
Software Metrics

Martin Ward

Reader in Software Engineering

martin@gkc.org.uk

Software Technology Research Lab

De Montfort University



Classification of Software Metrics

What is measured

Product Process

Results of measurement

Objective Subjective

Way of measuring

Primitive Derived

Possible values

Nominal Ordinal Interval Proportional Absolute



Lines of Code Metrics

SLOC: Source Lines of Code

CLOC: Comment Lines of Code

S&CLOC: Source and Comment LOC

BLOC: Blank Lines of Code

LOC: Lines of Code

PLOC: Physical Lines of Code

LLOC: Logical Lines of Code



Function Points

A way to assess the complexity of software from functional

requirements, rather than source code

Different standards:

IFPUG: International Function Point User Group

NESMA: Netherlands Software Metrics Association

COSMIC: Common Software Measurement International

Consortium

MkII: Based on IFPUC

Function points are used to:

Quantify system functionality

Measure development and maintenance of software

independently of implementation, project and organisation



Function Points — IFPUG

System functionality divided into components with type:

Transactional functions

External input

External output

External inquiry

Data functions

Internal logical files

External interface files

Components are assigned to a complexity class

Low, medium, high



Function Points — IFPUG

Every component is assigned a number of function points

according to complexity and number of appearances:

fp = appearences× complexity

Component type Low Medium High

External input 3 4 6

External output 4 5 7

External inquiry 3 4 6

Internal logical file 7 10 15

External interface file 5 7 10

Unadjusted Function Points (UFP) =

Sum of FPs of all components in the system



Function Points — IFPUG

Adjusted Function Points (AFP)

AFP = UFP× VAF

Value Adjustment Factor (VAF)

VAF = TDI× 0.01 + 0.65

Total Degree of Influence (TDI) =

Sum of 14 General System Characteristics (GSC)



Function Points — IFPUG

General System Characteristics

1. Data communication 8. On-line update

2. Distributed data processing 9. Complex processing

3. Performance 10. Reusability

4. Heavily used configuration 11. Installation ease

5. Transaction rate 12. Operational ease

6. Online data entry 13. Multiple sites

7. End-user efficiency 14. Facilitate change



Cyclomatic Complexity

Cyclomatic Complexity measures the amount of decision logic

in a single module. It is defined in terms of the control flow

graph of the module.



Cyclomatic Complexity

Cyclomatic Complexity measures the amount of decision logic

in a single module. It is defined in terms of the control flow

graph of the module.

A Control Flow Graph is a directed graph with a single entry

node and a single exit node. For each node N in the graph

there is a path from the entry node to N and a path from N

to the exit node.



Cyclomatic Complexity

Cyclomatic Complexity measures the amount of decision logic

in a single module. It is defined in terms of the control flow

graph of the module.

A Control Flow Graph is a directed graph with a single entry

node and a single exit node. For each node N in the graph

there is a path from the entry node to N and a path from N

to the exit node.

An execution path is any path from entry to exit.



Cyclomatic Complexity

Cyclomatic Complexity measures the amount of decision logic

in a single module. It is defined in terms of the control flow

graph of the module.

A Control Flow Graph is a directed graph with a single entry

node and a single exit node. For each node N in the graph

there is a path from the entry node to N and a path from N

to the exit node.

An execution path is any path from entry to exit.

Any control flow graph will become strongly connected if a

single edge is added from exit to entry. Intuitively, this

represents the control flow through the rest of the system

and the computing environment.



Cyclomatic Complexity

Cyclomatic complexity is precisely the minimum number of

paths that can, in (linear) combination, generate all possible

paths through the module



Cyclomatic Complexity

Cyclomatic complexity is precisely the minimum number of

paths that can, in (linear) combination, generate all possible

paths through the module

This turns out to be equal to e− n+ 2 where e is the number

of edges and n is the number of nodes in the graph. This is

the cyclomatic number (e′ − n+ 1) of the strongly connected

graph formed from the control flow graph by adding an edge

from the exit node to the entry node. (e′ = e+ 1 is the edge

set of the graph with this extra node).



