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A Syntactic Transformation changes the syntax of the program

but preserves the exact sequence of operations carried out by the

program. Many restructuring transformations are purely syntactic.

A Semantic Transformation may change the sequence of

operations carried out by the program, but preserves the final

state.

A syntactic transformation preserves the operational semantics, so

these transformations are also called Operational Transformations.

A semantic transformation preserves the denotational semantics.
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For any condition (formula) B and any statements S1, S2 and S3:

if B then S1

else S2 fi;
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is equivalent to:

if B then S1; S3

else S2; S3 fi



A Syntactic Transformation

For any condition (formula) B and any statements S1, S2 and S3:

if B then S1

else S2 fi;

S3

is equivalent to:

if B then S1; S3

else S2; S3 fi

In FermaT this result can be produced by applying Absorb Right or

Expand Forwards on the if statement, or Merge Left on S3



Another Example

If S3 does not modify any of the variables in B then:

S3;

if B then S1

else S2 fi; S3
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if B then S3; S2

else S3; S1 fi



Another Example

If S3 does not modify any of the variables in B then:

S3;

if B then S1

else S2 fi; S3

is equivalent to:

if B then S3; S2

else S3; S1 fi

In FermaT this result can be produced by applying Absorb Left on

the if statement, or Merge Right on S3
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Splitting A Tautology

For any statement S and any condition B:

S ≈ if B then S else S fi

Adding Assertions:

if B then S1 else S2 fi

is equivalent to:

if B then {B}; S1 else {¬B}; S2 fi

Assertions can be introduced and propagated through the

program.



Adding Assertions

For any statement S and any condition B:

while B do S od

is equivalent to:

while B do {B}; S od; {¬B}



A Semantic Transformation

Assignment Merging: (Merge Left and Merge Right on assignments)

x := 2 ∗ x; x := x+ 1

is equivalent to:

x := 2 ∗ x+ 1

Another example:

y := n ∗ x

is equivalent to:

n := n− 1; y := (n+ 1) ∗ x; n := n+ 1



Example Transformations

if n = 0 then x := 1

else x := x+ 1 fi;

x := 2 ∗ x



Example Transformations

if n = 0 then x := 1

else x := x+ 1 fi;

x := 2 ∗ x

Expand the if statement:

if n = 0 then x := 1; x := 2 ∗ x

else x := x+ 1; x := 2 ∗ x fi



Example Transformations

if n = 0 then x := 1

else x := x+ 1 fi;

x := 2 ∗ x

Expand the if statement:

if n = 0 then x := 1; x := 2 ∗ x

else x := x+ 1; x := 2 ∗ x fi

Merge the assignments:

if n = 0 then x := 2

else x := 2 ∗ (x+ 1) fi



Expanding a Call

In an action system, any call can be replaced by a copy of the

body of the action called:

actions A1 :

A1 ≡ S1 end

. . .

A1 ≡ . . . call Aj . . . end

. . .

An ≡ Sn end endactions
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Expanding a Call

In an action system, any call can be replaced by a copy of the

body of the action called:

actions A1 :

A1 ≡ S1 end

. . .

A1 ≡ . . . Sj . . . end

. . .

An ≡ Sn end endactions

If there are no other calls to Aj, then the action can be deleted
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Expand and Separate

Suppose we have this code in a regular action system:

if B then S1; call A

else S2 fi;

call A

Expand the if:

if B then S1; call A; call A

else S2; call A fi

Delete after the first call:

if B then S1; call A

else S2; call A fi

Separate:

if B then S1

else S2 fi;

call A



Expand and Separate

Example:

if n = 0 then x := 1; call A

else y := 2 fi;

call A



Expand and Separate

Example:

if n = 0 then x := 1; call A

else y := 2 fi;

call A

Becomes:

if n = 0 then x := 1

else y := 2 fi;

call A

The first call A has been deleted.



Example Transformations

Forward Expansion:

if x = 1 then if y = 1 then z := 1 else z := 2 fi

else z := 3 fi;

if z = 1 then p := q fi

is equivalent to:

if x = 1 then if y = 1 then z := 1 else z := 2 fi;

if z = 1 then p := q fi

else z := 3;

if z = 1 then p := q fi fi



Example Transformations

Absorb Right:

if x = 1 then if y = 1 then z := 1 else z := 2 fi

else z := 3 fi;

if z = 1 then p := q fi

is equivalent to:

if x = 1 then if y = 1 then z := 1;

if z = 1 then p := q fi

else z := 21;

if z = 1 then p := q fi fi;

else z := 3;

if z = 1 then p := q fi fi

This transformation is also called Merge Left!



