

!P Produce Heading( var sys);

!P read( var stuff, sys);

if ¬!XC eof?(stuff)

then !P Process Start Of Group( var sys);

do do !P Process Record( var sys);

!P read( var stuff);

if !XC eof?(stuff)

then !P Process End Of Group( var sys);

exit(2) fi;

if !XC First Record In Group?(stuff)

then !P Process End Of Group( var sys);

exit(1) fi od;

!P Process Start Of Group( var sys) od fi;

!P Produce Summary( var sys)



Restructure: Merge Duplicated Code

Join the two if statements, move the (hidden) else skip clause to the top and

use Elsif To Else If to create a nested if statement:

!P Produce Heading( var sys);

!P read( var stuff, sys);

if ¬!XC eof?(stuff)

then do !P Process Start Of Group( var sys);

do !P Process Record( var sys);

!P read( var stuff);

if ¬!XC First Record In Group?(stuff) ∧ ¬!XC eof?(stuff)

then skip

else if !XC eof?(stuff)

then !P Process End Of Group( var sys);

exit(2)

else !P Process End Of Group( var sys);

exit(1) fi

fi od od fi;

!P Produce Summary( var sys)

This statement can be taken out of the loop via Take Out Of Loop. Then take

Process End Of Group out of the if statement.



Restructure: Merge Duplicated Code
!P Produce Heading( var sys);

!P read( var stuff, sys);

if ¬!XC eof?(stuff)

then do !P Process Start Of Group( var sys);

do !P Process Record( var sys);

!P read( var stuff);

if !XC First Record In Group?(stuff) ∨ !XC eof?(stuff)

then exit(1) fi od;

!P Process End Of Group( var sys);

if !XC eof?(stuff) then exit(1) fi

od fi;

!P Produce Summary( var sys)



Restructure and Simplify
Finally, the outer loop can be converted to a while loop via Floop To While. This

will note that the test is at the end of the loop, but there is a surrounding if

statement with the same test. So this if statement can be deleted:

!P Produce Heading( var sys);

!P read( var stuff, sys);

while ¬!XC eof?(stuff) do

!P Process Start Of Group( var sys);

do !P Process Record( var sys);

!P read( var stuff);

if !XC First Record In Group?(stuff) ∨ !XC eof?(stuff)

then exit(1) fi od;

!P Process End Of Group( var sys) od;

!P Produce Summary( var sys)

In this version, there are no flag variables and no duplicated statements.



Second Stage: Abstract Data Types

We have processed this program about as far as possible at this

abstraction level.

The next stage is to raise the abstraction level by defining

abstract data types for the input and output files. The abstraction

models the input file as a sequence of records, where each record

has two fields: name (a string) and number (an integer). The

abstract variable i is an index into the sequence of records.

To recognise the start of a new group, the variable last stores a

copy of the last record processed.



Second Stage: Abstract Data Types

Concrete Call Abstract Code

Produce Heading !P write(“Management Report...”)

read last := record; i := i+ 1; record := records[i]

eof?(stuff) i > ℓ(records)

Process Start Of Group total := 0

Process Record total := total+ record.number

First Record In Group? last.name 6= record.name

Process End Of Group if total 6= 0

then write(last.name, total);

changed := changed+ 1 fi

Produce Summary !P write(“Changed items:”, changed)



Second Stage: Abstract Data Types
var 〈i := 0, last := “”, record := “”, changed := 0〉 :

!P write(“Management Report...”);

last := record; i := i+ 1; record := records[i];

while i 6 ℓ(records) do

total := 0;

do total := total+ record.number;

last := record; i := i+ 1; record := records[i];

if i > ℓ(records) ∨ last.name 6= record.name

then exit fi od;

if total 6= 0

then !P write(last.name, total);

changed := changed+ 1 fi od;

!P write(“Changed items:”, changed) end



Third Stage: Restructure and Simplify

First, we can replace record by records[i] throughout:

var 〈i := 0, last := “”, changed := 0〉 :

!P write(“Management Report...”);

last := records[i]; i := i+ 1;

while i 6 ℓ(records) do

total := 0;

do total := total+ records[i].number;

last := records[i]; i := i+ 1; ;

if i > ℓ(records) ∨ last.name 6= records[i].name

then exit fi od;

if total 6= 0

then write(last.name, total);

changed := changed+ 1 fi od;

!P write(“Changed items:”, changed) end

Now move the assignments to last forwards, and replace this variable by its

value.