Cyclomatic Complexity

Cyclomatic complexity is precisely the minimum number of

paths that can, in (linear) combination, generate all possible

paths through the module

This turns out to be equal to e− n+ 2 where e is the number

of edges and n is the number of nodes in the graph. This is

the cyclomatic number (e′ − n+ 1) of the strongly connected

graph formed from the control flow graph by adding an edge

from the exit node to the entry node. (e′ = e+ 1 is the edge

set of the graph with this extra node).

A simple way to compute cyclomatic complexity is:

1 +
∑

n

(out edges(n)− 1)



Cyclomatic Complexity

For this graph: v(G) = e− n+ 2 = 9− 6 + 2 = 5

a

c d

e

f

b



Cyclomatic Complexity

If a flowchart has no edges crossing each other, and divides

the plane into R regions (including the infinite region

“outside” the graph), then the complexity is just R. This

follows from Euler’s formula, that for planar graphs:

n− e+R = 2



Cyclomatic Complexity

If a flowchart has no edges crossing each other, and divides

the plane into R regions (including the infinite region

“outside” the graph), then the complexity is just R. This

follows from Euler’s formula, that for planar graphs:

n− e+R = 2

The most efficient and reliable way to determine complexity is

through use of an automated tool.



Cyclomatic Complexity

“Straight line code” with no branches or loops has complexity 1.



Cyclomatic Complexity

“Straight line code” with no branches or loops has complexity 1.

A structured program with binary if statements and while loops

has complexity:

#(if statements) + #(while loops) + 1



Cyclomatic Complexity

“Straight line code” with no branches or loops has complexity 1.

A structured program with binary if statements and while loops

has complexity:

#(if statements) + #(while loops) + 1

if x = y then z := 1 fi

has complexity 2.



Cyclomatic Complexity

“Straight line code” with no branches or loops has complexity 1.

A structured program with binary if statements and while loops

has complexity:

#(if statements) + #(while loops) + 1

if x = y then z := 1 fi

has complexity 2.

if x = y then z := 1

elsif p = q then z := 2

elsif r = s then z := 3

else z := 4 fi

has complexity 4.



Cyclomatic Complexity



Cyclomatic Complexity

while n > 0 do n := n− 1 od

has complexity 2.



Cyclomatic Complexity

while n > 0 do n := n− 1 od

has complexity 2.

do n := n+ 1;

if A[n] = x then exit(1) fi;

if n = N then exit(1) fi od

has complexity 3.

Note that the do . . . od loop itself does not contribute anything

to the cyclomatic complexity, since it is an unconditional loop.



Example
actions prog :

prog ≡

line := “”; m := 0; i := 1; call inhere end

loop ≡

i := i+ 1;

if i = n+ 1 then call alldone fi;

m := 1;

if item[i] 6= last

then !P write(line var os);

line := “”; m := 0; call inhere fi;

call more end

inhere ≡

p := number[i]; line := item[i];

line := line ++ “” ++ p; call more end

more ≡

if m = 1

then p := number[i];

line := line ++ “, ” ++ p fi;

last := item[i]; call loop end

alldone ≡

!P write(line var os); call Z end endactions



Example

What is the McCabe complexity of this program?



McCabe Complexity

The complexity is 4.

The same as for the program:

if x = y then z := 1

elsif p = q then z := 2

elsif r = s then z := 3

else z := 4 fi

McCabe complexity does not take into account the

“structuredness” or “unstructuredness” of the code.

This point led to the development of the essential complexity

metric.



Cyclomatic Compexity Variants

Cyclomatic Complexity Metric (v(G)): a measure of the

complexity of a module’s decision structure. It is the number

of linearly independent paths and therefore, the minimum

number of paths that should be tested.



Cyclomatic Compexity Variants

Cyclomatic Complexity Metric (v(G)): a measure of the

complexity of a module’s decision structure. It is the number

of linearly independent paths and therefore, the minimum

number of paths that should be tested.

Actual Complexity Metric (ac): the number of independent

paths traversed during testing.



