# Formal Transformations and WSL Part Two 

Martin Ward

Reader in Software Engineering
martin@gkc.org.uk

Software Technology Research Lab

De Montfort University

# Types of Transformations 

## Types of Transformations

A Syntactic Transformation changes the syntax of the program but preserves the exact sequence of operations carried out by the program. Many restructuring transformations are purely syntactic.

## Types of Transformations

A Syntactic Transformation changes the syntax of the program but preserves the exact sequence of operations carried out by the program. Many restructuring transformations are purely syntactic.

A Semantic Transformation may change the sequence of operations carried out by the program, but preserves the final state.

## Types of Transformations

A Syntactic Transformation changes the syntax of the program but preserves the exact sequence of operations carried out by the program. Many restructuring transformations are purely syntactic.

A Semantic Transformation may change the sequence of operations carried out by the program, but preserves the final state.

A syntactic transformation preserves the operational semantics, so these transformations are also called Operational Transformations.

## Types of Transformations

A Syntactic Transformation changes the syntax of the program but preserves the exact sequence of operations carried out by the program. Many restructuring transformations are purely syntactic.

A Semantic Transformation may change the sequence of operations carried out by the program, but preserves the final state.

A syntactic transformation preserves the operational semantics, so these transformations are also called Operational Transformations.

A semantic transformation preserves the denotational semantics.

## A Syntactic Transformation

For any condition (formula) B and any statements $\mathbf{S}_{1}, \mathbf{S}_{2}$ and $\mathbf{S}_{3}$ :

```
if B then S
    else S}\mp@subsup{\mathbf{S}}{2}{}\mathbf{fi
```

$\mathbf{S}_{3}$
is equivalent to:
if $\mathbf{B}$ then $\mathbf{S}_{1} ; \mathbf{S}_{3}$ else $\mathbf{S}_{2} ; \mathbf{S}_{3} \mathbf{f i}$

## A Syntactic Transformation

For any condition (formula) B and any statements $\mathbf{S}_{1}, \mathbf{S}_{2}$ and $\mathbf{S}_{3}$ :

```
if B then S
    else S}\mp@subsup{\mathbf{S}}{2}{}\mathbf{fi}
```

$\mathbf{S}_{3}$
is equivalent to:

> if $\mathbf{B}$ then $\mathbf{S}_{1} ; \mathbf{S}_{3}$ else $\mathbf{S}_{2} ; \mathbf{S}_{3} \mathbf{f i}$

In FermaT this result can be produced by applying Absorb_Right or Expand_Forwards on the if statement, or Merge_Left on $\mathbf{S}_{3}$

## Another Example

If $\mathbf{S}_{3}$ does not modify any of the variables in $\mathbf{B}$ then:
$\mathbf{S}_{3} ;$
if $\mathbf{B}$ then $\mathbf{S}_{1}$
$\quad$ else $\mathbf{S}_{2} \mathbf{f i} ; \mathbf{S}_{3}$
is equivalent to:
if $B$ then $S_{3} ; S_{2}$
else $\mathbf{S}_{3} ; \mathbf{S}_{1} \mathbf{f i}$

## Another Example

If $\mathbf{S}_{3}$ does not modify any of the variables in $\mathbf{B}$ then:

$$
\begin{aligned}
& \mathbf{S}_{3} ; \\
& \text { if } \mathbf{B} \text { then } \mathbf{S}_{1} \\
& \quad \text { else } \mathbf{S}_{2} \mathbf{f i} ; \mathbf{S}_{3}
\end{aligned}
$$

is equivalent to:

> if $\mathbf{B}$ then $\mathbf{S}_{3} ; \mathbf{S}_{2}$ else $\mathbf{S}_{3} ; \mathbf{S}_{1} \mathbf{f i}$

In FermaT this result can be produced by applying Absorb_Left on the if statement, or Merge_Right on $\mathbf{S}_{3}$

## Splitting A Tautology

For any statement S and any condition B:
$\mathbf{S} \approx$ if $\mathbf{B}$ then $\mathbf{S}$ else $\mathbf{S} \mathbf{f i}$

Adding Assertions:
if $B$ then $S_{1}$ else $\mathbf{S}_{2} \mathbf{f i}$
is equivalent to:
if $\mathbf{B}$ then $\{\mathbf{B}\} ; \mathbf{S}_{1}$ else $\{\neg \mathbf{B}\} ; \mathbf{S}_{2} \mathbf{f i}$

## Splitting A Tautology

For any statement S and any condition B:

$$
\mathbf{S} \approx \text { if } B \text { then } S \text { else } S f i
$$

Adding Assertions:
if $B$ then $\mathbf{S}_{1}$ else $\mathbf{S}_{2} \mathbf{f i}$
is equivalent to:
if $\mathbf{B}$ then $\{\mathbf{B}\} ; \mathbf{S}_{1}$ else $\{\neg \mathbf{B}\} ; \mathbf{S}_{2} \mathbf{f i}$
Assertions can be introduced and propagated through the program.