Third Stage: Restructure and Simplify
var 〈i := 0, changed := 0〉 :

!P write(“Management Report... ” var );

i := 1;

while i 6 ℓ(records) do

total := 0;

do total := (total+ records[i].number);

i := (i+ 1);

if i > ℓ(records) ∨ records[(i− 1)].name 6= records[i].name

then exit(1) fi od;

if total 6= 0

then !P write(records[(i− 1)].name, total var );

changed := (changed+ 1) fi od;

!P write(“Changed items:”, changed var ) end

Convert the inner loop to a while loop by duplicating code to move the test to

the beginning.



Third Stage: Restructure and Simplify
The restructured abstract program:

var 〈i := 0, changed := 0〉 :

!P write(“Management Report... ” var );

i := 1;

while i 6 ℓ(records) do

total := records[i].number;

i := (i+ 1);

while records[(i− 1)].name = records[i].name ∧ i 6 ℓ(records) do

total := (total+ records[i].number);

i := (i+ 1) od;

if total 6= 0

then !P write(records[(i− 1)].name, total var );

changed := (changed+ 1) fi od;

!P write(“Changed items:”, changed var ) end



Fourth Stage: Specification Level



Fourth Stage: Specification Level
proc Management Report ≡

begin

!P write(“Management Report...”);

var 〈q := split(records, same name?)〉 :

q := summarise ∗ q;

q := filter(q, change?);

!P write ∗ q;

!P write(“Changed items:”, ℓ(q)) end

where

funct same name?(x, y) ≡

x.name = y.name.

funct summarise(g) ≡

〈g[1].name,+/(.number ∗ g)〉.

funct change?(a, b) ≡

b 6= 0.

end



A Method For Reverse Engineering

1. Establish the reverse engineering environment

2. Collect the software to be reverse engineered

3. Produce a high-level description of the system

4. Translate the source code into WSL

5. “Inverse Engineering”, i.e. reverse engineering through formal

transformations. We do this by iterating over the four steps

on the next slide.

6. Acceptance test: We now have a high-level specification of

the whole system which should go through the usual Q.A.

and acceptance tests



A Method For Reverse Engineering

The Inverse Engineering Stage: Iterate over the following four

steps:

1. Restructuring transformations

2. Analyse the resulting structures to determine suitable

higher-level data representations and control structures

3. Redocument: record the discoveries made so far and any

other useful information about the code and its data

structures

4. Implement the higher-level data representations and control

structures using suitable transformations



Inverse Engineering

Inverse engineering is the process of extracting high-level abstract

specifications from source code using program transformations.

This is important in the following areas:

Specifications are more compact and expressed in a

problem-oriented notation

Specifications are easier to understand, modify and enhance

than source code

Increases the programmer’s understanding of the program

Translation between programming languages becomes

possible



Inverse Engineering

Inverse engineering is the process of extracting high-level abstract

specifications from source code using program transformations.

This is important in the following areas:

The transformations are proved to be correct: this allows a

high degree of confidence to be placed in the resulting

specifications

Errors and inefficiencies are exposed and easily corrected

Executable code can be generated automatically, or

semi-automatically from the specifications



Tool Requirements

Any practical program transformation system for reverse

engineering has to meet the following requirements:

It has to be able to cope with all the usual programming

constructs: loops with exits from the middle, gotos, recursion

etc.

It cannot be assumed that the code was developed (or

maintained) according to a particular programming method:

real code (“warts and all”) must be acceptable to the system

Significant restructuring may be required before the real

reverse engineering can take place, and it is important that

this restructuring can be carried out automatically



Tool Requirements (continued)

Any practical program transformation system for reverse

engineering has to meet the following requirements:

It should be based on a formal language and formal

transformation theory, so that it is possible to prove that all

the transformations used are semantic-preserving

The formal language should ideally be a wide spectrum

language which can cope with both low-level constructs such

as gotos, and high-level constructs, including nonexecutable

specifications

Translators are required from the source language(s) to the

formal language



Tool Requirements (continued)