Cyclomatic Compexity Variants

Cyclomatic Complexity Metric (v(G)): a measure of the

complexity of a module’s decision structure. It is the number

of linearly independent paths and therefore, the minimum

number of paths that should be tested.

Actual Complexity Metric (ac): the number of independent

paths traversed during testing.

Module Design Complexity Metric (iv(G)): is the complexity of

the design-reduced module and reflects the complexity of the

module’s calling patterns to its immediate subordinate

modules.



Metrics

Essential Complexity Metric (ev(G)): a measure of the degree to

which a module contains unstructured constructs. This

metric measures the degree of structuredness and the quality

of the code. It is used to predict the maintenance effort and

to help in the modularization process.



Metrics

Essential Complexity Metric (ev(G)): a measure of the degree to

which a module contains unstructured constructs. This

metric measures the degree of structuredness and the quality

of the code. It is used to predict the maintenance effort and

to help in the modularization process.

Global Data Complexity Metric (gdv(G)): quantifies the

cyclomatic complexity of a module’s structure as it relates to

global/parameter data. It can be no less than one and no

more than the cyclomatic complexity of the original

flowgraph.



Structured Programming

Structured programming avoids unmaintainable “spaghetti code”

by restricting the usage of control structures to those that are

easily analyzed and decomposed.

Each primitive construct has a single entry and a single exit:



Essential Complexity

The essential complexity, ev(G), of a module is calculated by

repeatedly removing structured programming primitives from the

module’s control flow graph until the graph cannot be reduced

any further, and then calculating the cyclomatic complexity of the

reduced graph.

Any fully structured program therefore has an essential complexity

of 1. This is true even if the structures are actually implemented

using labels and goto statements.



Essential Complexity Calculation



Limiting Complexity

McCabe proposed that organisations should limit the complexity

of a module to a maximum of 10 (with significant supporting

evidence), but limits as high as 15 have been used successfully as

well.

A single switch or case statement with N branches has a

complexity of N , but is conceptually simple: so McCabe

recommended exempting modules consisting of single multiway

decision (switch or case) statements from the complexity limit.

Rewriting a single multiway decision to cross a module boundary

is a clear violation of structured design. Each decision branch can

be understood and maintained in isolation, so the module is likely

to be reliable and maintainable. Therefore, it is reasonable to

exempt modules consisting of a single multiway decision

statement from a complexity limit.



Cyclomatic Compexity

Rules of thumb:

v(G) Procedure type Risk level

1–4 Simple Low

5–10 Well structured, stable Low

11–20 Moderately Complex Medium

21–50 Complex High

51– Very complex Very high



Information Flow

Cyclomatic compexity measures control flow, but not data flow,

such as parameter passing and variable access.

Fan-in: the amount of information that flows into a procedure

Fan-out: the amount of information that flows out of a

procedure

There exists information flow from procedure A to procedure B if:

A calls B

B calls A and uses its return value

Both A and B are called by C, which passes the return value

of A to B



Information Flow Complexity

Henry & Kafura (1981)

IFC = (fanin× fanout)2

WIFC = length× IFC

fanin = procedures called+ parameters read

+ global vars read

fanout = procedures calling this procedure+ output parameters

+ global vars written to

length = logical SLOC or cyclomatic complexity



Information Flow Complexity

char * strncat(char *ret, const char *s2, size_t n)

{

char *s1 = ret;

if (n > 0) {

while (*s1)

s1++;

while (*s1++ = *s2++) {

if (--n == 0) {

*s1 = ’\0’;

break;

}

}

}

return ret;

}

fanin = 3

fanout = 1

IFC = 32 = 9

WIFC = 10× 9 = 90



Halstead’s Metrics

Operands

Variables

Constants

Operators: Symbols, keywords and names that affect

operands

Arithmetic operators

Logical operators

Assignments

Special symbols

Parenthesis

If, while, do...