Example Transformations

Absorb Left into a loop, before:

do do if i > n then exit(2) fi;

i := i+ 1;

if A[i] = v then exit(1) fi od;

last := i;

count := count+ 1;

if count > limit then exit(1) fi od;

if count > limit then PRINT(last) fi



Example Transformations

Absorb Left into a loop, after:

do do if i > n then if count > limit then PRINT(last); exit(2)

else exit(2) fi fi;

i := i+ 1;

if A[i] = v then exit(1) fi od;

last := i;

count := count+ 1;

if count > limit then if count > limit then PRINT(last); exit(1)

else exit(1) fi fi od;



Loop Inversion

do Read A Record(file, record);

if end of file?(file) then exit(1) fi;

Process Record(record) od



Loop Inversion

do Read A Record(file, record);

if end of file?(file) then exit(1) fi;

Process Record(record) od

Is equivalent to:

Read A Record(file, record);

do if end of file?(file) then exit(1) fi;

Process Record(record);

Read A Record(file, record) od



Loop Inversion

do Read A Record(file, record);

if end of file?(file) then exit(1) fi;

Process Record(record) od

Is equivalent to:

Read A Record(file, record);

do if end of file?(file) then exit(1) fi;

Process Record(record);

Read A Record(file, record) od

Which is equivalent to:

Read A Record(file, record);

while ¬end of file?(file) do

Process Record(record);

Read A Record(file, record) od



Loop Inversion

In general:

do S1; S2 od

Is equivalent to:

S1; do S2; S1 od

provided S1 is a proper sequence (It has no exit statements which

can leave an enclosing loop)



Loop Inversion

More Generally:

do S1; S2 od

Is equivalent to:

do S1; do S2; S1 od+ 1 od

where the +1 will increment the exit statements which terminate

do S2; S1 od so that they terminate the new outer loop.



Loop Inversion

Loop inversion can be used to merge two copies of a statement

into one, for example:

GET(DDIN var WREC);

do if end of file?(DDIN) then exit(1) fi;

WORKP := WREC.NUM;

TOTAL := TOTAL+WORKP;

GET(DDIN var WREC) od;

simplifies to:

do GET(DDIN var WREC);

if end of file?(DDIN) then exit(1) fi;

WORKP := WREC.NUM;

TOTAL := TOTAL+WORKP od;



Merging Copies

A program with repeated statements:

do . . . ;

if end of file(DDIN)

then exit(1) fi;

PUT FIXED(RDSOUT,WPRT var result code, os);

fill(WPRT[1] var WPRT[2..80]) od;

PUT FIXED(RDSOUT,WPRT var result code, os);

fill(WPRT[1] var WPRT[2..80])



Merging Copies

Absorb into the loop:

do . . . ;

if end of file(DDIN)

then PUT FIXED(RDSOUT,WPRT var result code, os);

fill(WPRT[1] var WPRT[2..80]);

exit(1) fi;

PUT FIXED(RDSOUT,WPRT var result code, os);

fill(WPRT[1] var WPRT[2..80]) od;



Merging Copies

Absorb into the if statement:

do . . . ;

if end of file(DDIN)

then PUT FIXED(RDSOUT,WPRT var result code, os);

fill(WPRT[1] var WPRT[2..80]);

exit(1)

else PUT FIXED(RDSOUT,WPRT var result code, os);

fill(WPRT[1] var WPRT[2..80]) fi od;



Merging Copies

Separate Left:

do . . . ;

PUT FIXED(RDSOUT,WPRT var result code, os);

fill(WPRT[1] var WPRT[2..80]);

if end of file(DDIN)

then exit(1) od;



Merging Copies

Here, there are two copies of S2 which we want to merge:

if B1 then S1; S2

elsif B2 then S2

else S3 fi



Merging Copies

Here, there are two copies of S2 which we want to merge:

if B1 then S1; S2

elsif B2 then S2

else S3 fi

The result is:

if B1 ∨ B2

then if B1 then S1 fi;