## Adding Assertions

For any statement $\mathbf{S}$ and any condition B:
while B do S od
is equivalent to:
while $\mathbf{B}$ do $\{\mathbf{B}\} ; \mathbf{S}$ od; $\{\neg \mathbf{B}\}$

## A Semantic Transformation

Assignment Merging: (Merge_Left and Merge_Right on assignments)

$$
x:=2 * x ; x:=x+1
$$

is equivalent to:

$$
x:=2 * x+1
$$

Another example:

$$
y:=n * x
$$

is equivalent to:

$$
n:=n-1 ; y:=(n+1) * x ; n:=n+1
$$

## Example Transformations

$$
\begin{aligned}
& \text { if } n=0 \text { then } x:=1 \\
& \quad \text { else } x:=x+1 \mathbf{f i} ; \\
& x:=2 * x
\end{aligned}
$$

## Example Transformations

$$
\text { if } \begin{aligned}
n=0 \text { then } x & :=1 \\
& \text { else } x
\end{aligned}:=x+1 \mathbf{f i} ;
$$

$x:=2 * x$
Expand the if statement:

$$
\text { if } \begin{aligned}
n=0 \text { then } x & :=1 ; x:=2 * x \\
& \text { else } x
\end{aligned}:=x+1 ; x:=2 * x \text { fi }
$$

## Example Transformations

$$
\begin{aligned}
& \text { if } n=0 \text { then } x:=1 \\
& \text { else } x:=x+1 \mathbf{f i} ;
\end{aligned}
$$

$x:=2 * x$
Expand the if statement:
if $n=0$ then $x:=1 ; x:=2 * x$

$$
\text { else } x:=x+1 ; x:=2 * x \mathbf{f i}
$$

Merge the assignments:
if $n=0$ then $x:=2$

$$
\text { else } x:=2 *(x+1) \mathbf{f i}
$$

## Expanding a Call

In an action system, any call can be replaced by a copy of the body of the action called:
actions $A_{1}$ :
$A_{1} \equiv \mathbf{S}_{1}$ end
$A_{1} \equiv \ldots$ call $A_{j} \ldots$ end
$A_{n} \equiv \mathbf{S}_{n}$ end endactions

## Expanding a Call

In an action system, any call can be replaced by a copy of the body of the action called:
actions $A_{1}$ :
$A_{1} \equiv \mathbf{S}_{1}$ end
$A_{1} \equiv \ldots \boxed{\mathbf{S}_{j}} \ldots$ end
$A_{n} \equiv \mathbf{S}_{n}$ end endactions

## Expanding a Call

In an action system, any call can be replaced by a copy of the body of the action called:
actions $A_{1}$ :
$A_{1} \equiv \mathbf{S}_{1}$ end
$A_{1} \equiv \ldots \boxed{\mathbf{S}_{j}} \ldots$ end
$A_{n} \equiv \mathbf{S}_{n}$ end endactions
If there are no other calls to $A_{j}$, then the action can be deleted

## Expand and Separate

Suppose we have this code in a regular action system:
if $\mathbf{B}$ then $\mathbf{S}_{1}$; call $A$
else $\mathbf{S}_{2} \mathbf{f i}$;
call $A$

## Expand and Separate

Suppose we have this code in a regular action system:
if $\mathbf{B}$ then $\mathbf{S}_{1}$; call $A$
else $\mathbf{S}_{2} \mathbf{f i}$;
call $A$
Expand the if:
if $\mathbf{B}$ then $\mathbf{S}_{1}$; call $A$; call $A$
else $\mathbf{S}_{2}$; call $A \mathbf{f i}$

## Expand and Separate

Suppose we have this code in a regular action system:
if $\mathbf{B}$ then $\mathbf{S}_{1}$; call $A$
else $\mathbf{S}_{2} \mathbf{f i}$;
call $A$
Expand the if:
if $\mathbf{B}$ then $\mathbf{S}_{1}$; call $A$; call $A$
else $\mathbf{S}_{2}$; call $A \mathbf{f i}$
Delete after the first call:
if $\mathbf{B}$ then $\mathbf{S}_{1}$; call $A$
else $\mathbf{S}_{2}$; call $A \mathbf{f i}$

## Expand and Separate

Suppose we have this code in a regular action system:
if $\mathbf{B}$ then $\mathbf{S}_{1}$; call $A$
else $\mathbf{S}_{2} \mathbf{f i}$;
call $A$
Expand the if:
if $\mathbf{B}$ then $\mathbf{S}_{1}$; call $A$; call $A$
else $\mathbf{S}_{2}$; call $A \mathbf{f i}$
Delete after the first call:
if $\mathbf{B}$ then $\mathbf{S}_{1}$; call $A$
else $\mathbf{S}_{2}$; call $A \mathbf{f i}$
Separate:
if B then $\mathbf{S}_{1}$
else $\mathbf{S}_{2} \mathbf{f i}$;
call $A$

## Expand and Separate

Example:
if $n=0$ then $x:=1$; call $A$
else $y:=2 \mathbf{f i}$;
call $A$

## Expand and Separate

Example:
if $n=0$ then $x:=1$; call $A$

$$
\text { else } y:=2 \mathbf{f i} ;
$$

call $A$
Becomes:
if $n=0$ then $x:=1$
else $y:=2 \mathbf{f i}$;
call $A$
The first call $A$ has been deleted.