Function names



Halstead’s Metrics

Basic Attributes:

n1 = Number of distinct operators

n2 = Number of distinct operands

N1 = Total number of operators

N2 = Total number of operands

For the strncat example:

Operators: {}, *, =, if, while, ++, --, ==, break, return, ;

Operands: ret, s1, s2, n, 0, ’\0’



Halstead’s Metrics

Operators

{} 4

* 5

= 3

if 2

while 2

++ 3

-- 1

== 1

break 1

return 1

; 5

Operands

ret 2

s1 5

s2 1

n 2

0 1

’\0’ 1

Attributes

n1 11

n2 6

N1 28

N1 12



Halstead’s Metrics

Metric Formula Value

Program length N = N1 +N2 40

Vocabulary size n = n1 + n2 17

Program volume V = N · log
2
n 163.5

Difficulty level D =
n1 ·N2

2n2

11

Effort to implement E = D · V 1798.5

Time to implement (secs) T =
E

18
99.92



More Metrics

Lines of Code (LOC) The number of executable lines of code

(excluding blank lines and comments)



More Metrics

Lines of Code (LOC) The number of executable lines of code

(excluding blank lines and comments)

Number of Nodes The number of nodes in the abstract syntax

tree



More Metrics

Lines of Code (LOC) The number of executable lines of code

(excluding blank lines and comments)

Number of Nodes The number of nodes in the abstract syntax

tree

Control Flow and Data Flow (CFDF) The number of edges in

the flowgraph (CF) plus the number of times that variables

are defined and used (DF)



More Metrics

Lines of Code (LOC) The number of executable lines of code

(excluding blank lines and comments)

Number of Nodes The number of nodes in the abstract syntax

tree

Control Flow and Data Flow (CFDF) The number of edges in

the flowgraph (CF) plus the number of times that variables

are defined and used (DF)

Branch-Loop Complexity (BL) The number of non-loop

predicates plus the number of loops



More Metrics

Lines of Code (LOC) The number of executable lines of code

(excluding blank lines and comments)

Number of Nodes The number of nodes in the abstract syntax

tree

Control Flow and Data Flow (CFDF) The number of edges in

the flowgraph (CF) plus the number of times that variables

are defined and used (DF)

Branch-Loop Complexity (BL) The number of non-loop

predicates plus the number of loops

Recursion and Nesting Complexity (RNC) The number of

instances of recursion and nesting in the program



More Metrics

Lines of Code (LOC) The number of executable lines of code

(excluding blank lines and comments)

Number of Nodes The number of nodes in the abstract syntax

tree

Control Flow and Data Flow (CFDF) The number of edges in

the flowgraph (CF) plus the number of times that variables

are defined and used (DF)

Branch-Loop Complexity (BL) The number of non-loop

predicates plus the number of loops

Recursion and Nesting Complexity (RNC) The number of

instances of recursion and nesting in the program

Function Points (FPs) Interface Complexity (FPIC)



Structural Complexity

The sum of the weights of every construct in the program. The

construct is defined subjectively according to experience gained by

engineers and managers. For example:

Construct Weight Construct Weight Construct Weight

+ 1 - 2 * 2

/ 3 ** 3 = 0

<> 0 < 0 > 0

<= 0 >= 0 Min 1

Max 1 Div 2 Mod 2

If 4 And 1 Or 2

Not 2 Push 10 Abort 10

Array 0 Proc 20 For 10



Metrics for Object Oriented Systems

Object Orientedness Metric 1: Weighted Methods per Class (WMC)

Definition Consider a Class C1 , with methods M1,...Mn that are

defined in the class. Let c1,...cn be the complexity of the methods.

Then :

WMC =

n
∑

i=1

ci

If all method complexities are considered to be unity, then

WMC = n, the number of methods.



Metrics for Object Oriented Systems

Object Orientedness Metric 2: Depth of Inheritance Tree (DIT)

Definition The depth of inheritance of the class. In cases

involving multiple inheritance, the DIT will be the maximum

length from the node to the root of the tree.

A class with small DIT, has much potential for reuse. (i.e. it

tends to be a general abstract class). On the other side, as a

class gets deeper into a class hierarchy, it becomes more difficult

to maintain.



Metrics for Object Oriented Systems

Object Orientedness Metric 2: Depth of Inheritance Tree (DIT)

Definition The depth of inheritance of the class. In cases

involving multiple inheritance, the DIT will be the maximum

length from the node to the root of the tree.