S2

else S3 fi



An Example

if end of file?(DDIN)

then F LAB140 := 1; call LAB170 fi;

if WLAST 6= WREC.WORD

then call LAB170 fi

Absorb:

if end of file?(DDIN)

then F LAB140 := 1; call LAB170

elsif WLAST 6= WREC.WORD

then call LAB170 fi

Join Cases:

if end of file?(DDIN) ∨ WLAST 6= WREC.WORD

then if end of file?(DDIN)

then F LAB140 := 1 fi;

call LAB170 fi



The General Induction Rule

If S is any statement with bounded nondeterminacy, and S′ is

another statement such that

∆ ⊢ Sn ≤ S′

for all n < ω, then:

∆ ⊢ S ≤ S′

Here, “bounded nondeterminacy” means that in each specification

statement there is a finite number of possible values for the

assigned variables.



Loop Merging

If S is any statement and B1 and B2 are any formulae such that

B1 ⇒ B2 then:

while B1 do S od;

while B2 do S od

is equivalent to:

while B2 do S od



General Recursion Removal

Suppose we have a recursive procedure whose body is a regular

action system in the following form:

proc F (x) ≡

actions A1 :

. . . Ai ≡ Si.

. . . Bj ≡ Sj0; F (gj1(x)); Sj1; F (gj2(x));

. . . ; F (gjnj
(x)); Sjnj

.

. . . endactions.

where Sj1, . . . ,Sjnj
preserve the value of x and no S contains a call

to F (i.e. all the calls to F are listed explicitly in the Bj actions)

and the statements Sj0, Sj1, . . . ,Sjnj−1 contain no action calls.



General Recursion Removal

proc F ′(x) ≡

var L := 〈〉,m := 0:

actions A1 :

. . . Ai ≡ Si[call F̂ /call Z].

. . . Bj ≡ Sj0;

L := 〈〈0, gj1(x)〉, 〈〈j, 1〉, x〉, 〈0, gj2(x)〉,

. . . , 〈0, gjnj
(x)〉, 〈〈j, nj〉, x〉〉 ++ L;

call F̂ .

. . . F̂ ≡ if L = 〈〉

then call Z

else 〈m,x〉
pop
←− L;

if m = 0 → call A1

⊓⊔ . . . ⊓⊔ m = 〈j, k〉

→ Sjk[call F̂ /call Z]; call F̂

. . . fi fi. endactions end.



Recursive Implementation Theorem

Suppose we have a statement S′ which we wish to transform into

the recursive procedure (µX.S). This is possible whenever:



Recursive Implementation Theorem

Suppose we have a statement S′ which we wish to transform into

the recursive procedure (µX.S). This is possible whenever:

1. The statement S′ is refined by S[S′/X ]. In other words, if we

replace recursive calls in S by copies of S′ then we get a

refinement of S′; and



Recursive Implementation Theorem

Suppose we have a statement S′ which we wish to transform into

the recursive procedure (µX.S). This is possible whenever:

1. The statement S′ is refined by S[S′/X ]. In other words, if we

replace recursive calls in S by copies of S′ then we get a

refinement of S′; and

2. We can find an expression t (called the variant function)

whose value is reduced before each occurrence of S′ in

S[S′/X ].



Recursive Implementation Theorem

Suppose we have a statement S′ which we wish to transform into

the recursive procedure (µX.S). This is possible whenever:

1. The statement S′ is refined by S[S′/X ]. In other words, if we

replace recursive calls in S by copies of S′ then we get a

refinement of S′; and

2. We can find an expression t (called the variant function)

whose value is reduced before each occurrence of S′ in

S[S′/X ].

If both these conditions are satisfied, then:

∆ ⊢ S′ ≤ (µX.S)



Recursive Implementation
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Recursive Implementation

1. Start with a specification: SPEC

2. Transform to a program containing copies of the specification:

SPEC ≈ . . .SPEC . . .SPEC . . .SPEC . . .

3. Show that the variant expression is reduced before each copy:

SPEC ≈ . . . {t < t0}; SPEC . . . {t < t0}; SPEC . . . {t < t0}; SPEC . . .

4. Apply the Recursive Implementation transformation to get a

recursive procedure:

SPEC ≈ (µX. . . . {t < t0}; X . . . {t < t0}; X . . . {t < t0}; X . . . )

5. If necessary, apply Recursion Removal to get an iterative

procedure.
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Suppose we want to develop a factorial program.
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Refinement Example

Suppose we want to develop a factorial program.