## Example Transformations

Forward Expansion:
if $x=1$ then if $y=1$ then $z:=1$ else $z:=2 \mathbf{f i}$ else $z:=3 \mathbf{f i}$;
if $z=1$ then $p:=q \mathbf{f i}$
is equivalent to:
if $x=1$ then if $y=1$ then $z:=1$ else $z:=2$ fi;

$$
\text { if } z=1 \text { then } p:=q \mathbf{f i}
$$

else $z:=3$;
if $z=1$ then $p:=q \mathbf{f i} \mathbf{f i}$

## Example Transformations

Absorb Right:
if $x=1$ then if $y=1$ then $z:=1$ else $z:=2 \mathbf{f i}$ else $z:=3 \mathbf{f i}$;
if $z=1$ then $p:=q \mathbf{f i}$
is equivalent to:
if $x=1$ then if $y=1$ then $z:=1$;
if $z=1$ then $p:=q \mathbf{f i}$
else $z:=21$;
if $z=1$ then $p:=q \mathbf{f i} \mathbf{f i} ;$
else $z:=3$;
if $z=1$ then $p:=q \mathbf{f i} \mathbf{f i}$
This transformation is also called Merge Left!

## Example Transformations

Absorb Left into a loop, before:
do do if $i>n$ then $\operatorname{exit}(2)$ f;
$i:=i+1 ;$
if $A[i]=v$ then $\operatorname{exit}(1) \mathbf{f i}$ od;
last $:=i$;
count := count +1 ;
if count $>$ limit then exit $(1)$ fi od;
if count $>$ limit then PRINT(last) fi

## Example Transformations

Absorb Left into a loop, after:
do do if $i>n$ then if count $>$ limit then PRINT(last); exit(2) else $\operatorname{exit}(2) \mathbf{f i} \mathbf{f i}$;
$i:=i+1 ;$
if $A[i]=v$ then $\operatorname{exit}(1) \mathbf{f i}$ od;
last $:=i$;
count := count +1 ;
if count $>$ limit then if count $>$ limit then PRINT(last); exit(1) else exit(1) fi fi od;

## Loop Inversion

do Read_A_Record(file, record);
if end_of_file?(file) then exit(1) fi;
Process_Record(record) od

## Loop Inversion

do Read_A_Record(file, record);
if end_of_file?(file) then exit(1) fi;
Process_Record(record) od
Is equivalent to:
Read_A_Record(file, record);
do if end_of_file?(file) then exit(1) fi;
Process_Record(record);
Read_A_Record(file, record) od

## Loop Inversion

do Read_A_Record(file, record);
if end_of_file?(file) then exit(1) fi;
Process_Record(record) od
Is equivalent to:
Read_A_Record(file, record);
do if end_of_file?(file) then exit(1) fi;
Process_Record(record);
Read_A_Record(file, record) od
Which is equivalent to:
Read_A_Record(file, record);
while $\neg$ end_of_file?(file) do
Process_Record(record);
Read_A_Record(file, record) od

## Loop Inversion

In general:

$$
\text { do } S_{1} ; S_{2} \text { od }
$$

Is equivalent to:

$$
\mathbf{S}_{1} ; \text { do } \mathbf{S}_{2} ; \mathbf{S}_{1} \text { od }
$$

provided $\mathbf{S}_{1}$ is a proper sequence (It has no exit statements which can leave an enclosing loop)

## Loop Inversion

More Generally:

$$
\text { do } \mathbf{S}_{1} ; \mathbf{S}_{2} \text { od }
$$

Is equivalent to:

$$
\text { do } \mathbf{S}_{1} ; \text { do } \mathbf{S}_{2} ; \mathbf{S}_{1} \text { od }+1 \text { od }
$$

where the +1 will increment the exit statements which terminate do $\mathbf{S}_{2} ; \mathbf{S}_{1}$ od so that they terminate the new outer loop.

## Loop Inversion

Loop inversion can be used to merge two copies of a statement into one, for example:

GET(DDIN var WREC);
do if end_of_file?(DDIN) then exit(1) fi;
WORKP := WREC.NUM;
TOTAL := TOTAL + WORKP;
GET(DDIN var WREC) od;
simplifies to:
do GET(DDIN var WREC);
if end_of_file?(DDIN) then $\operatorname{exit}(1) \mathbf{f i}$;
WORKP := WREC.NUM;
TOTAL $:=$ TOTAL + WORKP od;

## Merging Copies

A program with repeated statements: do ...;
if end_of_file(DDIN) then exit(1) fi;
PUT_FIXED(RDSOUT, WPRT var result_code, os);
fill(WPRT[1] var WPRT[2..80]) od;
PUT_FIXED(RDSOUT, WPRT var result_code, os);
fill(WPRT[1] var WPRT[2..80])

## Merging Copies

Absorb into the loop:
do ...;
if end_of_file(DDIN)
then PUT_FIXED(RDSOUT, WPRT var result_code, os);
fill(WPRT[1] var WPRT[2..80]);
exit(1) $\mathbf{f i}$;
PUT_FIXED(RDSOUT, WPRT var result_code, os);
fill(WPRT[1] var WPRT[2..80]) od;

## Merging Copies

Absorb into the if statement:
do ...;
if end_of_file(DDIN) then PUT_FIXED(RDSOUT, WPRT var result_code, os); fill(WPRT[1] var WPRT[2..80]); exit(1)
else PUT_FIXED(RDSOUT, WPRT var result_code, os); fill(WPRT[1] var WPRT[2..80]) fi od;

## Merging Copies

Separate Left:
do ...;
PUT_FIXED(RDSOUT, WPRT var result_code, os);
fill(WPRT[1] var WPRT[2..80]);
if end_of_file(DDIN) then exit(1) od;

## Merging Copies

Here, there are two copies of $\mathbf{S}_{2}$ which we want to merge:
if $\mathbf{B}_{1}$ then $\mathbf{S}_{1} ; \mathbf{S}_{2}$
elsif $\mathbf{B}_{2}$ then $\mathbf{S}_{2}$
else $\mathbf{S}_{3} \mathbf{f i}$