A class with small DIT, has much potential for reuse. (i.e. it

tends to be a general abstract class). On the other side, as a

class gets deeper into a class hierarchy, it becomes more difficult

to maintain.

Object Orientedness Metric 3: Number of Children (NOC)

Definition The number of immediate sub-classes subordinated to

a class in the class hierarchy.

Classes with many children are considered a bad design habit that

occurs frequently.



Metrics for Object Oriented Systems

Object Orientedness Metric 4: Coupling Between Object Classes

(CBO)

Definition The number of other classes to which this class is

coupled. Two classes are coupled when methods in one class use

methods or instance variables defined by another class.

A modular and encapsulated design shall yield a low CBO, and

this is a desired situation. The more independent the class is, the

easier to test and/or reuse it.



Metrics for Object Oriented Systems

Object Orientedness Metric 4: Coupling Between Object Classes

(CBO)

Definition The number of other classes to which this class is

coupled. Two classes are coupled when methods in one class use

methods or instance variables defined by another class.

A modular and encapsulated design shall yield a low CBO, and

this is a desired situation. The more independent the class is, the

easier to test and/or reuse it.

Object Orientedness Metric 5: Response For a Class (RFC)

Definition The number of methods that can potentially be

executed in response to a message received by an object of that

class.



Metrics for Object Oriented Systems

Object Orientedness Metric 6: Number of Variables per Class (NVC)

Definition The average number of public variables and private

variables per class.



Metrics for Object Oriented Systems

Object Orientedness Metric 6: Number of Variables per Class (NVC)

Definition The average number of public variables and private

variables per class.

Object Orientedness Metric 7: Average Parameters per Method (APM)

Definition The number of method parameters divided by the

total number of methods.

Lorenz and Kidd argue that APM should not exceed 0.7



Metrics for Object Oriented Systems

Object Orientedness Metric 6: Number of Variables per Class (NVC)

Definition The average number of public variables and private

variables per class.

Object Orientedness Metric 7: Average Parameters per Method (APM)

Definition The number of method parameters divided by the

total number of methods.

Lorenz and Kidd argue that APM should not exceed 0.7

Object Orientedness Metric 8: Number of Objects (NOO)

Definition The number of objects extracted from source code.



Object Oriented Metrics

MOOD Metrics [Abreu 1994]. All factors range from 0% to 100%:

Encapsulation

MHF: Method Hiding Factor

AHF: Attribute Hiding Factor

Inheritance

MIF: Method Inheritance Factor

AIF: Attribute Inheritance Factor

Polymorphism

PF: Polymorphism Factor

Method coupling

CF: Coupling Factor



MOOD Metrics: Encapsulation

Method and attribute hiding factor measure how variables and

methods are encapsulated in a class. Visibility is iwith respect to

other classes. MHF and AHF represent the average amount of

hiding among all classes in the system. A private

method/attribute is fully hidden.

MHF =

∑M

i=1
(1− V (Mi))

M

where M is the total number of methods and for each method Mi,

V (Mi) is the visibility of this method:

V (Mi) =
# { Cj | class Cj may call Mi and Mi is not in Cj }

C − 1

where C is the number of classes in the whole system.



MOOD Metrics: Encapsulation

If all methods are private, MHF = 100%. If all methods are public,

MHF = 0%.

Method hiding increases reusability and decreases complexity. If

there is a need to change the functionality of a particular method,

corrective actions will have to be taken in all the objects accessing

that method, if the method is not hidden.

A low MHF indicates insufficiently abstracted implementation. A

large proportion of methods are unprotected and the probability of

errors is high.

A high MHF indicates very little functionality. It may also indicate

that the design includes a high proportion of specialized methods

that are not available for reuse.



MOOD Metrics: Encapsulation

Research shows that increased MHF decreases bug-density and

increases quality.

Increased MHF also decreases defect density and rework effort to

find and correct defects.

An acceptable MHF range of 8% to 25% has been suggested.

Similarly, attributes should be hidden by being declared “private”.