The specification is very simple.

Define SPEC to be the statement:

y := n!

where n is a non-negative integer.

Transform this into an if statement:

if n = 0 then y := n! else y := n! fi



Refinement Example

Suppose we want to develop a factorial program.

The specification is very simple.

Define SPEC to be the statement:

y := n!

where n is a non-negative integer.

Transform this into an if statement:

if n = 0 then y := n! else y := n! fi

When n = 0, we know that n! = 1, so:

if n = 0 then y := 1 else y := n! fi



Refinement Example

If n > 0 then n! = n.(n− 1)!, so:



Refinement Example

If n > 0 then n! = n.(n− 1)!, so:

y := n! ≈ y := n.(n− 1)!

≈ y := (n− 1)!; y := n.y

≈ n := n− 1; y := n!; n := n+ 1; y := n.y



Refinement Example

If n > 0 then n! = n.(n− 1)!, so:

y := n! ≈ y := n.(n− 1)!

≈ y := (n− 1)!; y := n.y

≈ n := n− 1; y := n!; n := n+ 1; y := n.y

The specification has been transformed as follows:

SPEC ≈ if n = 0

then y := 1

else n := n− 1; SPEC; n := n+ 1; y := n.y fi

Note that n is reduced before the copy of SPEC on the right.



Refinement Example

Apply the Recursive Implementation Theorem:

SPEC ≈ proc F () ≡ if n = 0

then y := 1

else n := n− 1;

F ();

n := n+ 1;

y := n.y fi end

This is an executable implementation of SPEC.



Refinement Example

Apply Recursion Removal:

SPEC ≈ var 〈i := 0〉 :

while n 6= 0 do

i := i+ 1; n := n− 1 od;

y := 1;

while i > 0 do

i := i− 1; n; = n+ 1; y := n.y od end

(Here, i represents the number of recursive calls still pending.)



Refinement Example

Simplify:

SPEC ≈ var 〈i := n〉 :

n := 0; y := 1;

while i > 0 do

i := i− 1; n; = n+ 1; y := n.y od end
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Simplify:

SPEC ≈ var 〈i := n〉 :

n := 0; y := 1;

while i > 0 do

i := i− 1; n; = n+ 1; y := n.y od end

Let j = n− i+ 1 and simplify:

SPEC ≈ y := 1;

for j := 1 to n step 1

y := j.y od end



Refinement Example

Simplify:

SPEC ≈ var 〈i := n〉 :

n := 0; y := 1;

while i > 0 do

i := i− 1; n; = n+ 1; y := n.y od end

Let j = n− i+ 1 and simplify:

SPEC ≈ y := 1;

for j := 1 to n step 1

y := j.y od end

A long-winded process for such a simple specification.



Refinement Example

Simplify:

SPEC ≈ var 〈i := n〉 :

n := 0; y := 1;

while i > 0 do

i := i− 1; n; = n+ 1; y := n.y od end

Let j = n− i+ 1 and simplify:

SPEC ≈ y := 1;

for j := 1 to n step 1

y := j.y od end

A long-winded process for such a simple specification.

But the transformations apply to any recursive procedure!



Sorting Example

Specification of a sorting program SORT(a, b) is:

A[a..b] := A′[a..b].(sorted(A′[a..b]) ∧ permutation of(A′[a..b], A[a..b]))

If a > b then A[a..b] is already sorted.

Otherwise, permute the elements of A so that there is an element

A[p] such that:

A[a..p− 1] 6 A[p] 6 A[p+ 1..b]

Define the specification partition as:

〈A[a..b], p〉 := 〈A′[a..b], p′〉.(a 6 p 6 b

∧ A′[a..p− 1] 6 A′[p] 6 A′[p+ 1..b]

∧ permutation of(A′[a..b], A[a..b]))



Sorting Example

Now SORT(a, b) ≈

var 〈p := 0〉 :

if b > a then partition;

SORT(a, p− 1);

SORT(p+ 1, b) fi

Apply Recursion Introduction to get the quicksort algorithm:

proc qsort(a, b) ≡

var 〈p := 0〉 :

if b > a then partition;

qsort(a, p− 1);

qsort(p+ 1, b) fi



Loop Unrolling

while B do

if B1 then S1

elsif . . .

elsif Bi then Si

. . .

else Sn fi od

Unroll one step of the loop:

while B do

if B1 then S1

elsif . . .

elsif Bi then Si; if B ∧ Q then if B1 then . . . fi fi

. . .

else Sn fi od

We can unroll simultaneously at multiple terminal positions.