## Merging Copies

Here, there are two copies of $\mathbf{S}_{2}$ which we want to merge:
if $\mathbf{B}_{1}$ then $\mathbf{S}_{1} ; \mathbf{S}_{2}$
elsif $\mathbf{B}_{2}$ then $\mathbf{S}_{2}$
else $\mathbf{S}_{3} \mathbf{f i}$
The result is:
if $\mathbf{B}_{1} \vee \mathbf{B}_{2}$
then if $\mathbf{B}_{1}$ then $\mathbf{S}_{1} \mathbf{f i}$;
$\mathrm{S}_{2}$
else $\mathbf{S}_{3} \mathbf{f i}$

## An Example

if end_of_file?(DDIN)
then $\mathrm{F}_{-} \mathrm{LAB} 140:=1$; call LAB170 fi;
if WLAST $\neq$ WREC.WORD
then call LAB170 $\mathbf{f i}$
Absorb:
if end_of_file?(DDIN) then F_LAB140 $:=1$; call LAB170
elsif WLAST $\neq$ WREC.WORD then call LAB170 $\mathbf{f i}$

Join Cases:
if end_of_file?(DDIN) $\vee$ WLAST $\neq$ WREC.WORD then if end_of_file?(DDIN) then F_LAB140 :=1 fi;
call LAB170 fi

## The General Induction Rule

If $\mathbf{S}$ is any statement with bounded nondeterminacy, and $\mathbf{S}^{\prime}$ is another statement such that

$$
\Delta \vdash \mathbf{S}^{n} \leq \mathbf{S}^{\prime}
$$

for all $n<\omega$, then:

$$
\Delta \vdash \mathbf{S} \leq \mathbf{S}^{\prime}
$$

Here, "bounded nondeterminacy" means that in each specification statement there is a finite number of possible values for the assigned variables.

## Loop Merging

If $\mathbf{S}$ is any statement and $\mathbf{B}_{1}$ and $\mathbf{B}_{2}$ are any formulae such that $\mathbf{B}_{1} \Rightarrow \mathbf{B}_{2}$ then:
while $B_{1}$ do $S$ od;
while $B_{2}$ do $S$ od
is equivalent to:
while $B_{2}$ do $S$ od

## General Recursion Removal

Suppose we have a recursive procedure whose body is a regular action system in the following form:
proc $F(x) \equiv$
actions $A_{1}$ :

$$
\begin{aligned}
\ldots A_{i} \equiv & \mathbf{S}_{i} . \\
\ldots B_{j} \equiv & \mathbf{S}_{j 0} ; F\left(g_{j 1}(x)\right) ; \mathbf{S}_{j 1} ; F\left(g_{j 2}(x)\right) ; \\
& \ldots ; F\left(g_{j n_{j}}(x)\right) ; \mathbf{S}_{j n_{j}} .
\end{aligned}
$$

... endactions.
where $\mathbf{S}_{j 1}, \ldots, \mathbf{S}_{j n_{j}}$ preserve the value of $x$ and no $\mathbf{S}$ contains a call to $F$ (i.e. all the calls to $F$ are listed explicitly in the $B_{j}$ actions) and the statements $\mathbf{S}_{j 0}, \mathbf{S}_{j 1}, \ldots, \mathbf{S}_{j n_{j}-1}$ contain no action calls.

## General Recursion Removal

proc $F^{\prime}(x) \equiv$ $\operatorname{var} L:=\langle \rangle, m:=0:$
actions $A_{1}$ :

$$
\begin{aligned}
\ldots A_{i} \equiv & \mathbf{S}_{i}[\text { call } \hat{F} / \text { call } Z] . \\
\ldots B_{j} \equiv & \mathbf{S}_{j 0} ; \\
& \quad L:=\left\langle\left\langle 0, g_{j 1}(x)\right\rangle,\langle\langle j, 1\rangle, x\rangle,\left\langle 0, g_{j 2}(x)\right\rangle\right. \\
& \left.\quad \ldots,\left\langle 0, g_{j n_{j}}(x)\right\rangle,\left\langle\left\langle j, n_{j}\right\rangle, x\right\rangle\right\rangle+L ;
\end{aligned} \quad \begin{aligned}
& \text { call } \hat{F} .
\end{aligned}
$$

$\ldots \hat{F} \equiv$ if $L=\langle \rangle$
then call $Z$
else $\langle m, x\rangle \stackrel{\text { pop }}{\leftrightarrows} L$;

$$
\text { if } m=0 \rightarrow \text { call } A_{1}
$$

$\square \ldots \square m=\langle j, k\rangle$
$\rightarrow \mathbf{S}_{j k}[$ call $\hat{F} /$ call $Z] ;$ call $\hat{F}$
... fi fi. endactions end.

