
Formal Transformations and WSL

Part One

Martin Ward

Reader in Software Engineering

martin@gkc.org.uk

Software Technology Research Lab

De Montfort University

Models and Abstractions

Example of a model: aircraft decoys.

Models and Abstractions

Example of a model: aircraft decoys.

Chaff — looks like an aircraft on radar

Models and Abstractions

Example of a model: aircraft decoys.

Chaff — looks like an aircraft on radar

Plywood model glider — visually looks like an aircraft

Models and Abstractions

Example of a model: aircraft decoys.

Chaff — looks like an aircraft on radar

Plywood model glider — visually looks like an aircraft

. . . add a tape player and amplifier — sounds like an aircraft

Models and Abstractions

Example of a model: aircraft decoys.

Chaff — looks like an aircraft on radar

Plywood model glider — visually looks like an aircraft

. . . add a tape player and amplifier — sounds like an aircraft

. . . add a heat source — fools infra-red camera also

Models and Abstractions

Example of a model: aircraft decoys.

Chaff — looks like an aircraft on radar

Plywood model glider — visually looks like an aircraft

. . . add a tape player and amplifier — sounds like an aircraft

. . . add a heat source — fools infra-red camera also

. . .

Models and Abstractions

Example of a model: aircraft decoys.

Chaff — looks like an aircraft on radar

Plywood model glider — visually looks like an aircraft

. . . add a tape player and amplifier — sounds like an aircraft

. . . add a heat source — fools infra-red camera also

. . .

The result is no longer a decoy: it is an actual aircraft!

Models and Abstractions

Example of a model: aircraft decoys.

Chaff — looks like an aircraft on radar

Plywood model glider — visually looks like an aircraft

. . . add a tape player and amplifier — sounds like an aircraft

. . . add a heat source — fools infra-red camera also

. . .

The result is no longer a decoy: it is an actual aircraft!

Conclusion:

In order to be useful, a model must be incomplete.

Models and Abstractions

Any mathematical analysis of a computer program must be

an abstraction: some details are ignored and other features

are included in the model.

Models and Abstractions

Any mathematical analysis of a computer program must be

an abstraction: some details are ignored and other features

are included in the model.

If every feature of reality were included in the model, then it

would no longer be a model, but the thing itself!

Models and Abstractions

Any mathematical analysis of a computer program must be

an abstraction: some details are ignored and other features

are included in the model.

If every feature of reality were included in the model, then it

would no longer be a model, but the thing itself!

So: the right question to ask of any mathematical model or

scientific theory is not “Does it account for everything?” but

“Is it useful?”. In other words, “Does it account for all the

features of reality that we are interested in for this purpose?”.

Models and Abstractions

Any mathematical analysis of a computer program must be

an abstraction: some details are ignored and other features

are included in the model.

If every feature of reality were included in the model, then it

would no longer be a model, but the thing itself!

So: the right question to ask of any mathematical model or

scientific theory is not “Does it account for everything?” but

“Is it useful?”. In other words, “Does it account for all the

features of reality that we are interested in for this purpose?”.

For example: In analysing a computer program for

correctness, we are not interested in how long the program

takes to process the input, or what sequence of internal

states it goes through on the way to generating the result.

Formal Methods

Formal Methods are mathematically rigorous techniques and tools

for the specification, design and verification of software and

hardware systems.

Classes of formal methods include:

Algebraic specification (eg OBJ, LARCH)

Model based (eg Z, VDM, B-Method and B-Toolkit)

Logic based (eg Hoare Logic, Weakest Preconditions,

Tempura)

Net-based – graphical (eg Petri nets, State Charts)

Process algebra (eg CSP, Lotos, Timed CSP)

Formal Methods

A simple equation:

x2 − 3x+ 2 = 0

We can think of an equation as a description of a set of values, in

this case, the values of x which satisfy the equation.

Formal Methods

A simple equation:

x2 − 3x+ 2 = 0

We can think of an equation as a description of a set of values, in

this case, the values of x which satisfy the equation.

What are the values of x which satisfy this equation?

Formal Methods

A simple equation:

x2 − 3x+ 2 = 0

We can think of an equation as a description of a set of values, in

this case, the values of x which satisfy the equation.

What are the values of x which satisfy this equation?

x = 1 and x = 2

Another Equation

Here is another equation:

(x− 1)(x− 2) = 0

Another Equation

Here is another equation:

(x− 1)(x− 2) = 0

What are the values of x which satisfy this equation?

Another Equation

Here is another equation:

(x− 1)(x− 2) = 0

What are the values of x which satisfy this equation?

x = 1 and x = 2

Proving Equivalence

The two equations:

x2 − 3x+ 2 = 0

and:

(x− 1)(x− 2) = 0

define the same set.

Proving Equivalence

The two equations:

x2 − 3x+ 2 = 0

and:

(x− 1)(x− 2) = 0

define the same set.

There are (at least) two ways to prove that the sets are the same:

Proving Equivalence

The two equations:

x2 − 3x+ 2 = 0

and:

(x− 1)(x− 2) = 0

define the same set.

There are (at least) two ways to prove that the sets are the same:

1. Compute the expressions for all values of x and see for which

values the equations are correct

Proving Equivalence

The two equations:

x2 − 3x+ 2 = 0

and:

(x− 1)(x− 2) = 0

define the same set.

There are (at least) two ways to prove that the sets are the same:

1. Compute the expressions for all values of x and see for which

values the equations are correct

2. Start with one equation and use mathematical laws to turn it

into the other equation.

Proving Equivalence

(x− 1)(x− 2) = x(x− 2)− 1(x− 2)

By the Distributive Law

= x2 − 2x− 1x+ 2

By the Distributive and Associative Laws

= x2 − 3x+ 2

Proving Equivalence

(x− 1)(x− 2) = x(x− 2)− 1(x− 2)

By the Distributive Law

= x2 − 2x− 1x+ 2

By the Distributive and Associative Laws

= x2 − 3x+ 2

So:

(x− 1)(x− 2) = 0

if and only if:

x2 − 3x+ 2 = 0

What is a Program?

What is a Program?

A list of instructions for a machine

What is a Program?

A list of instructions for a machine

A piece of text which describes an operation to another

person (which may also happen to be executable on a

machine)

What is a Program?

A list of instructions for a machine

A piece of text which describes an operation to another

person (which may also happen to be executable on a

machine)

A description of the desired behaviour of a machine

What is a Program?

A list of instructions for a machine

A piece of text which describes an operation to another

person (which may also happen to be executable on a

machine)

A description of the desired behaviour of a machine

A definition of a mathematical function

What is a Program?

A list of instructions for a machine

A piece of text which describes an operation to another

person (which may also happen to be executable on a

machine)

A description of the desired behaviour of a machine

A definition of a mathematical function

A mathematical formula

What is a Program?

A list of instructions for a machine

A piece of text which describes an operation to another

person (which may also happen to be executable on a

machine)

A description of the desired behaviour of a machine

A definition of a mathematical function

A mathematical formula

A precise definition of the relationship between input and

output states

What is a Program?

A list of instructions for a machine

A piece of text which describes an operation to another

person (which may also happen to be executable on a

machine)

A description of the desired behaviour of a machine

A definition of a mathematical function

A mathematical formula

A precise definition of the relationship between input and

output states

All the above!

What is a Program?

Sometimes a program can look like an equation:

y = x*x - 3*x + 2

This is not an equation, but an assignment: which is why some

programming languages use := instead of =. For example:

x = x+ 1

is an equation which has no solution, but:

x := x+ 1

is a program which increments the value of x.

Formal Methods

Many formal methods treat a program as: a definition of the

relationship between input and output states.

Some ways to prove that two different programs define the same

relationship:

Formal Methods

Many formal methods treat a program as: a definition of the

relationship between input and output states.

Some ways to prove that two different programs define the same

relationship:

Execute the two programs for all inputs and compare outputs

Formal Methods

Many formal methods treat a program as: a definition of the

relationship between input and output states.

Some ways to prove that two different programs define the same

relationship:

Execute the two programs for all inputs and compare outputs

Deduce enough properties of the programs which prove that

they must be equivalent

Formal Methods

Many formal methods treat a program as: a definition of the

relationship between input and output states.

Some ways to prove that two different programs define the same

relationship:

Execute the two programs for all inputs and compare outputs

Deduce enough properties of the programs which prove that

they must be equivalent

Apply mathematical laws (“Laws of Programming”) to one

program to turn it into the other program

Formal Methods

Many formal methods treat a program as: a definition of the

relationship between input and output states.

Some ways to prove that two different programs define the same

relationship:

Execute the two programs for all inputs and compare outputs

Deduce enough properties of the programs which prove that

they must be equivalent

Apply mathematical laws (“Laws of Programming”) to one

program to turn it into the other program

and so on. . .