It must be possible to apply transformations without needing

to understand the program first

It must be possible to extract a module, or smaller

component, from the system for analysis and transformation,

with the transformations guaranteed to preserve all the

interactions of that component with the rest of the system

An extensive catalogue of proven transformations is required,

with mechanically checkable correctness conditions and some

means of composing transformations to develop new ones



Tool Requirements (continued)

An interactive interface which pretty-prints each version on

the display will allow the user to instantly see the structure of

the program from the indentation structure

The correctness of the transformation system itself must be

well-established, since all results depend of the

transformations being implemented correctly

A method for reverse engineering by program transformation

needs to be developed alongside the transformation system



Features of FermaT

Source code is translated into WSL, then automatically

restructured and simplified

Transformations are written in METAWSL

The tool validates transformation choice and offers a menu of

valid transformations according to the context

A transformation engine carries out the transformations and

records the history

Documentation and comments can be attached to the code

Edits and modifications are recorded in the history

A front end displays a pretty-printed version of the current

program

The system calculates various metrics (McCabe, structural

complexity, size) to monitor progress and quality



The Wide Spectrum Language WSL

A formal language with supporting formal development

method

Includes both low-level programming constructs and high-level

specifications within one language

Refinement of specifications into programs and reverse

engineering of programs into specifications can be carried out

within a single language

Program transformations have been developed to extract

specifications from source code

Defined in terms of an imperative kernel language



The Wide Spectrum Language WSL

Extended by definitional transformations into a practical

programming language

Automatic translators have been developed to translate

programs from other programming languages into WSL

Translators from IBM Assembler, JOVIAL and a propriety 16

bit assembler to WSL, and translators from WSL to COBOL

and C have been developed and used successfully

A practical program transformation system, called FermaT,

has been developed based on WSL and the transformation

theory



Why invent another language?

Why not ADA, . . . or C, . . . or YFL?

Simple semantics with tractable reasoning methods

Specifications and low-level programming constructs

Results are language independent

Existing programming languages were not designed to be

transformable

All existing programming languages have limitations



Problems with Existing Languages

Differences between compilers. Some transformations will be

valid for one compiler, but not for another. In practice, this

would mean our transformation system could only be used

with one of the many incompatible versions of the language;

Side effects in expressions. For example:

y := f(x) + f(x) ≈ y := 2.f(x)

is a valid WSL transformation. But in a language with side

effects, we would need to check the definition of f(x), and

everything it calls, for possible non-idempotent side-effects;



Problems with Existing Languages

Variable Aliases. For example:

x := 1; y := 2 ≈ y := 2; x := 1

is a valid WSL transformation. But in a language with the

possibility of aliasing, x and y may refer to the same memory

location. In this case, the transformation is invalid. We would

need to determine if the two variables were aliased: but in the

general case, this is a non-computable problem.



Problems with Existing Languages

The Replacement Property. For example:

x := x+ 1; x := 2 ∗ x ≈ x := 2 ∗ (x+ 1)

is valid in WSL but not in C.



Problems with Existing Languages

The Replacement Property. For example:

x := x+ 1; x := 2 ∗ x ≈ x := 2 ∗ (x+ 1)

is valid in WSL but not in C.

Consider the C statements:

if (y == 0)

x = 2*(x+1);

and:

if (y == 0)

x = x + 1; x = 2*x;

Are they equivalent?



Program Transformation Applications

Deriving algorithms in a systematic way from their

specifications

Improving the efficiency of programs

Deriving the specification of an unstructured program from

the source code (“Inverse Engineering”)

Discovering bugs in a program by attempting to transform it

into a specification

Restructuring “spaghetti” Assembler programs into a

hierarchy of self-contained modules.



Benefits of Formal Transformations

The transformations used in inverse engineering have been

proved correct according to the formal method

Large restructuring changes can be made to the program

with the confidence that the functionality is unchanged

During the inverse engineering process, bugs and

inconsistencies are revealed. This leads to increased reliability

The formal links between specification and code can be

recorded and kept up to date

Maintenance can be carried out at the specification level

Programs can be re-expressed in problem-oriented notation

Programs can be incrementally improved—instead of being

incrementally degraded!



Modelling Assembler in WSL

Our approach involves three types of modelling:

1. Complete model: Each assembler instruction is translated

into WSL statements which capture all the effects of the

instruction, including condition codes and registers;

2. Partial model: Branches to register are modelled by

attempting to determine all possible targets of such a branch,

associating a value with each target, and calling a “dispatch”

routine which finds the target for the given value;

3. Self-modifying code: Some cases are detected and handled

(overwriting a NOP/branch, modifying a length field etc.)

but general self-modifying code require human intervention:

usually to renovate the assembler using more standard

programming practices!