## Recursive Implementation Theorem

Suppose we have a statement $\mathbf{S}^{\prime}$ which we wish to transform into the recursive procedure ( $\mu X . \mathbf{S}$ ). This is possible whenever:

## Recursive Implementation Theorem

Suppose we have a statement $\mathbf{S}^{\prime}$ which we wish to transform into the recursive procedure ( $\mu X . S$ ). This is possible whenever:

1. The statement $\mathbf{S}^{\prime}$ is refined by $\mathbf{S}\left[\mathbf{S}^{\prime} / X\right]$. In other words, if we replace recursive calls in $\mathbf{S}$ by copies of $\mathbf{S}^{\prime}$ then we get a refinement of $\mathbf{S}^{\prime}$; and

## Recursive Implementation Theorem

Suppose we have a statement $\mathbf{S}^{\prime}$ which we wish to transform into the recursive procedure ( $\mu X . S$ ). This is possible whenever:

1. The statement $\mathbf{S}^{\prime}$ is refined by $\mathbf{S}\left[\mathbf{S}^{\prime} / X\right]$. In other words, if we replace recursive calls in $\mathbf{S}$ by copies of $\mathbf{S}^{\prime}$ then we get a refinement of $\mathbf{S}^{\prime}$; and
2. We can find an expression $\mathbf{t}$ (called the variant function) whose value is reduced before each occurrence of $\mathbf{S}^{\prime}$ in $\mathbf{S}\left[\mathbf{S}^{\prime} / X\right]$.

## Recursive Implementation Theorem

Suppose we have a statement $\mathbf{S}^{\prime}$ which we wish to transform into the recursive procedure ( $\mu X . \mathbf{S}$ ). This is possible whenever:

1. The statement $\mathbf{S}^{\prime}$ is refined by $\mathbf{S}\left[\mathbf{S}^{\prime} / X\right]$. In other words, if we replace recursive calls in $\mathbf{S}$ by copies of $\mathbf{S}^{\prime}$ then we get a refinement of $\mathbf{S}^{\prime}$; and
2. We can find an expression $\mathbf{t}$ (called the variant function) whose value is reduced before each occurrence of $\mathbf{S}^{\prime}$ in $\mathbf{S}\left[\mathbf{S}^{\prime} / X\right]$.

If both these conditions are satisfied, then:

$$
\Delta \vdash \mathbf{S}^{\prime} \leq(\mu X . \mathbf{S})
$$

Recursive Implementation

## Recursive Implementation

1. Start with a specification: SPEC

## Recursive Implementation

1. Start with a specification: SPEC
2. Transform to a program containing copies of the specification:

$$
\text { SPEC } \approx \ldots \text { SPEC...SPEC...SPEC... }
$$

## Recursive Implementation

1. Start with a specification: SPEC
2. Transform to a program containing copies of the specification:

$$
\text { SPEC } \approx \ldots \text { SPEC } \ldots \text { SPEC ... SPEC... }
$$

3. Show that the variant expression is reduced before each copy:

$$
\text { SPEC } \approx \ldots\left\{\mathbf{t}<t_{0}\right\} ; \text { SPEC } \ldots\left\{\mathbf{t}<t_{0}\right\} ; \text { SPEC } \ldots\left\{\mathbf{t}<t_{0}\right\} ; \text { SPEC } \ldots
$$

## Recursive Implementation

1. Start with a specification: SPEC
2. Transform to a program containing copies of the specification:

$$
\text { SPEC } \approx \ldots \text { SPEC ...SPEC...SPEC... }
$$

3. Show that the variant expression is reduced before each copy: SPEC $\approx \ldots\left\{\mathbf{t}<t_{0}\right\}$; SPEC $\ldots\left\{\mathbf{t}<t_{0}\right\}$; SPEC $\ldots\left\{\mathbf{t}<t_{0}\right\} ;$ SPEC $\ldots$
4. Apply the Recursive Implementation transformation to get a recursive procedure:

$$
\text { SPEC } \approx\left(\mu X \ldots\left\{\mathbf{t}<t_{0}\right\} ; X \ldots\left\{\mathbf{t}<t_{0}\right\} ; X \ldots\left\{\mathbf{t}<t_{0}\right\} ; X \ldots\right)
$$

## Recursive Implementation

1. Start with a specification: SPEC
2. Transform to a program containing copies of the specification:

$$
\text { SPEC } \approx \ldots \text { SPEC } \ldots \text { SPEC ... SPEC... }
$$

3. Show that the variant expression is reduced before each copy: SPEC $\approx \ldots\left\{\mathbf{t}<t_{0}\right\} ;$ SPEC $\ldots\left\{\mathbf{t}<t_{0}\right\}$; SPEC $\ldots\left\{\mathbf{t}<t_{0}\right\} ;$ SPEC $\ldots$
4. Apply the Recursive Implementation transformation to get a recursive procedure:

$$
\text { SPEC } \approx\left(\mu X \ldots\left\{\mathbf{t}<t_{0}\right\} ; X \ldots\left\{\mathbf{t}<t_{0}\right\} ; X \ldots\left\{\mathbf{t}<t_{0}\right\} ; X \ldots\right)
$$

5. If necessary, apply Recursion Removal to get an iterative procedure.

## Refinement Example

Suppose we want to develop a factorial program.

## Refinement Example

Suppose we want to develop a factorial program.
The specification is very simple.
Define SPEC to be the statement:

$$
y:=n!
$$

where $n$ is a non-negative integer.