Formal Methods

Many formal methods treat a program as: a definition of the

relationship between input and output states.

Some ways to prove that two different programs define the same

relationship:

Execute the two programs for all inputs and compare outputs

Deduce enough properties of the programs which prove that

they must be equivalent

Apply mathematical laws (“Laws of Programming”) to one

program to turn it into the other program

and so on. . .

We should consider programs much more as manipulable objects

which exist in different forms and which do well-defined things.

—M. Griffiths

Formal Methods

We can sometimes determine the behaviour of a program for an

infinite set of inputs by using mathematical induction:

Formal Methods

We can sometimes determine the behaviour of a program for an

infinite set of inputs by using mathematical induction:

1. Base Step: Show that the program produces the desired

output for an input value of 0;

Formal Methods

We can sometimes determine the behaviour of a program for an

infinite set of inputs by using mathematical induction:

1. Base Step: Show that the program produces the desired

output for an input value of 0;

2. Induction Step: Prove that: if the program works for an input

value of k, then it also works for k + 1;

Formal Methods

We can sometimes determine the behaviour of a program for an

infinite set of inputs by using mathematical induction:

1. Base Step: Show that the program produces the desired

output for an input value of 0;

2. Induction Step: Prove that: if the program works for an input

value of k, then it also works for k + 1;

3. Conclusion: Deduce that the program works for all input

values.

Formal Methods

We can sometimes determine the behaviour of a program for an

infinite set of inputs by using mathematical induction:

1. Base Step: Show that the program produces the desired

output for an input value of 0;

2. Induction Step: Prove that: if the program works for an input

value of k, then it also works for k + 1;

3. Conclusion: Deduce that the program works for all input

values.

For example:

while n 6= 0 do

n := n− 1 od

Prove that this is equivalent to n := 0 for all non-negative integer

values of n.

Formal Methods

Prove that the following program:

〈total := 0, i := 0〉;

while i 6= n do

i := i+ 1;

total := total+A[i] od

will set total to the value A[1] + · · ·+A[n], i.e.:

∑

16k6n

A[k]

Formal Methods

One way to prove this is uses two things:

An Invariant Condition: a condition (a formula) which is true just

before the loop and is preserved by the body of the loop; and

A Variant Expression: a positive valued expression whose value is

reduced on each iteration of the loop.

Formal Methods

One way to prove this is uses two things:

An Invariant Condition: a condition (a formula) which is true just

before the loop and is preserved by the body of the loop; and

A Variant Expression: a positive valued expression whose value is

reduced on each iteration of the loop.

Invariant Formula: let I be the condition total = A[1] + · · ·+A[i] i.e.:

total =
∑

16k6i

A[k]

If i = 0, then the sum has no elements, so is zero. Setting

total := 0 and i := 0 will make condition I true (trivially).

Preserving the Invariant

The invariant is true before the loop.

Now consider the body of the loop. If:

total =
∑

16k6i

A[k]

then:

total+A[i+ 1] =
∑

16k6i+1

A[k]

So, if we add 1 to i and then add A[i] to total, then the condition I

will still be true. This is what the body of the loop actually does.

If I is true at the start of the loop body, then I will still be true at

the end of the loop.

The loop body preserves the invariant.

The Variant Expression

The variant expression is:

n− i

On each iteration of the loop, i is increased, so n− i is reduced.

The loop terminates when i = n, and n is a non-negative integer,

so the expression n− i is always greater than or equal to zero.

The Variant Expression

The variant expression is:

n− i

On each iteration of the loop, i is increased, so n− i is reduced.

The loop terminates when i = n, and n is a non-negative integer,

so the expression n− i is always greater than or equal to zero.

The purpose of the variant expression is to prove that each

iteration of the loop makes some progress. This proves that loop

will eventually terminate.

The Variant Expression

The variant expression is:

n− i

On each iteration of the loop, i is increased, so n− i is reduced.

The loop terminates when i = n, and n is a non-negative integer,

so the expression n− i is always greater than or equal to zero.

The purpose of the variant expression is to prove that each

iteration of the loop makes some progress. This proves that loop

will eventually terminate.

The variant expression proves that the loop will terminate.

Putting it all Together

〈total := 0, i := 0〉;

while i 6= n do

i := i+ 1;

total := total+A[i] od

Putting it all Together

〈total := 0, i := 0〉;

while i 6= n do

i := i+ 1;

total := total+A[i] od

The condition total =
∑

16k6iA[k] is true just before the loop, and

is preserved by every iteration of the loop. So it will still be true

when the loop terminates (if it terminates).

Putting it all Together

〈total := 0, i := 0〉;

while i 6= n do

i := i+ 1;

total := total+A[i] od

The condition total =
∑

16k6iA[k] is true just before the loop, and

is preserved by every iteration of the loop. So it will still be true

when the loop terminates (if it terminates).

The integer expression n− i is reduced on every iteration of the

loop and never goes negative. So the loop actually does

terminate.

Putting it all Together

〈total := 0, i := 0〉;

while i 6= n do

i := i+ 1;

total := total+A[i] od

The condition total =
∑

16k6iA[k] is true just before the loop, and

is preserved by every iteration of the loop. So it will still be true

when the loop terminates (if it terminates).

The integer expression n− i is reduced on every iteration of the

loop and never goes negative. So the loop actually does

terminate.

When the loop terminates, i 6= n is false, so i = n is true.

Putting it all Together

〈total := 0, i := 0〉;

while i 6= n do

i := i+ 1;

total := total+A[i] od

The condition total =
∑

16k6iA[k] is true just before the loop, and

is preserved by every iteration of the loop. So it will still be true

when the loop terminates (if it terminates).

The integer expression n− i is reduced on every iteration of the

loop and never goes negative. So the loop actually does

terminate.

When the loop terminates, i 6= n is false, so i = n is true.

If i = n and total =
∑

16k6iA[k] is true, then total =
∑

16k6nA[k] is

true. Which is just what we wanted to prove.

Summary

To use the method of invariants to prove the correctness of a

program containing a loop we need to find:

1. An invariant condition

2. A variant function

and then we need to prove:

1. The invariant is true just before the loop

2. The invariant is preserved by the loop body

3. The variant function is reduced by the loop body and

bounded below

4. The invariant plus the terminating condition implies the

required postcondition

Binary Search

Given a sorted array A[1 . . n] and a value x, set r to a value

1 6 r 6 n such that A[r] = x. Set r = 0 if x does not appear in A.

Binary Search

Given a sorted array A[1 . . n] and a value x, set r to a value

1 6 r 6 n such that A[r] = x. Set r = 0 if x does not appear in A.

Binary search is a fundamental algorithm which is very simple, but

nearly everyone gets it wrong. There are subtle details in the

implementation which are easy to overlook in an informal

development.

Binary Search

Given a sorted array A[1 . . n] and a value x, set r to a value

1 6 r 6 n such that A[r] = x. Set r = 0 if x does not appear in A.

Binary search is a fundamental algorithm which is very simple, but

nearly everyone gets it wrong. There are subtle details in the

implementation which are easy to overlook in an informal

development.

The informal idea is to pick an element in the middle of the array

and examine its value. If this is equal to x, then we have finished,

otherwise we can use the fact that the array is sorted to narrow

down the area to be searched.

Binary Search Invariant

Suppose that the sub-array A[a . . b] has still to be searched: in

other words, if x is anywhere in the array, then it must be in

A[a . . b]. Part of our invariant is therefore:

A[1 . . a− 1] < x ∧ A[b+ 1 . . N] > x

We can ensure that I is true initially by assigning a := 1 and

b := N . Then the two sub-arrays in the invariant are empty.

If x has been found, then we will set r to the appropriate index, so

the full invariant I is:

(r > 0 ∧ A[r] = x) ∨ (r = 0 ∧ A[1 . . a− 1] < x ∧ A[b+ 1 . . N] > x)

Binary Search Invariant

1 ba

< x > x

m N

Binary Search Variant Expression

The algorithm makes progress by reducing the size of the

sub-array A[a . . b]. So the variant expression is the length of this

array, i.e.:

b− a+ 1

Binary Search

The invariant I is:

(r 6= 0 ∧ A[r] = x) ∨ (r = 0 ∧ A[1 . . a− 1] < x ∧ A[b+ 1 . . N] > x)

If r 6= 0 then the required postcondition is satisfied.

Otherwise, if b < a then the sub-array is empty, and since r = 0,

the postcondition is satisfied.

Otherwise, we need to reduce b− a+ 1 and ensure that I is still

satisfied.