Entire Loop Unrolling

while B do

if B1 then S1

elsif . . .

elsif Bi then Si

. . .

else Sn fi od

Unroll multiple loop steps:

while B do

if B1 then S1

elsif . . .

elsif Bi then Si; while B ∧ Q do if B1 then . . . fi od

. . .

else Sn fi od

We can unroll simultaneously at multiple terminal positions.



Entire Loop Unrolling

For example, let Q = Bi, and assume that the Bi are disjoint:

while B do

if B1 then S1

elsif . . .

elsif Bi then Si

. . .

else Sn fi od

becomes:

while B do

if B1 then S1

elsif . . .

elsif Bi then while B ∧ Bi do Si od

. . .

else Sn fi od



Algorithm Derivation

Suppose we want to develop an integer exponentiation algorithm.
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Algorithm Derivation

Suppose we want to develop an integer exponentiation algorithm.

The specification is very simple:

EXP(x, n) =
DF

y := xn

where n is a non-negative integer.

Our derivation uses the following facts about exponentiation:

1. x0 = 1 for all x;

2. x2n = (x ∗ x)n and;

3. xn+1 = x ∗ xn



Algorithm Derivation

Apply Splitting A Tautology and Insert Assertions:

EXP(x, n) ≈ if n = 0 then {n = 0}; EXP(x, n)

elsif even?(x) then {n > 0 ∧ even?(n)}; EXP(x, n)

else {n > 0 ∧ odd?(n)}; EXP(x, n) fi
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elsif even?(x) then {n > 0 ∧ even?(n)}; EXP(x, n)

else {n > 0 ∧ odd?(n)}; EXP(x, n) fi

Use the assertions to refine each copy of EXP(x, n):

if n = 0 then y := 1

elsif even?(n) then {n > 0 ∧ even?(n)};

EXP(x ∗ x, n/2)

else {n > 0 ∧ odd?(n)};

EXP(x, n− 1); y := x ∗ y fi



Algorithm Derivation

Apply Splitting A Tautology and Insert Assertions:

EXP(x, n) ≈ if n = 0 then {n = 0}; EXP(x, n)

elsif even?(x) then {n > 0 ∧ even?(n)}; EXP(x, n)

else {n > 0 ∧ odd?(n)}; EXP(x, n) fi

Use the assertions to refine each copy of EXP(x, n):

if n = 0 then y := 1

elsif even?(n) then {n > 0 ∧ even?(n)};

EXP(x ∗ x, n/2)

else {n > 0 ∧ odd?(n)};

EXP(x, n− 1); y := x ∗ y fi

This is the elaborated specification



Algorithm Derivation

Apply the Recursive Implementation Theorem:

proc exp(x, n) ≡

if n = 0 then y := 1

elsif even?(n) then exp(x ∗ x, n/2)

else exp(x, n− 1); y := x ∗ y fi.

This is now an executable, recursive implementation of the

specification EXP(x, n)



Algorithm Derivation

Replace parameter n by a global variable:

proc exp(x, n) ≡ exp1(x).

proc exp1(x) ≡

if n = 0 then y := 1

elsif even?(n) then n := n/2; exp1(x ∗ x)

else n := n− 1; exp1(x); y := x ∗ y fi.

Apply Recursion Removal to exp1:

proc exp1(x) ≡

var 〈L := 〈〉〉 :

actions A :

A ≡ if n = 0 then y := 1; call F̂

elsif even?(n) then n := n/2; x := x ∗ x; call A

else n := n− 1; L
push
←− x; call A fi.

F̂ ≡ if L = 〈〉 then call Z

else x
pop
←− L; y := x ∗ y; call F̂ fi. endactions end.



Algorithm Derivation

Restructure the regular action system:

proc exp(x, n) ≡

var 〈L := 〈〉〉 :

while n 6= 0 do

if even?(n) then x := x ∗ x; n := n/2

else n := n− 1; L
push
←− x fi od;

y := 1;

while L 6= 〈〉 do x
pop
←− L; y := x ∗ y od.