## Refinement Example

Suppose we want to develop a factorial program.
The specification is very simple.
Define SPEC to be the statement:

$$
y:=n!
$$

where $n$ is a non-negative integer.
Transform this into an if statement:

$$
\text { if } n=0 \text { then } y:=n!\text { else } y:=n!\mathbf{f i}
$$

## Refinement Example

Suppose we want to develop a factorial program.
The specification is very simple.
Define SPEC to be the statement:

$$
y:=n!
$$

where $n$ is a non-negative integer.
Transform this into an if statement:

$$
\text { if } n=0 \text { then } y:=n!\text { else } y:=n!\text { fi }
$$

When $n=0$, we know that $n!=1$, so:

$$
\text { if } n=0 \text { then } y:=1 \text { else } y:=n!\mathbf{f i}
$$

## Refinement Example

If $n>0$ then $n!=n .(n-1)$ !, so:

## Refinement Example

If $n>0$ then $n!=n .(n-1)$ !, so:

$$
\begin{aligned}
y:=n! & \approx y:=n \cdot(n-1)! \\
& \approx y:=(n-1)!; y:=n \cdot y \\
& \approx n:=n-1 ; y:=n!; n:=n+1 ; y:=n . y
\end{aligned}
$$

## Refinement Example

If $n>0$ then $n!=n .(n-1)$ !, so:

$$
\begin{aligned}
y:=n! & \approx y:=n \cdot(n-1)! \\
& \approx y:=(n-1)!; y:=n \cdot y \\
& \approx n:=n-1 ; y:=n!; n:=n+1 ; y:=n \cdot y
\end{aligned}
$$

The specification has been transformed as follows: SPEC $\approx$ if $n=0$
then $y:=1$
else $n:=n-1$; SPEC; $n:=n+1 ; y:=n . y \mathbf{f i}$
Note that $n$ is reduced before the copy of SPEC on the right.

## Refinement Example

Apply the Recursive Implementation Theorem:
SPEC $\approx \operatorname{proc} F() \equiv$ if $n=0$

$$
\text { then } \begin{aligned}
y & :=1 \\
\text { else } n & :=n-1 ; \\
F & () ; \\
n & :=n+1 ; \\
y & :=n . y \text { fi end }
\end{aligned}
$$

This is an executable implementation of SPEC.

## Refinement Example

Apply Recursion Removal:
SPEC $\approx \operatorname{var}\langle i:=0\rangle$ :
while $n \neq 0$ do

$$
\begin{aligned}
& \quad i:=i+1 ; n:=n-1 \text { od; } \\
& y:=1 ; \\
& \text { while } i>0 \text { do }
\end{aligned}
$$

$$
i:=i-1 ; n ;=n+1 ; y:=n . y \text { od end }
$$

(Here, $i$ represents the number of recursive calls still pending.)

## Refinement Example

Simplify:
SPEC $\approx \operatorname{var}\langle i:=n\rangle:$

$$
n:=0 ; y:=1 \text {; }
$$

while $i>0$ do

$$
i:=i-1 ; n ;=n+1 ; y:=n . y \text { od end }
$$

## Refinement Example

Simplify:
SPEC $\approx \operatorname{var}\langle i:=n\rangle$ :

$$
n:=0 ; y:=1 \text {; }
$$

while $i>0$ do

$$
i:=i-1 ; n ;=n+1 ; y:=n . y \text { od end }
$$

Let $j=n-i+1$ and simplify:
SPEC $\approx y:=1$;

$$
\begin{aligned}
\text { for } j & :=1 \text { to } n \text { step } 1 \\
y & :=j \cdot y \text { od end }
\end{aligned}
$$

## Refinement Example

Simplify:
SPEC $\approx \operatorname{var}\langle i:=n\rangle:$

$$
n:=0 ; y:=1 \text {; }
$$

while $i>0$ do

$$
i:=i-1 ; n ;=n+1 ; y:=n . y \text { od end }
$$

Let $j=n-i+1$ and simplify:
SPEC $\approx y:=1$;

$$
\text { for } \begin{aligned}
j & :=1 \text { to } n \text { step } 1 \\
y & :=j . y \text { od end }
\end{aligned}
$$

A long-winded process for such a simple specification.

## Refinement Example

Simplify:
SPEC $\approx \operatorname{var}\langle i:=n\rangle:$

$$
n:=0 ; y:=1
$$

while $i>0$ do

$$
i:=i-1 ; n ;=n+1 ; y:=n . y \text { od end }
$$

Let $j=n-i+1$ and simplify:
SPEC $\approx y:=1$;

$$
\text { for } \begin{aligned}
j & :=1 \text { to } n \text { step } 1 \\
y & :=j \cdot y \text { od end }
\end{aligned}
$$

A long-winded process for such a simple specification.
But the transformations apply to any recursive procedure!

## Sorting Example

Specification of a sorting program $\operatorname{SORT}(a, b)$ is:

$$
A[a . . b]:=A^{\prime}[a . . b] .\left(\operatorname{sorted}\left(A^{\prime}[a . . b]\right) \wedge \text { permutation_of }\left(A^{\prime}[a . . b], A[a . . b]\right)\right)
$$

If $a \geqslant b$ then $A[a . . b]$ is already sorted.
Otherwise, permute the elements of $A$ so that there is an element $A[p]$ such that:

$$
A[a . . p-1] \leqslant A[p] \leqslant A[p+1 . . b]
$$

Define the specification partition as:
$\langle A[a . . b], p\rangle:=\left\langle A^{\prime}[a . . b], p^{\prime}\right\rangle .(a \leqslant p \leqslant b$
$\wedge A^{\prime}[a . . p-1] \leqslant A^{\prime}[p] \leqslant A^{\prime}[p+1 . . b]$
$\wedge$ permutation_of $\left.\left(A^{\prime}[a . . b], A[a . . b]\right)\right)$

## Sorting Example

Now $\operatorname{SORT}(a, b) \approx$
$\operatorname{var}\langle p:=0\rangle$ :
if $b>a$ then partition;

$$
\begin{aligned}
& \operatorname{SORT}(a, p-1) ; \\
& \operatorname{SORT}(p+1, b) \mathbf{f i}
\end{aligned}
$$