Pick a value m such that a 6 m 6 b. There are three cases:

Binary Search

The invariant I is:

(r 6= 0 ∧ A[r] = x) ∨ (r = 0 ∧ A[1 . . a− 1] < x ∧ A[b+ 1 . . N] > x)

If r 6= 0 then the required postcondition is satisfied.

Otherwise, if b < a then the sub-array is empty, and since r = 0,

the postcondition is satisfied.

Otherwise, we need to reduce b− a+ 1 and ensure that I is still

satisfied.

Pick a value m such that a 6 m 6 b. There are three cases:

1. A[m] = x Setting r := m will satisfy I

Binary Search

The invariant I is:

(r 6= 0 ∧ A[r] = x) ∨ (r = 0 ∧ A[1 . . a− 1] < x ∧ A[b+ 1 . . N] > x)

If r 6= 0 then the required postcondition is satisfied.

Otherwise, if b < a then the sub-array is empty, and since r = 0,

the postcondition is satisfied.

Otherwise, we need to reduce b− a+ 1 and ensure that I is still

satisfied.

Pick a value m such that a 6 m 6 b. There are three cases:

1. A[m] = x Setting r := m will satisfy I

2. A[m] < x Then A[1 . .m] < x, so setting a := m+ 1 preserves I

Binary Search

The invariant I is:

(r 6= 0 ∧ A[r] = x) ∨ (r = 0 ∧ A[1 . . a− 1] < x ∧ A[b+ 1 . . N] > x)

If r 6= 0 then the required postcondition is satisfied.

Otherwise, if b < a then the sub-array is empty, and since r = 0,

the postcondition is satisfied.

Otherwise, we need to reduce b− a+ 1 and ensure that I is still

satisfied.

Pick a value m such that a 6 m 6 b. There are three cases:

1. A[m] = x Setting r := m will satisfy I

2. A[m] < x Then A[1 . .m] < x, so setting a := m+ 1 preserves I

3. A[m] > x Then A[m. .N] > x, so setting b := m− 1 preserves I

Binary Search Invariant

1 ba

< x > x

m N

1. If A[m] = x then set r := m

2. If A[m] < x then A[1 . .m] < x, so set a := m+ 1

3. If A[m] > x then A[m. .N] > x, so set b := m− 1

Binary Search

Putting these facts together:

a := 1; b := N ; r := 0;

while r = 0 ∧ b > a do

m := (some value in the range a . . b);

if A[m] = x then r := m

elsif A[m] < x then a := m+ 1

else b := m− 1 fi od

For efficiency, the assignment to m should pick the middle

element, i.e. ⌊(a+ b)/2⌋. To avoid numeric overflow this can be

calculated as:

a+ ⌊(b− a)/2⌋

Notice that the correctness of the algorithm does not depend in

any way on the choice of m.

Binary Search

a := 1; b := N ; r := 0;

while r = 0 ∧ b > a do

m := a+ ⌊(b− a)/2⌋;

if A[m] = x then r := m

elsif A[m] < x then a := m+ 1

else b := m− 1 fi od

On termination of the while loop we have:

I ∧ ¬(r = 0 ∧ b > a)

Binary Search

((r 6= 0 ∧ A[r] = x) ∨ (r = 0 ∧ A[1 . . a− 1] < x ∧ A[b+ 1 . .N] > x))

∧ (r 6= 0 ∨ b < a)

Binary Search

((r 6= 0 ∧ A[r] = x) ∨ (r = 0 ∧ A[1 . . a− 1] < x ∧ A[b+ 1 . .N] > x))

∧ (r 6= 0 ∨ b < a)

which is:

(r 6= 0 ∧ A[r] = x) ∨ (r = 0 ∧ b < a ∧ A[1 . . a−1] < x ∧ A[b+1 . . N] > x)

Binary Search

((r 6= 0 ∧ A[r] = x) ∨ (r = 0 ∧ A[1 . . a− 1] < x ∧ A[b+ 1 . .N] > x))

∧ (r 6= 0 ∨ b < a)

which is:

(r 6= 0 ∧ A[r] = x) ∨ (r = 0 ∧ b < a ∧ A[1 . . a−1] < x ∧ A[b+1 . . N] > x)

which implies:

(r 6= 0 ∧ A[r] = x) ∨ (r = 0 ∧ b < a ∧ A[1 . . a−1] 6= x ∧ A[b+1 . . N] 6= x)

Binary Search

((r 6= 0 ∧ A[r] = x) ∨ (r = 0 ∧ A[1 . . a− 1] < x ∧ A[b+ 1 . .N] > x))

∧ (r 6= 0 ∨ b < a)

which is:

(r 6= 0 ∧ A[r] = x) ∨ (r = 0 ∧ b < a ∧ A[1 . . a−1] < x ∧ A[b+1 . . N] > x)

which implies:

(r 6= 0 ∧ A[r] = x) ∨ (r = 0 ∧ b < a ∧ A[1 . . a−1] 6= x ∧ A[b+1 . . N] 6= x)

which implies:

(r 6= 0 ∧ A[r] = x) ∨ (r = 0 ∧ A[1 . . N] 6= x)

as required.

Specification Methods

The next few slides will describe various methods for specifying

programs and proving that an implementation of a specification is

correct.

Algebraic Specification

In this approach, an implicit definition of operations is given by

relating the behaviour of different operations without defining the

meanings of the actual states.

An algebraic, or axiomatic specification consists of:

1. A name

2. An informal description of the data type

3. A set of abstract data elements

4. A set of operations on the abstract data elements

5. A set of axioms which define the meaning of the operations

Specification of a Stack

Informal Description:

Specification of a Stack

The operations for data type Stack, operating on base set E are:

init: → stack (produces a new empty stack)

top: stack → E ∪ {error} (returns the top element)

push: stack, E → stack (adds an element to the stack)

pop: stack → stack ∪ {error} (removes the top element)

is empty?: stack → {true, false} (test if the stack is empty)

where error is a special element denoting an error result.

Specification of a Stack

The operations for data type Stack, operating on base set E are:

init: → stack (produces a new empty stack)

top: stack → E ∪ {error} (returns the top element)

push: stack, E → stack (adds an element to the stack)

pop: stack → stack ∪ {error} (removes the top element)

is empty?: stack → {true, false} (test if the stack is empty)

where error is a special element denoting an error result.

Note that we have only defined the type of each operation, and

(so far) said nothing about its behaviour.

Specification of a Stack

The axioms for Stack are:

1. is empty?(init) = true

2. is empty?(push(s, x)) = false

3. pop(init) = error

4. pop(push(s, x)) = s

5. top(init) = error

6. top(push(s, x)) = x

For example:

push(pop(push(push(init, 4), 5)), 7)

is the same stack as:

push(push(init, 4), 7)

Algebraic Specifications: Advantages

The user of a data type has to show that the data type axioms

are sufficient to demonstrate the correctness of each program

which makes used of the data type.

The implementer of a data type simply has to provide something

for which all the axioms are valid.

Algebraic Specifications: Advantages

The user of a data type has to show that the data type axioms

are sufficient to demonstrate the correctness of each program

which makes used of the data type.

The implementer of a data type simply has to provide something

for which all the axioms are valid.

The user doesn’t need to know anything about the

implementation.

Algebraic Specifications: Advantages

The user of a data type has to show that the data type axioms

are sufficient to demonstrate the correctness of each program

which makes used of the data type.

The implementer of a data type simply has to provide something

for which all the axioms are valid.

The user doesn’t need to know anything about the

implementation.

The implementer doesn’t need to know anything about how the

data type is actually used.

Stack Implementer

The implementer of a stack needs to do the following:

1. Provide a set of functions: init, top, push, pop and is empty?

which accept parameters of the appropriate types, and

produce a result of the appropriate type

2. Prove that all the axioms are universally valid for the

implementations of the functions.

Stack Implementer

The implementer of a stack needs to do the following:

1. Provide a set of functions: init, top, push, pop and is empty?

which accept parameters of the appropriate types, and

produce a result of the appropriate type

2. Prove that all the axioms are universally valid for the

implementations of the functions.

For example, the implementer might decide to implement a stack

as a linked list.