Typical Case Study Results

Typical results from a case study of a 442 line IBM Assembler

module, taken from a large commercial system. In this case study,

no manual transformations were required to get a compilable C

program.

No. of McCabe Control Flow Branch

Stage Statements Cyclomatic /Data Flow /Loop Structural

Initial 958 133 806 405 10,449

Data tr. 916 107 688 335 6,856

Fix Assem 336 18 222 20 2,059



Metrics

No. of Statements is the number of executable statements in the

parse tree

McCabe Cyclomatic is the usual McCabe cyclomatic complexity

Control Flow/Data Flow counts the number of control flow lines

and data flow lines

Branch/Loop is a metric which counts the size of loops

Structural is a metric which gives a weighted sum of the structural

features of the program.



Call Graph: Before



Call Graph: After
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More Case Study Results

Four IBM Assembler modules containing up to 4,000 lines of

source code:

No. of McCabe Control Flow Branch

Stage Statements Cyclomatic /Data Flow /Loop Structural

FMD-1 7,704 1,949 5,945 2,412 83,535

FMD-6 2,042 33 319 35 11,017

RTM-1 24,178 10,110 23,965 5,337 329,372

RTM-6 4,533 1,031 4,748 439 31,316

TLO-1 4,240 372 2,235 1,780 35,174

TLO-6 101 4 73 1 746

TSM-1 21,457 8,149 20,443 5,184 262,223

TSM-6 3,173 492 2,356 281 20,005



More Case Study Results

Two IBM Assembler modules, 1,452 and 6,361 source lines:

No. of McCabe Control Flow Branch

Stage Statements Cyclomatic /Data Flow /Loop Structural

SAS0022c-1 6,183 2,518 6,086 1,563 77,842

SAS0022c-6 1,313 169 980 93 8,867

SAS002c-1 35,483 16,876 39,460 7,424 481,173

SAS002c-6 11,633 2,130 11,355 2,082 84,251



Metrics From Migration Projects

Raw WSL Restructured Assembler COBOL Data Access

Org McCabe WSL McCabe McCabe bugs/MLOC

A 1,605 467 651 283 550

B 245 38 70 33 274

C 392 52 96 27 302



Metrics From Migration Projects

Complex EXecute Self-Modifying

Org Subr Linkage Instr/MLOC Code/MLOC

A 73.6% 24 2,347

B 36.9% 745 590

C 53.0% 1,169 127



Weakest Preconditions

For any kernel language statement S : V → W , and formula R

whose free variables are all in W , we define WP(S,R) as follows:

1. WP({P},R) =
DF

P ∧ R

2. WP([Q],R) =
DF

Q ⇒ R

3. WP(add(x),R) =
DF

∀x.R

4. WP(remove(x),R) =
DF

R

5. WP((S1; S2),R) =
DF

WP(S1,WP(S2,R))

6. WP((S1 ⊓ S2),R) =
DF

WP(S1,R) ∧ WP(S2,R)

7. WP((µX.S),R) =
DF

∨
n<ω

WP((µX.S)n,R)

where (µX.S)0 = abort and (µX.S)n+1 = S[(µX.S)n/X ] which is S

with all occurrences of X replaced by (µX.S)n.



Proof Theoretic Refinement

Proof theoretic refinement is defined from the weakest

precondition formula WP, applied to the special postcondition

x 6= x′ where x is a list of all the variables assigned in either

statement, and x′ is a list of new variables.

If S,S′ : V → W have no free statement variables and x is a

sequence of all variables assigned to in either S or S′, and the

formulae

WP(S, x 6= x′) ⇒ WP(S′, x 6= x′)

and

WP(S, true) ⇒ WP(S′, true)

are provable from the set ∆ of sentences, then we say that S is

refined by S′ and write:

∆ ⊢ S ≤ S′

These two definitions of refinement are equivalent:



FermaT

The FermaT Transformation System is available under the GNU

GPL (General Public Licence) from the following web site:

http://www.cse.dmu.ac.uk/∼mward/fermat.html

http://www.gkc.org.uk/fermat.html
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