Apply Entire Loop Unrolling after the assignment n := n/2 with

the condition n 6= 0 ∧ even?(n):



Algorithm Derivation

proc exp(x, n) ≡

var 〈L := 〈〉〉 :

while n 6= 0 do

if even?(n) then x := x ∗ x; n := n/2;

while n 6= 0 ∧ even?(n) do

if even?(n) then x := x ∗ x; n := n/2

else n := n− 1; L
push
←− x fi od;

else n := n− 1; L
push
←− x fi od;

y := 1;

while L 6= 〈〉 do x
pop
←− L; y := x ∗ y od.



Algorithm Derivation

Simplify:

proc exp(x, n) ≡

var 〈L := 〈〉〉 :

while n 6= 0 do

if even?(n) then while even?(n) do x := x ∗ x; n := n/2 od

else n := n− 1; L
push
←− x fi od;

y := 1;

while L 6= 〈〉 do x
pop
←− L; y := x ∗ y od.

Unroll a step after the inner while loop:



Algorithm Derivation

proc exp(x, n) ≡

var 〈L := 〈〉〉 :

while n 6= 0 do

if even?(n) then while even?(n) do x := x ∗ x; n := n/2 od;

L
push
←− x; n := n− 1

else L
push
←− x; n := n− 1 fi od;

y := 1;

while L 6= 〈〉 do x
pop
←− L; y := x ∗ y od.

Separate common code out of the if statement. The test is now

redundant, since the inner while loop is equivalent to skip when n

is odd:



Algorithm Derivation

proc exp(x, n) ≡

var 〈L := 〈〉〉 :

while n 6= 0 do

while even?(n) do x := x ∗ x; n := n/2 od;

n := n− 1; L
push
←− x od;

y := 1;

while L 6= 〈〉 do x
pop
←− L; y := x ∗ y od.

If we move the assignment y := 1 to the front, then we can merge

the bodies of the two while loops.

Note: The order of execution of the statements in the second

while loop is reversed.



Algorithm Derivation

proc exp(x, n) ≡

var 〈L := 〈〉〉 :

y := 1;

while n 6= 0 do

while even?(n) do x := x ∗ x; n := n/2 od;

n := n− 1; L
push
←− x;

x
pop
←− L; y := x ∗ y od.

Local variable L is now redundant, since L
push
←− x; L

pop
←− x ≈ skip:

proc exp(x, n) ≡

y := 1;

while n 6= 0 do

while even?(n) do x := x ∗ x; n := n/2 od;

n := n− 1; y := x ∗ y od.
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Classes of Transformations

Simplify: The selected item is transformed into simpler code

Eg: Simplify, Delete Comments, Fix Assembler, Reduce Loop,

Flag Removal, Syntactic Slice

Move: The selected item is moved (and remains selected)

Eg: Move To Left, Move To Right, Take Out Of Loop

Delete: The selected item is deleted, or parts of the item are

deleted

Eg: Delete Item, Delete All Assertions, Delete All Redundant,

Delete All Skips
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Classes of Transformations

Join: Items are absorbed into or combined with the selected

item, or the selected item is merged into some other item

Eg: Absorb Left, Absorb Right, Merge Left, Merge Right,

Expand Forward, Join All Cases

Reorder/Separate: The order of components in the selected

item is changed, or code is taken out of the item

Eg: Reverse Order, Separate Exit Code, Separate Left,

Separate Right

Rewrite: The selected item is transformed in some way, with

surrounding code unchanged.

Eg: Collapse Action System, Else If To Elsif, Elsif To Else If,

Floop To While, Combine Wheres, Replace With Value,

While To Floop, Double To Single Loop



Classes of Transformations
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appears at this point is used to simplify subsequent tests

Eg: Apply To Right, Delete What Follows, Use Assertion
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Classes of Transformations

Use/Apply: The selected item (eg an assertion) is used to

transform later code. For example, the fact that an assertion

appears at this point is used to simplify subsequent tests

Eg: Apply To Right, Delete What Follows, Use Assertion

Abstraction: This transformation is informally an abstraction

operation: eg replacing a statement by an equivalent

specification statement

Eg: Prog to Spec, Raise Abstraction

Refinement: This transformation is informally a refinement

operation: eg refining a specification statement into an

equivalent statement

Eg: Refine Spec
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