Stack Implementation

Implementing a stack as a linked list of nodes:

1. A node is a struct containing two pointers: next and data

Stack Implementation

Implementing a stack as a linked list of nodes:

1. A node is a struct containing two pointers: next and data

2. init simply returns a null pointer;

Stack Implementation

Implementing a stack as a linked list of nodes:

1. A node is a struct containing two pointers: next and data

2. init simply returns a null pointer;

3. is empty? tests if the given pointer is null;

Stack Implementation

Implementing a stack as a linked list of nodes:

1. A node is a struct containing two pointers: next and data

2. init simply returns a null pointer;

3. is empty? tests if the given pointer is null;

4. The axiom is empty?(init) is therefore easy to prove!

Stack Implementation

Implementing a stack as a linked list of nodes:

1. A node is a struct containing two pointers: next and data

2. init simply returns a null pointer;

3. is empty? tests if the given pointer is null;

4. The axiom is empty?(init) is therefore easy to prove!

5. push(s, x) allocates a new node, sets the next pointer to s and

the data pointer to x and returns a pointer to the new node

Stack Implementation

Implementing a stack as a linked list of nodes:

1. A node is a struct containing two pointers: next and data

2. init simply returns a null pointer;

3. is empty? tests if the given pointer is null;

4. The axiom is empty?(init) is therefore easy to prove!

5. push(s, x) allocates a new node, sets the next pointer to s and

the data pointer to x and returns a pointer to the new node

6. Therefore, is empty?(push(s, x)) is false (unless the memory

allocation failed!)

Stack Implementation

Implementing a stack as a linked list of nodes:

1. A node is a struct containing two pointers: next and data

2. init simply returns a null pointer;

3. is empty? tests if the given pointer is null;

4. The axiom is empty?(init) is therefore easy to prove!

5. push(s, x) allocates a new node, sets the next pointer to s and

the data pointer to x and returns a pointer to the new node

6. Therefore, is empty?(push(s, x)) is false (unless the memory

allocation failed!)

7. . . . and so on.

Stack User

The stack user might have a harder job than the implementer.

He has to prove that his program is correct for any

implementation of a stack. In other words: he has to prove that

his program is correct using only the axioms of a stack.

Stack User

The stack user might have a harder job than the implementer.

He has to prove that his program is correct for any

implementation of a stack. In other words: he has to prove that

his program is correct using only the axioms of a stack.

For example:

s := push(s, x);

. . .Do some processing which includes

. . .pushing and popping items on and off s

x := top(s); s := pop(s);

x should now contain the value that was pushed

Stack User

The stack user might have a harder job than the implementer.

He has to prove that his program is correct for any

implementation of a stack. In other words: he has to prove that

his program is correct using only the axioms of a stack.

For example:

s := push(s, x);

. . .Do some processing which includes

. . .pushing and popping items on and off s

x := top(s); s := pop(s);

x should now contain the value that was pushed

What does the user need to do to prove that this program is

correct?

Completeness and Correctness

On first meeting algebraic specifications, an immediate question

arises: how do we know that the given axioms provide a precise

definition of the behaviour of the operations for the data type?

Loosely speaking, completeness is concerned with the problem of

whether there are enough independent axioms to adequately

describe the behaviour of the operations of the abstract data

type. The set of axioms which define the semantics of an abstract

data type should be complete in the sense that :

1. operations must be defined which allow the construction of all

possible legal instances (all the values we want) of the

abstract data type

2. the results for all legal applications and compositions of the

operations must be defined.

Consistency

The set of axioms must also be consistent: in other words, it must

not be possible to derive a contradiction from the set of axioms.

Consistency

The set of axioms must also be consistent: in other words, it must

not be possible to derive a contradiction from the set of axioms.

For example, suppose we decide to add another axiom to the list:

push(s, x) = s

Consistency

The set of axioms must also be consistent: in other words, it must

not be possible to derive a contradiction from the set of axioms.

For example, suppose we decide to add another axiom to the list:

push(s, x) = s

Now, by axiom (1):

is empty?(init) = true

Consistency

The set of axioms must also be consistent: in other words, it must

not be possible to derive a contradiction from the set of axioms.

For example, suppose we decide to add another axiom to the list:

push(s, x) = s

Now, by axiom (1):

is empty?(init) = true

By the new axiom, init = push(init, x), so:

is empty?(push(init, x)) = true

Consistency

The set of axioms must also be consistent: in other words, it must

not be possible to derive a contradiction from the set of axioms.

For example, suppose we decide to add another axiom to the list:

push(s, x) = s

Now, by axiom (1):

is empty?(init) = true

By the new axiom, init = push(init, x), so:

is empty?(push(init, x)) = true

But axiom (2) says, for all s, including s = init:

is empty?(push(s, x)) = false

Algebraic Specs: Disadvantages

It may be necessary to provide several infinite sets of axioms

in order to completely specify a simple data type!

Algebraic Specs: Disadvantages

It may be necessary to provide several infinite sets of axioms

in order to completely specify a simple data type!

It is sometimes difficult to prove that algebraic specifications

are mathematically complete and consistent.

Algebraic Specs: Disadvantages

It may be necessary to provide several infinite sets of axioms

in order to completely specify a simple data type!

It is sometimes difficult to prove that algebraic specifications

are mathematically complete and consistent.

The usual way to prove consistency of a set of axioms is to

provide a model.

Algebraic Specs: Disadvantages

It may be necessary to provide several infinite sets of axioms

in order to completely specify a simple data type!

It is sometimes difficult to prove that algebraic specifications

are mathematically complete and consistent.

The usual way to prove consistency of a set of axioms is to

provide a model.

Why not just use the model itself as the specification?

Model-based Approach

A system is modelled by explicitly defining the states and

operations that transform the system from one state to another.

The model is defined in terms of well-known mathematical

objects: sets, functions, relations, sequences and so on.

Properties of these objects can be used in proofs.

A Model for a Stack

Define a stack as a sequence of elements.

Sequences are well-understood mathematical objects with familiar

properties.

Let s be the sequence 〈s1, s2, . . . , sn〉.

Define:

s[i] = si

s[i..j] = 〈si, si+1, . . . , sj〉

ℓ(s) = n

s[j..] = s[j..ℓ(s)]

s ++ t = 〈s1, . . . , sn, t1, . . . , tm〉

A Model for a Stack

Define a Stack in terms of a sequence:

init =
DF

〈〉 the empty sequence

top(〈〉) =
DF

error

top(s) =
DF

s[1] if s 6= 〈〉

push(s, x) =
DF

〈x〉 ++ s

pop(〈〉) =
DF

error

pop(s) =
DF

s[2..] if s 6= 〈〉

is empty?(〈〉) =
DF

true

is empty?(s) =
DF

false if s 6= 〈〉

This is a model based specification.

Using the Model

The user of a data type replaces calls to operations by the

corresponding abstract code. (For example, push(s, x) is replaced

by 〈x〉 ++ s). Then the user proves that the resulting abstract

program is correct.

The implementer of a data type has to provide some concrete

code which is a valid data refinement of the abstract code. (For

example, a linked list implementation of a stack). An abstraction

function maps from the concrete data elements to the

corresponding abstract data elements.

Using the Model

The user of a data type replaces calls to operations by the

corresponding abstract code. (For example, push(s, x) is replaced

by 〈x〉 ++ s). Then the user proves that the resulting abstract

program is correct.

The implementer of a data type has to provide some concrete

code which is a valid data refinement of the abstract code. (For

example, a linked list implementation of a stack). An abstraction

function maps from the concrete data elements to the

corresponding abstract data elements.

The user doesn’t need to know anything about the

implementation.

Using the Model

The user of a data type replaces calls to operations by the

corresponding abstract code. (For example, push(s, x) is replaced

by 〈x〉 ++ s). Then the user proves that the resulting abstract

program is correct.

The implementer of a data type has to provide some concrete

code which is a valid data refinement of the abstract code. (For

example, a linked list implementation of a stack). An abstraction

function maps from the concrete data elements to the

corresponding abstract data elements.

The user doesn’t need to know anything about the

implementation.

The implementer doesn’t need to know anything about how the

data type is actually used.

Stack Implementation

next

data

next

data

next

data

null

s[1] s[2] s[n]

stack

Stack Implementer

Our stack implementer with the linked list now has to provide an

abstraction function which maps a linked list to a sequence. For

example:

abs(s) =
DF







〈〉 if s is a null pointer

〈s->data〉 ++ abs(s->next) otherwise

He then has to prove that for each operation, the abstract value

of the output of the operation is the correct model operation

applied to the abstract values of each parameter.

For example:

abs(push(s, x)) = 〈x〉 ++ abs(s)

Stack Implementer

To prove:

abs(push(s, x)) = 〈x〉 ++ abs(s)

Note that push(s, x) allocates a node, say s1, and sets:

s1->data := x;

s1->next := s

and then returns s1.

So, by the definition of abs:

abs(s1) = 〈s1->data〉 ++ abs(s1->next)

since s1 is not a null pointer

= 〈x〉 ++ abs(s)

as required.

Stack User

The stack user’s program becomes:

s := 〈x〉 ++ s;

. . .Do some processing which includes

. . .pushing and popping items on and off s

x := s[1]; s := s[2 . .]; ;

x should now contain the value that was pushed

The user can directly use concepts such as the length of the

sequence s in his correctness proof. If the “do some processing”

section does the following:

1. Preserves the invariant ℓ(s) > L where L is the initial length of

the stack; and

2. Ensures that ℓ(s) = L at the end of the section

then the correctness proof is simple.