Apply Recursion Introduction to get the quicksort algorithm:
proc qsort $(a, b) \equiv$
$\operatorname{var}\langle p:=0\rangle$ :
if $b>a$ then partition;

$$
\begin{aligned}
& \text { qsort }(a, p-1) \text {; } \\
& \text { qsort }(p+1, b) \mathbf{f i}
\end{aligned}
$$

## Loop Unrolling

while $B$ do
if $\mathbf{B}_{1}$ then $\mathbf{S}_{1}$
elsif ...
elsif $\mathbf{B}_{i}$ then $\mathbf{S}_{i}$
else $\mathbf{S}_{n}$ fi od
Unroll one step of the loop:
while B do
if $B_{1}$ then $\mathbf{S}_{1}$
elsif ...
elsif $\mathbf{B}_{i}$ then $\mathbf{S}_{i}$; if $\mathbf{B} \wedge \mathbf{Q}$ then if $\mathbf{B}_{1}$ then $\ldots \mathrm{fi} \mathbf{f i}$
else $\mathbf{S}_{n}$ fi od
We can unroll simultaneously at multiple terminal positions.

## Entire Loop Unrolling

while $B$ do
if $\mathbf{B}_{1}$ then $\mathbf{S}_{1}$
elsif ...
elsif $\mathbf{B}_{i}$ then $\mathbf{S}_{i}$
else $\mathbf{S}_{n}$ fi od
Unroll multiple loop steps:
while B do
if $B_{1}$ then $\mathbf{S}_{1}$
elsif ...
elsif $\mathbf{B}_{i}$ then $\mathbf{S}_{i}$; while $\mathbf{B} \wedge \mathbf{Q}$ do if $\mathbf{B}_{1}$ then $\ldots$ fi od
else $\mathbf{S}_{n}$ fi od
We can unroll simultaneously at multiple terminal positions.

## Entire Loop Unrolling

For example, let $\mathbf{Q}=\mathbf{B}_{i}$, and assume that the $\mathbf{B}_{i}$ are disjoint: while B do
if $\mathbf{B}_{1}$ then $\mathbf{S}_{1}$
elsif... elsif $\mathbf{B}_{i}$ then $\mathbf{S}_{i}$
else $\mathbf{S}_{n}$ fi od
becomes:
while B do
if $\mathbf{B}_{1}$ then $\mathbf{S}_{1}$
elsif ...
elsif $\mathbf{B}_{i}$ then while $\mathbf{B} \wedge \mathbf{B}_{i}$ do $\mathbf{S}_{i}$ od
else $\mathbf{S}_{n}$ fi od

## Algorithm Derivation

Suppose we want to develop an integer exponentiation algorithm.

## Algorithm Derivation

Suppose we want to develop an integer exponentiation algorithm.
The specification is very simple:

$$
\operatorname{EXP}(x, n)=_{\mathrm{DF}} y:=x^{n}
$$

where $n$ is a non-negative integer.

## Algorithm Derivation

Suppose we want to develop an integer exponentiation algorithm.
The specification is very simple:

$$
\operatorname{EXP}(x, n)=_{\mathrm{DF}} y:=x^{n}
$$

where $n$ is a non-negative integer.
Our derivation uses the following facts about exponentiation:

## Algorithm Derivation

Suppose we want to develop an integer exponentiation algorithm.
The specification is very simple:

$$
\operatorname{EXP}(x, n)=_{\mathrm{DF}} y:=x^{n}
$$

where $n$ is a non-negative integer.
Our derivation uses the following facts about exponentiation:

1. $x^{0}=1$ for all $x$;

## Algorithm Derivation

Suppose we want to develop an integer exponentiation algorithm.
The specification is very simple:

$$
\operatorname{EXP}(x, n)=_{\mathrm{DF}} y:=x^{n}
$$

where $n$ is a non-negative integer.
Our derivation uses the following facts about exponentiation:

1. $x^{0}=1$ for all $x$;
2. $x^{2 n}=(x * x)^{n}$ and;

## Algorithm Derivation

Suppose we want to develop an integer exponentiation algorithm.
The specification is very simple:

$$
\operatorname{EXP}(x, n)=_{\mathrm{DF}} y:=x^{n}
$$

where $n$ is a non-negative integer.
Our derivation uses the following facts about exponentiation:

1. $x^{0}=1$ for all $x$;
2. $x^{2 n}=(x * x)^{n}$ and;
3. $x^{n+1}=x * x^{n}$

## Algorithm Derivation

Apply Splitting_A_Tautology and Insert_Assertions:

$$
\begin{aligned}
\operatorname{EXP}(x, n) \approx & \text { if } n=0 \text { then }\{n=0\} ; \operatorname{EXP}(x, n) \\
& \text { elsif even? }(x) \text { then }\{n>0 \wedge \operatorname{even} ?(n)\} ; \operatorname{EXP}(x, n) \\
& \text { else }\{n>0 \wedge \operatorname{odd} ?(n)\} ; \operatorname{EXP}(x, n) \text { fi }
\end{aligned}
$$

## Algorithm Derivation

Apply Splitting_A_Tautology and Insert_Assertions:

$$
\begin{aligned}
\operatorname{EXP}(x, n) \approx & \text { if } n=0 \text { then }\{n=0\} ; \operatorname{EXP}(x, n) \\
& \text { elsif even?(x) then }\{n>0 \wedge \operatorname{even} ?(n)\} ; \operatorname{EXP}(x, n) \\
& \text { else }\{n>0 \wedge \operatorname{odd} ?(n)\} ; \operatorname{EXP}(x, n) \text { fi }
\end{aligned}
$$