Ideally, all attributes should be hidden, and thus AHF = 100% is the

ideal value. Very low values of AHF should trigger attention.



MOOD Metrics: Inheritance

Method Inheritance Factor:

MIF =

∑C

i=1
Mi(Ci)

∑C

i=1
Ma(Ci)

where:

Mi(Ci) is the number of methods inherited in class Ci,

excluding overridden methods

Ma(Ci) is the total number of methods available in class Ci

(locally defined plus inherited)

Attribute Inheritance Factor, AIF, is defined similarly.

According to one source, the acceptable MIF range is 20% to

80% and the acceptable AIF range is 0% to 48%



MOOD Metrics: Polymorphism

Polymorphism Factor, PF, measures the degree of method

overriding in the class inheritance tree

PF =

∑C

i=1
Mo(Ci)

∑C

i=1
(Mn(Ci)× DC(Ci))

where:

Mo(Ci) is the number of overriding methods in class Ci

Mn(Ci) is the number of new methods in class Ci

DC(Ci) is the number of descendants in class Ci

So Mn(Ci)× DC(Ci)) is the total number of opportunities for

overriding in Ci

PF is an indirect measure of the relative amount of dynamic

binding in a system.



MOOD Metrics: Coupling

Class A is coupled to class B if A calls methods or accesses

variables of B.

Couplings due to inheritance are not included in CF.

CF =

∑C

i=1

∑C

j=1
is client(Ci, Cj)

C(C − 1)

where:

is client(A,B) =







1 if A 6= B and A is coupled to B

0 otherwise

Research indicates that increased CF increases defect density and

rework effort to find and correct defects.



MOOD reference values

Here are some reference MOOD values for comparison:

System: MFC GNU ET+ Motif

MHF 24.6% 13.3% 9.6% 39.2%

AHF 68.4% 84.1% 69.4% 100.0%

MIF 83.2% 63.1% 83.9% 64.3%

AIF 59.6% 62.6% 51.8% 50.3%

PF 2.7% 3.5% 4.5% 9.8%

CF 9.0% 2.8% 7.7% 7.6%


	Classification of Software Metrics
	Lines of Code Metrics
	Function Points
	Function Points --- IFPUG
	Function Points --- IFPUG
	Function Points --- IFPUG
	Function Points --- IFPUG
	Cyclomatic Complexity
	Cyclomatic Complexity
	Cyclomatic Complexity
	Cyclomatic Complexity

	Cyclomatic Complexity
	Cyclomatic Complexity
	Cyclomatic Complexity

	Cyclomatic Complexity
	Cyclomatic Complexity
	Cyclomatic Complexity

	Cyclomatic Complexity
	Cyclomatic Complexity
	Cyclomatic Complexity
	Cyclomatic Complexity

	Cyclomatic Complexity
	Cyclomatic Complexity
	Cyclomatic Complexity

	Example
	Example
	McCabe Complexity
	Cyclomatic Compexity Variants
	Cyclomatic Compexity Variants
	Cyclomatic Compexity Variants

	Metrics
	Metrics

	Structured Programming
	Essential Complexity
	Essential Complexity Calculation
	Limiting Complexity
	Cyclomatic Compexity
	Information Flow
	Information Flow Complexity
	Information Flow Complexity
	Halstead's Metrics
	Halstead's Metrics
	Halstead's Metrics
	Halstead's Metrics
	More Metrics
	More Metrics
	More Metrics
	More Metrics
	More Metrics
	More Metrics

	Structural Complexity
	Metrics for Object Oriented Systems
	Metrics for Object Oriented Systems
	Metrics for Object Oriented Systems

	Metrics for Object Oriented Systems
	Metrics for Object Oriented Systems

	Metrics for Object Oriented Systems
	Metrics for Object Oriented Systems
	Metrics for Object Oriented Systems

	Object Oriented Metrics
	MOOD Metrics: Encapsulation
	MOOD Metrics: Encapsulation
	MOOD Metrics: Encapsulation
	MOOD Metrics: Inheritance
	MOOD Metrics: Polymorphism
	MOOD Metrics: Coupling
	MOOD reference values