Logic-based Approach

In this approach logic is used to describe the system’s desired

properties, including the low-level specification, temporal, and

probabilistic behaviours. The validity of these properties is

achieved using the associated axiom system of the logic. In some

cases, a subset of the logic can be executed (e.g., the Tempura

system). The executable specification can then be used for

simulation and rapid prototyping purposes.

Examples include: Hoare Logic, Dijkstra Weakest Preconditions

Calculus, Temporal logic etc.

Logic-based Approach

The logic can be augmented with some concrete programming

constructs to obtain what is known as wide-spectrum formalism.

The development of systems in this case is achieved by a set of

correctness-preserving refinement steps.

Examples include: TAM, the refinement calculus.

FermaT Transformation System

FermaT is both:

model-based (via denotational semantics) and

logic-based (via weakest preconditions in infinitary first order

logic)

The two foundations for WSL are proved to be equivalent.

This means that both methods (semantics and weakest

preconditions) can be applied to prove the correctness of

transformations.

Both methods are used in practice.

Net Based Specifications

Graphical notations are popular notations for specifying systems

as they are easier to comprehend and, hence, more accessible to

non-specialists. This approach uses graphical languages with

formal semantics, which brings particular advantages in system

development and reengineering.

Petri Net theory was one of the first formalisms to deal with

concurrency, nondeterminism and causal connections between

events. According to Milner, it was the first unified theory, with

levels of abstraction, in which to describe and analyse all aspects

of a computer in the context of its environment.

Petri nets provide a graphic representation with formal semantics

of system behaviour. A large number of varieties of Petri Net

Theory have been proposed. Generally, petri nets can be classified

into ordinary (classic) petri nets and timed petri nets.

Net Based Specifications

A Petri net consists of places, transitions, and directed arcs. Arcs

run between places and transitions—not between places and

places or transitions and transitions. The places from which an

arc runs to a transition are called the input places of the

transition; the places to which arcs run from a transition are

called the output places of the transition.

Places may contain any number of tokens. A distribution of

tokens over the places of a net is called a marking. Transitions

act on input tokens by a process known as firing. A transition is

enabled if it can fire, i.e., there are tokens in every input place.

When a transition fires, it consumes the tokens from its input

places, performs some processing task, and places a specified

number of tokens into each of its output places. It does this

atomically, i.e., in one non-interruptible step.

Net Based Specifications

Execution of Petri nets is nondeterministic. This means two

things:

1. Multiple transitions can be enabled at the same time, any one

of which can fire

2. None are required to fire — they fire at will, between time 0

and infinity, or not at all (i.e. it is totally possible that

nothing fires at all).

Since firing is nondeterministic, Petri nets are well suited for

modelling the concurrent behaviour of distributed systems.

Petri Nets: Example

Petri Nets: Example

Statecharts

Statecharts provides an abstraction mechanism based on finite

state machine. It represents an improved version of the structured

methods. A graphic tool called “Statemate” exists to implement

the formalism.

In statecharts, conventional finite state machines are extended by

AND/OR decomposition of states, interlevel transitions, and an

implicit intercomposition broadcast communication. Statecharts

denote the composition of state machines into super-machines

which may execute concurrently. The state machines contain

transitions which are marked by enabling and output events. It is

assumed that events are instantaneous, and a global discrete

clock is used to trigger sets of concurrent events. Statecharts are

hierarchical, and may be composed into complex charts.

Statecharts

Statecharts support the typical structural top-down system

development methods. They do not fit in with the procedures of

reverse engineering, which involve abstraction of specifications

from source code. Real time is incorporated in Statecharts by

having an implicit clock, allowing transitions to be triggered by

timeouts relative to this clock, and by requiring that if a transition

can be taken, then it must be taken immediately.

Process Algebra

The term “process algebra” was coined in 1982 by Bergstra &

Klop. A process algebra is a structure in the sense of universal

algebra that satisfied a particular set of axioms. Since 1984 the

phrase “process algebra” has also been used to denote an area of

science: the algebraic approach to the study of concurrent

processes.

In this approach, an explicit representation of concurrent processes

is allowed. System behaviour is represented by constraints on all

allowable observable communications between processes.

The main algebraic approaches to concurrency are

CCS, Milner’s Calculus of Communicating Systems

CSP, Hoare’s Communicating Sequential Processes

ACP, Bergstra & Klop’s Algebra of Communicating Processes

Process Algebra

A process algebra starts with a set of names (or channels) whose

purpose is to provide means of communication, together with a

means to form new processes from old. The basic operators,

always present in some form or other include:

parallel composition of processes

specifying which channels to use for sending and receiving

data

sequentializing interactions

hiding interaction channels

recursion or process replication

System behaviour is represented by constraints on all allowable

observed communications between processes.

Syntax and Semantics of WSL

WSL is a Wide Spectrum Language which forms the basis for the

WSL theory of program transformations and the FermaT program

transformation system.

Program States

A program starts executing in some state. A state is a collection

of variables each of which has a value. The collection of variables

is called the state space. The state space may change during the

execution of the program, with variables being added or removed.

Program States

A program starts executing in some state. A state is a collection

of variables each of which has a value. The collection of variables

is called the state space. The state space may change during the

execution of the program, with variables being added or removed.

The state space is a finite non-empty set of variables. Each

variable in the state space has a value, take from some set H of

values.

Program States

A program starts executing in some state. A state is a collection

of variables each of which has a value. The collection of variables

is called the state space. The state space may change during the

execution of the program, with variables being added or removed.

The state space is a finite non-empty set of variables. Each

variable in the state space has a value, take from some set H of

values.

So a state can be modelled as a function from the state space to

the set of values. This function returns the value of each variable

in the state space.

Program States

A program starts executing in some state. A state is a collection

of variables each of which has a value. The collection of variables

is called the state space. The state space may change during the

execution of the program, with variables being added or removed.

The state space is a finite non-empty set of variables. Each

variable in the state space has a value, take from some set H of

values.

So a state can be modelled as a function from the state space to

the set of values. This function returns the value of each variable

in the state space.

For example, let s be the state in which x has the value 1

and y has the value 2:

s = {x 7→ 1, y 7→ 2}

State Transformation

Start a program executing in some state: it will either run forever,

or (eventually) terminate in some state.

State Transformation

Start a program executing in some state: it will either run forever,

or (eventually) terminate in some state.

“Running forever” is represented by the special state ⊥.

A proper state is any state other than ⊥.

State Transformation

Start a program executing in some state: it will either run forever,

or (eventually) terminate in some state.

“Running forever” is represented by the special state ⊥.

A proper state is any state other than ⊥.

Programs may be non-deterministic: for the same initial state,

there may be two or more possible final states.

State Transformation

Start a program executing in some state: it will either run forever,

or (eventually) terminate in some state.

“Running forever” is represented by the special state ⊥.

A proper state is any state other than ⊥.

Programs may be non-deterministic: for the same initial state,

there may be two or more possible final states.

So we will represent the behaviour of a program by a function

which maps from each initial state to the set of possible final

states.

State Transformation

Start a program executing in some state: it will either run forever,

or (eventually) terminate in some state.

“Running forever” is represented by the special state ⊥.

A proper state is any state other than ⊥.

Programs may be non-deterministic: for the same initial state,

there may be two or more possible final states.

So we will represent the behaviour of a program by a function

which maps from each initial state to the set of possible final

states.

This function is called a state transformation.

The Semantics of WSL

for given initial state
Final set of states

Initial set of states

State Transformation

Starting a program in the state “running forever” state ⊥ means

that some previous program is running forever: in other words,

this program never even gets started!

So, if the initial state is ⊥ then the final state can only be ⊥.

A program cannot terminate if it never gets started!

If the set of final states includes ⊥ then by definition it includes all

other states.

State Transformation

Two simple programs

State Transformation

Two simple programs

skip

terminates immediately in the state in which it was started.

For each proper initial state s, the set of final states is {s}.

State Transformation

Two simple programs

skip

terminates immediately in the state in which it was started.

For each proper initial state s, the set of final states is {s}.

abort

Does not terminate on any initial state. The set of final states

always includes ⊥ plus every other state.

An Example

Suppose that the set H contains only two values: 0 and 1, and the

state space contains only two variables x and y.

An Example

Suppose that the set H contains only two values: 0 and 1, and the

state space contains only two variables x and y.

The five possible states are:

1. s00 = {x 7→ 0, y 7→ 0}

2. s01 = {x 7→ 0, y 7→ 1}

3. s10 = {x 7→ 1, y 7→ 0}

4. s11 = {x 7→ 1, y 7→ 1}

5. ⊥

An Example

The semantic function for the program y := x maps:

An Example

The semantic function for the program y := x maps:

s00 7→ {s00}

s01 7→ {s00}

s10 7→ {s11}

s11 7→ {s11}

⊥ 7→ {⊥, s00, s01, s10, s11}

An Example

The semantic function for the program add(y) maps:

An Example

The semantic function for the program add(y) maps:

s00 7→ {s00, s01}

s01 7→ {s00, s01}

s10 7→ {s10, s11}

s11 7→ {s10, s11}

⊥ 7→ {⊥, s00, s01, s10, s11}

The WSL Kernel Language

“The quarks of programming”

The primitive kernel statements are constructed from formulae

and lists of variables.

The WSL Kernel Language

“The quarks of programming”

The primitive kernel statements are constructed from formulae

and lists of variables.

Let P and Q be any formulae and x and y be any lists of variables:

Assertion: {P} Does nothing if P is true, aborts if P is false;

The WSL Kernel Language

“The quarks of programming”

The primitive kernel statements are constructed from formulae

and lists of variables.

Let P and Q be any formulae and x and y be any lists of variables:

Assertion: {P} Does nothing if P is true, aborts if P is false;

Guard: [Q] Ensures that Q is true by restricting previous

nondeterminism;

The WSL Kernel Language

“The quarks of programming”

The primitive kernel statements are constructed from formulae

and lists of variables.

Let P and Q be any formulae and x and y be any lists of variables:

Assertion: {P} Does nothing if P is true, aborts if P is false;

Guard: [Q] Ensures that Q is true by restricting previous

nondeterminism;

Add variables: add(x) adds the variables in x to the state space

and assigns arbitrary values to them;

The WSL Kernel Language

“The quarks of programming”

The primitive kernel statements are constructed from formulae

and lists of variables.

Let P and Q be any formulae and x and y be any lists of variables:

Assertion: {P} Does nothing if P is true, aborts if P is false;

Guard: [Q] Ensures that Q is true by restricting previous

nondeterminism;

Add variables: add(x) adds the variables in x to the state space

and assigns arbitrary values to them;

Remove variables: remove(y) removes the variables in y from

the state space.

The WSL Kernel Language

“The quarks of programming”

The WSL Kernel Language

“The quarks of programming”

The compound statements are as follows; for any kernel language

statements S1 and S2, the following are also kernel language

statements:

Sequence: (S1; S2) executes S1 followed by S2;

The WSL Kernel Language

“The quarks of programming”

The compound statements are as follows; for any kernel language

statements S1 and S2, the following are also kernel language

statements:

Sequence: (S1; S2) executes S1 followed by S2;

Nondeterministic choice: (S1 ⊓ S2) chooses one of S1 or S2 for

execution;

The WSL Kernel Language

“The quarks of programming”

The compound statements are as follows; for any kernel language

statements S1 and S2, the following are also kernel language

statements:

Sequence: (S1; S2) executes S1 followed by S2;

Nondeterministic choice: (S1 ⊓ S2) chooses one of S1 or S2 for

execution;

Recursion: (µX.S1) where X appearing in the body S1

represents a recursive procedure call.

Refinement in WSL

Refinement is defined in terms of the semantics: a statement S2

refines S1 if for each initial state, the set of final states for S2 is a

subset of the set of final states for S1.

If S1 aborts for an initial state, then S2 can do anything for that

initial state. (Recall that if the final set of states includes ⊥ then

it includes every other state as well).

So anything is a valid refinement of abort.

Also, y := x is a refinement of add(y).

Refinement in WSL

Refinement is defined in the context of a set ∆ of “applicability

conditions”. If S1 is refined by S2 under the conditions ∆ then we

write:

∆ ⊢ S1 ≤ S2

Refinement in WSL

Refinement is defined in the context of a set ∆ of “applicability

conditions”. If S1 is refined by S2 under the conditions ∆ then we

write:

∆ ⊢ S1 ≤ S2

For example:

∆ ⊢ abort ≤ S

for any statement S and any set ∆

Refinement in WSL

Refinement is defined in the context of a set ∆ of “applicability

conditions”. If S1 is refined by S2 under the conditions ∆ then we

write:

∆ ⊢ S1 ≤ S2

For example:

∆ ⊢ abort ≤ S

for any statement S and any set ∆

Also:

∆ ⊢ add(y) ≤ y := e

for any variable y and any expression e.

Refinement in WSL

If ∆ ⊢ S1 ≤ S2 and ∆ ⊢ S2 ≤ S1 then we say that S1 and S2 are

equivalent and write:

∆ ⊢ S1 ≈ S2

In this case, the semantic functions for S1 and S2 are identical.

Refinement in WSL

If ∆ ⊢ S1 ≤ S2 and ∆ ⊢ S2 ≤ S1 then we say that S1 and S2 are

equivalent and write:

∆ ⊢ S1 ≈ S2

In this case, the semantic functions for S1 and S2 are identical.

For example:

∆ ⊢ if B then S1 else S2 fi ≈ if ¬B then S2 else S1 fi

Refinement in WSL

If we give a programmer a specification, then we should be happy

with any refinement of the specification as the implementation,

because:

1. It terminates whenever it is required to; and

2. Whenever it terminates, the final state is one of the states

allowed by the specification.

Language Extensions

The simple and easily-transformed WSL is extended into a

powerful programming language by defining new constructs in

terms of existing ones.

Assignments can be defined using add and guard statements:

x := 1

is defined as:

Language Extensions

The simple and easily-transformed WSL is extended into a

powerful programming language by defining new constructs in

terms of existing ones.

Assignments can be defined using add and guard statements:

x := 1

is defined as:

add(〈x〉); [x = 1]

Language Extensions

The simple and easily-transformed WSL is extended into a

powerful programming language by defining new constructs in

terms of existing ones.

Assignments can be defined using add and guard statements:

x := 1

is defined as:

add(〈x〉); [x = 1]

while:

x := x+ 1

Language Extensions

The simple and easily-transformed WSL is extended into a

powerful programming language by defining new constructs in

terms of existing ones.

Assignments can be defined using add and guard statements:

x := 1

is defined as:

add(〈x〉); [x = 1]

while:

x := x+ 1

is defined as:

add(〈x′〉); [x′ = x+ 1]; add(〈x〉); [x = x′]; remove(〈x′〉)

Language Extensions

The if statement

if B then S1 else S2 fi

Language Extensions

The if statement

if B then S1 else S2 fi

can be implemented by a nondeterministic choice with guarded

arms:

(([B]; S1) ⊓ ([¬B]; S2))

Language Extensions

Loops are defined using recursion, for example the while loop:

while B do S od

Language Extensions

Loops are defined using recursion, for example the while loop:

while B do S od

is defined:

(µX.((([B]; S); X) ⊓ [¬B]))

Example WSL Programs

A deterministic program:

x := 1

For each initial state, s this program has a single final state in

which the value of x is 1, and all other variables have their original

values.

A non-deterministic program:

(x := 1 ⊓ x := 2)

For each initial state, s this program has a two final states, in one

of which x has the value 1. In the other, x has the value 2. All

other variables have their original values.

The Specification Statement

x := x′.Q

“Assign a new value x′ to x such that Q is true, otherwise abort”

The formula Q defines the relationship between the new value

〈x′
1, x

′
2, . . . , x

′
n〉 and the old value 〈x1, x2, . . . , xn〉

The Specification Statement

x := x′.Q

“Assign a new value x′ to x such that Q is true, otherwise abort”

The formula Q defines the relationship between the new value

〈x′
1, x

′
2, . . . , x

′
n〉 and the old value 〈x1, x2, . . . , xn〉

For example, add 1 to x:

〈x〉 := 〈x′〉.(x′ = x+ 1)

The Specification Statement

x := x′.Q

“Assign a new value x′ to x such that Q is true, otherwise abort”

The formula Q defines the relationship between the new value

〈x′
1, x

′
2, . . . , x

′
n〉 and the old value 〈x1, x2, . . . , xn〉

For example, add 1 to x:

〈x〉 := 〈x′〉.(x′ = x+ 1)

Swap the values of x and y:

〈x, y〉 := 〈x′, y′〉.(x′ = y ∧ y′ = x)

The Specification Statement

Some more examples:

〈x〉 := 〈x′〉.(x2 − 3x+ 2 = x′)

This will set x to the value x2 − 3x+ 2

〈x〉 := 〈x′〉.(x′2 − 3x′ + 2 = 0)

This will set x to either 1 or 2, the choice is made

nondeterministically.

〈x〉 := 〈x′〉.((x′ − 1)(x′ − 2) = 0)

〈x〉 := 〈x′〉.(x′ = 1 ∨ x′ = 2)

These are both equivalent to the second example above.

The Specification Statement

x := x′.Q

The formal definition is:

{∃x′.Q}; add(x′); [Q]; add(x); [x = x′]; remove(x′)

The Specification Statement

x := x′.Q

The formal definition is:

{∃x′.Q}; add(x′); [Q]; add(x); [x = x′]; remove(x′)

Informally, this means:

The Specification Statement

x := x′.Q

The formal definition is:

{∃x′.Q}; add(x′); [Q]; add(x); [x = x′]; remove(x′)

Informally, this means:

1. If there is no value for x′ which satisfies Q, then abort;

The Specification Statement

x := x′.Q

The formal definition is:

{∃x′.Q}; add(x′); [Q]; add(x); [x = x′]; remove(x′)

Informally, this means:

1. If there is no value for x′ which satisfies Q, then abort;

2. Add new variables x′ to the state;

The Specification Statement

x := x′.Q

The formal definition is:

{∃x′.Q}; add(x′); [Q]; add(x); [x = x′]; remove(x′)

Informally, this means:

1. If there is no value for x′ which satisfies Q, then abort;

2. Add new variables x′ to the state;

3. Restrict the nondeterminacy of the add so that Q is true.

The Specification Statement

x := x′.Q

The formal definition is:

{∃x′.Q}; add(x′); [Q]; add(x); [x = x′]; remove(x′)

Informally, this means:

1. If there is no value for x′ which satisfies Q, then abort;

2. Add new variables x′ to the state;

3. Restrict the nondeterminacy of the add so that Q is true.

4. Copy x′ into x

The Specification Statement

x := x′.Q

The formal definition is:

{∃x′.Q}; add(x′); [Q]; add(x); [x = x′]; remove(x′)

Informally, this means:

1. If there is no value for x′ which satisfies Q, then abort;

2. Add new variables x′ to the state;

3. Restrict the nondeterminacy of the add so that Q is true.

4. Copy x′ into x

5. Remove x′ from the state.

The Specification Statement

Specification of a sorting program:

A := A′.(sorted(A′) ∧ permutation of(A′, A))

The output must be sorted and a permutation of the input.

It precisely describes what we want our sorting program to do

without saying how it is to be achieved

Other Specification Statements

The specification statement

x : [Pre,Post]

of Morgan et al may be defined:

{Pre}; add(x); [Post]

Back’s atomic description:

x/y.Q

may be defined as:

{∃x.Q}; add(x); [Q]; remove(y)

More Language Extensions

for loops

Dijkstra’s Guarded Command Language

Loops with multiple exits

Mutually recursive procedures (labels and gotos)

Local variables

Procedures and functions with parameters

Expressions with side-effects

Assembler language

More Language Extensions

Unbounded loops, or “Floops”:

do . . . exit(1) . . . od

do do . . . exit(1) . . . exit(2) . . . od od

Within unbounded loops, the statement exit(n) terminates the

enclosing n nested loops. Any exit(1) will terminate the enclosing

loop. exit(2) will terminate a double loop, and so on.

A do . . . od loop can only be terminated by an exit statement.

A simple terminal statement is any simple statement (something

other than an if statement or do . . . od loop) which can terminate

the program.

More Language Extensions

Example:

do do last := item[i];

i := i+ 1;

if i = n+ 1 then write(line); exit(2) fi;

if item[i] 6= last

then write(line); exit(1);

if i = j then exit(2) fi

else line :=line ++ “, ” ++ number[i] fi od;

if i = j then exit(1) fi

line := item[i] ++ “ ” ++ number[i] od

Which are the simple terminal statements?

More Language Extensions

Example:

do do last := item[i];

i := i+ 1;

if i = n+ 1 then write(line); exit(2) fi;

if item[i] 6= last

then write(line); exit(1);

if i = j then exit(2) fi

else line :=line ++ “, ” ++ number[i] fi od;

if i = j then exit(1) fi

line := item[i] ++ “ ” ++ number[i] od

Which are the simple terminal statements?

More Language Extensions

do do last := item[i];

i := i+ 1;

if i = n+ 1 then write(line); exit(2) fi;

if item[i] 6= last

then write(line); exit(1);

if i = j then exit(2) fi

else line :=line ++ “, ” ++ number[i] fi od;

if i = j then exit(2) fi

line := item[i] ++ “ ” ++ number[i] od;

skip

Now, which are the simple terminal statements?

More Language Extensions

do do last := item[i];

i := i+ 1;

if i = n+ 1 then write(line); exit(2) fi;

if item[i] 6= last

then write(line); exit(1);

if i = j then exit(2) fi

else line :=line ++ “, ” ++ number[i] fi od;

if i = j then exit(2) fi

line := item[i] ++ “ ” ++ number[i] od;

skip

Now, which are the simple terminal statements?

Action Systems

actions A1 :

A1 ≡ S1 end

. . .

An ≡ Sn end endactions

A collection of mutually recursive parameterless procedures

call Ai is a call to action Ai

A special statement call Z causes immediate termination of

the whole action system

An action system is a single statement which can appear as a

component of another statement (including another action

system)

Regular Action Systems

actions A1 :

A1 ≡ S1 end

. . .

An ≡ Sn end endactions

If execution of each action body Si always leads to an action

call (or call Z) then we have a Regular Action System.

In this case, action calls are like gotos: no action ever returns.

The system can only terminate via call Z

Regular Action Systems
var 〈m := 0, p := 0, last := “”〉 :

actions prog :

prog ≡ line := “”; m := 0; i := 1;

call inhere end

loop ≡ i := i+ 1;

if i = n+ 1 then call alldone fi;

m := 1;

if item[i] 6= last

then write(line var os);

line := “ ”; m := 0;

call inhere fi;

call more end

inhere ≡ p := number[i];

line := item[i]; line := line ++ “ ” ++ p;

call more end

more ≡ if m = 1

then p := number[i];

line := line ++ “, ” ++ p fi;

last := item[i];

call loop end

alldone ≡ write(line var os); call Z end endactions end

Transformed Version
var 〈m := 0, p := 0, last := “”〉 :

line := “”;

m := 0;

i := 1;

do p := number[i];

line := item[i];

line := line ++ “ ” ++ p;

do if m = 1

then p := number[i]; line := line ++ “, ” ++ p fi;

last := item[i];

i := i+ 1;

if i = n+ 1

then write(line var os); exit(2) fi;

m := 1;

if item[i] 6= last

then write(line var os); line := “”; m := 0; exit(1) fi od od end

The FermaT Transformation System

The FermaT Transformation System

The result of over 25 years research and development in

transformation theory

The FermaT Transformation System

The result of over 25 years research and development in

transformation theory

Uses a Wide Spectrum Language, called WSL, which was

developed in parallel with the development of the

transformation theory

The FermaT Transformation System

The result of over 25 years research and development in

transformation theory

Uses a Wide Spectrum Language, called WSL, which was

developed in parallel with the development of the

transformation theory

FermaT implements over 100 transformations together with

their applicability conditions

The FermaT Transformation System

The result of over 25 years research and development in

transformation theory

Uses a Wide Spectrum Language, called WSL, which was

developed in parallel with the development of the

transformation theory

FermaT implements over 100 transformations together with

their applicability conditions

Transformations are implemented in an extension of WSL,

called METAWSL

The FermaT Transformation System

FermaT is implemented almost entirely in METAWSL

Therefore, FermaT can transform its own source code!

This is used on a regular bases as part of the build process

The FermaT Transformation System

FermaT is use in commercial applications:

Assembler to C migration

Assembler to COBOL migration

Program Slicing

Program Comprehension

System Reengineering

Program Transformation

A program transformation is an operation which can be applied to

any program and returns a semantically equivalent program.

In FermaT, transformations are applied to programs written in

WSL.

Program Transformation

A program transformation is an operation which can be applied to

any program and returns a semantically equivalent program.

In FermaT, transformations are applied to programs written in

WSL.

For example:

if x = 0 then y := 1 else y := 2 fi

is semantically equivalent to:

if x 6= 0 then y := 2 else y := 1 fi

The WSL Language used in FermaT

Assignment: x := e

The WSL Language used in FermaT

Assignment: x := e

Assertion: {Q}

The WSL Language used in FermaT

Assignment: x := e

Assertion: {Q}

Specification Statement: x := x′.(Q)

The WSL Language used in FermaT

Assignment: x := e

Assertion: {Q}

Specification Statement: x := x′.(Q)

Skip statement: skip

The WSL Language used in FermaT

Assignment: x := e

Assertion: {Q}

Specification Statement: x := x′.(Q)

Skip statement: skip

Abort statement: abort

The WSL Language used in FermaT

Assignment: x := e

Assertion: {Q}

Specification Statement: x := x′.(Q)

Skip statement: skip

Abort statement: abort

If statement: if B then S1 else S2 fi

The WSL Language used in FermaT

Assignment: x := e

Assertion: {Q}

Specification Statement: x := x′.(Q)

Skip statement: skip

Abort statement: abort

If statement: if B then S1 else S2 fi

While loop: while B do S1 od

The WSL Language used in FermaT

Assignment: x := e

Assertion: {Q}

Specification Statement: x := x′.(Q)

Skip statement: skip

Abort statement: abort

If statement: if B then S1 else S2 fi

While loop: while B do S1 od

For loop: for i := b to e step s do S od

The WSL Language used in FermaT

Assignment: x := e

Assertion: {Q}

Specification Statement: x := x′.(Q)

Skip statement: skip

Abort statement: abort

If statement: if B then S1 else S2 fi

While loop: while B do S1 od

For loop: for i := b to e step s do S od

Floop: do . . . exit(n) . . . exit(m) . . . od

The WSL Language used in FermaT

Procedure: proc F (x) ≡ S end

The WSL Language used in FermaT

Procedure: proc F (x) ≡ S end

Function: funct f(x) ≡ S; (e) end

The WSL Language used in FermaT

Procedure: proc F (x) ≡ S end

Function: funct f(x) ≡ S; (e) end

Boolean Function: bfunct B(x) ≡ S; (B) end

The WSL Language used in FermaT

Procedure: proc F (x) ≡ S end

Function: funct f(x) ≡ S; (e) end

Boolean Function: bfunct B(x) ≡ S; (B) end

Where clause: begin S where definitions end

The WSL Language used in FermaT

Procedure: proc F (x) ≡ S end

Function: funct f(x) ≡ S; (e) end

Boolean Function: bfunct B(x) ≡ S; (B) end

Where clause: begin S where definitions end

Action System:

The WSL Language used in FermaT

Procedure: proc F (x) ≡ S end

Function: funct f(x) ≡ S; (e) end

Boolean Function: bfunct B(x) ≡ S; (B) end

Where clause: begin S where definitions end

Action System:

actions A1 :

A1 ≡ S1 end

A2 ≡ S2 end

. . .

An ≡ Sn end endactions

The WSL Language used in FermaT

Each of these WSL Language constructs is defined in terms of

the kernel language.

Transformations in FermaT map directly from WSL to WSL

without translating to the kernel language level.

Transformation Proof Methods

Transformation proof methods include:

Transformation Proof Methods

Transformation proof methods include:

Translate to the kernel language and prove the

transformation via:

Denotational semantics (comparing the semantic

functions); or

Weakest preconditions

Transformation Proof Methods

Transformation proof methods include:

Translate to the kernel language and prove the

transformation via:

Denotational semantics (comparing the semantic

functions); or

Weakest preconditions

Prove via weakest preconditions without using the kernel

language

Transformation Proof Methods

Transformation proof methods include:

Translate to the kernel language and prove the

transformation via:

Denotational semantics (comparing the semantic

functions); or

Weakest preconditions

Prove via weakest preconditions without using the kernel

language

Prove by applying a sequence of existing transformations and

proof rules

Program Transformation

WSL includes both abstract specifications and executable

programs within the same language. This means that:

Refinement of a specification into an executable program, and

Reverse engineering from a program to a specification

are both examples of program transformations.

	Models and Abstractions
	Models and Abstractions
	Models and Abstractions
	Models and Abstractions
	Models and Abstractions
	Models and Abstractions
	Models and Abstractions
	Models and Abstractions

	Models and Abstractions
	Models and Abstractions
	Models and Abstractions
	Models and Abstractions

	Formal Methods
	Formal Methods
	Formal Methods
	Formal Methods

	Another Equation
	Another Equation
	Another Equation

	Proving Equivalence
	Proving Equivalence
	Proving Equivalence
	Proving Equivalence

	Proving Equivalence
	Proving Equivalence

	What is a Program?
	What is a Program?
	What is a Program?
	What is a Program?
	What is a Program?
	What is a Program?
	What is a Program?
	What is a Program?

	What is a Program?
	Formal Methods
	Formal Methods
	Formal Methods
	Formal Methods
	Formal Methods
	Formal Methods

	Formal Methods
	Formal Methods
	Formal Methods
	Formal Methods
	Formal Methods

	Formal Methods
	Formal Methods
	Formal Methods

	Preserving the Invariant
	The Variant Expression
	The Variant Expression
	The Variant Expression

	Putting it all Together
	Putting it all Together
	Putting it all Together
	Putting it all Together
	Putting it all Together

	Summary
	Binary Search
	Binary Search
	Binary Search

	Binary Search Invariant
	Binary Search Invariant
	Binary Search Variant Expression
	Binary Search
	Binary Search
	Binary Search
	Binary Search

	Binary Search Invariant
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search

	Specification Methods
	Algebraic Specification
	Specification of a Stack
	Specification of a Stack
	Specification of a Stack

	Specification of a Stack
	Algebraic Specifications: Advantages
	Algebraic Specifications: Advantages
	Algebraic Specifications: Advantages

	Stack Implementer
	Stack Implementer

	Stack Implementation
	Stack Implementation
	Stack Implementation
	Stack Implementation
	Stack Implementation
	Stack Implementation
	Stack Implementation

	Stack User
	Stack User
	Stack User

	Completeness and Correctness
	Consistency
	Consistency
	Consistency
	Consistency
	Consistency

	Algebraic Specs: Disadvantages
	Algebraic Specs: Disadvantages
	Algebraic Specs: Disadvantages
	Algebraic Specs: Disadvantages

	Model-based Approach
	A Model for a Stack
	A Model for a Stack
	Using the Model
	Using the Model
	Using the Model

	Stack Implementation
	Stack Implementer
	Stack Implementer
	Stack User
	Logic-based Approach
	Logic-based Approach
	FermaT {} Transformation System
	Net Based Specifications
	Net Based Specifications
	Net Based Specifications
	Petri Nets: Example
	Petri Nets: Example
	Statecharts
	Statecharts
	Process Algebra
	Process Algebra
	Syntax and Semantics of WSL
	Program States
	Program States
	Program States
	Program States

	State Transformation
	State Transformation
	State Transformation
	State Transformation
	State Transformation

	The Semantics of WSL
	State Transformation
	State Transformation
	State Transformation
	State Transformation

	An Example
	An Example

	An Example
	An Example

	An Example
	An Example

	The WSL Kernel Language
	The WSL Kernel Language
	The WSL Kernel Language
	The WSL Kernel Language
	The WSL Kernel Language

	The WSL Kernel Language
	The WSL Kernel Language
	The WSL Kernel Language
	The WSL Kernel Language

	Refinement in WSL
	Refinement in WSL
	Refinement in WSL
	Refinement in WSL

	Refinement in WSL
	Refinement in WSL

	Refinement in WSL
	Language Extensions
	Language Extensions
	Language Extensions
	Language Extensions

	Language Extensions
	Language Extensions

	Language Extensions
	Language Extensions

	Example WSL Programs
	The Specification Statement
	The Specification Statement
	The Specification Statement

	The Specification Statement
	The Specification Statement
	The Specification Statement
	The Specification Statement
	The Specification Statement
	The Specification Statement
	The Specification Statement
	The Specification Statement

	The Specification Statement
	Other Specification Statements
	More Language Extensions
	More Language Extensions
	More Language Extensions
	More Language Extensions

	More Language Extensions
	More Language Extensions

	Action Systems
	Regular Action Systems
	Regular Action Systems
	Transformed Version
	The FermaT {} Transformation System
	The FermaT {} Transformation System
	The FermaT {} Transformation System
	The FermaT {} Transformation System
	The FermaT {} Transformation System

	The FermaT {} Transformation System
	The FermaT {} Transformation System
	Program Transformation
	Program Transformation

	The WSL Language used in FermaT {}
	The WSL Language used in FermaT {}
	The WSL Language used in FermaT {}
	The WSL Language used in FermaT {}
	The WSL Language used in FermaT {}
	The WSL Language used in FermaT {}
	The WSL Language used in FermaT {}
	The WSL Language used in FermaT {}
	The WSL Language used in FermaT {}

	The WSL Language used in FermaT {}
	The WSL Language used in FermaT {}
	The WSL Language used in FermaT {}
	The WSL Language used in FermaT {}
	The WSL Language used in FermaT {}
	The WSL Language used in FermaT {}

	The WSL Language used in FermaT {}
	Transformation Proof Methods
	Transformation Proof Methods
	Transformation Proof Methods
	Transformation Proof Methods

	Program Transformation