Use the assertions to refine each copy of $\operatorname{EXP}(x, n)$ :
if $n=0$ then $y:=1$
elsif even? $(n)$ then $\{n>0 \wedge$ even? $(n)\}$;
$\operatorname{EXP}(x * x, n / 2)$
else $\{n>0 \wedge$ odd? $(n)\}$;
$\operatorname{EXP}(x, n-1) ; y:=x * y \mathbf{f i}$

## Algorithm Derivation

Apply Splitting_A_Tautology and Insert_Assertions:

$$
\begin{aligned}
\operatorname{EXP}(x, n) \approx & \text { if } n=0 \text { then }\{n=0\} ; \operatorname{EXP}(x, n) \\
& \text { elsif even?(x) then }\{n>0 \wedge \operatorname{even} ?(n)\} ; \operatorname{EXP}(x, n) \\
& \text { else }\{n>0 \wedge \operatorname{odd} ?(n)\} ; \operatorname{EXP}(x, n) \text { fi }
\end{aligned}
$$

Use the assertions to refine each copy of $\operatorname{EXP}(x, n)$ :
if $n=0$ then $y:=1$
elsif even? $(n)$ then $\{n>0 \wedge$ even? $(n)\}$;
$\operatorname{EXP}(x * x, n / 2)$
else $\{n>0 \wedge$ odd? $(n)\}$;
$\operatorname{EXP}(x, n-1) ; y:=x * y \mathbf{f i}$
This is the elaborated specification

## Algorithm Derivation

Apply the Recursive Implementation Theorem:
proc $\exp (x, n) \equiv$
if $n=0$ then $y:=1$
elsif even? $(n)$ then $\exp (x * x, n / 2)$
else $\exp (x, n-1) ; y:=x * y$ fi.
This is now an executable, recursive implementation of the specification $\operatorname{EXP}(x, n)$

## Algorithm Derivation

Replace parameter $n$ by a global variable:
proc $\exp (x, n) \equiv \exp 1(x)$.
proc $\exp 1(x) \equiv$
if $n=0$ then $y:=1$
elsif even?( $n$ ) then $n:=n / 2 ; \exp 1(x * x)$ else $n:=n-1 ; \exp 1(x) ; y:=x * y$ fi.

Apply Recursion Removal to exp1:
proc $\exp 1(x) \equiv$
$\operatorname{var}\langle L:=\langle \rangle\rangle:$
actions $A$ :

$$
\begin{aligned}
& A \equiv \text { if } n=0 \text { then } y:=1 ; \text { call } \hat{F} \\
& \text { elsif even? }(n) \text { then } n:=n / 2 ; x:=x * x ; \text { call } A \\
& \text { else } n:=n-1 ; L \stackrel{\text { push }}{\leftrightarrows} x \text { call } A \text { fi. }
\end{aligned}
$$

$\hat{F} \equiv$ if $L=\langle \rangle$ then call $Z$
else $x \stackrel{\text { pop }}{\leftrightarrows} L ; y:=x * y ;$ call $\hat{F}$ fi. endactions end.

## Algorithm Derivation

Restructure the regular action system:
proc $\exp (x, n) \equiv$
$\operatorname{var}\langle L:=\langle \rangle\rangle:$
while $n \neq 0$ do

$$
y:=1
$$

Apply Entire Loop Unrolling after the assignment $n:=n / 2$ with the condition $n \neq 0 \wedge$ even? $(n)$ :

$$
\begin{aligned}
& \text { if even? }(n) \text { then } x:=x * x ; n:=n / 2 \\
& \text { else } n:=n-1 ; L \stackrel{\text { push }}{\leftrightarrows} x \mathbf{f i} \text { od; }
\end{aligned}
$$

## Algorithm Derivation

proc $\exp (x, n) \equiv$
$\operatorname{var}\langle L:=\langle \rangle\rangle:$
while $n \neq 0$ do
if even? $(n)$ then $x:=x * x ; n:=n / 2$; while $n \neq 0 \wedge$ even? $(n)$ do
if even? $(n)$ then $x:=x * x ; n:=n / 2$
else $n:=n-1 ; L \stackrel{\text { push }}{\leftrightarrows} x$ fi od;
else $n:=n-1 ; L \stackrel{\text { push }}{\leftrightarrows} x$ fi od;
$y:=1$;
while $L \neq\langle \rangle$ do $x \stackrel{\mathrm{pop}}{\leftarrow} L ; y:=x * y$ od.

## Algorithm Derivation

Simplify:
proc $\exp (x, n) \equiv$
$\operatorname{var}\langle L:=\langle \rangle\rangle:$
while $n \neq 0$ do
if even? $(n)$ then while even? $(n)$ do $x:=x * x ; n:=n / 2$ od else $n:=n-1 ; L \stackrel{\text { push }}{\leftrightarrows} x \mathbf{f i}$ od;
$y:=1$;

Unroll a step after the inner while loop:

## Algorithm Derivation

proc $\exp (x, n) \equiv$ $\operatorname{var}\langle L:=\langle \rangle\rangle:$
while $n \neq 0$ do
if even? $(n)$ then while even? $(n)$ do $x:=x * x ; n:=n / 2$ od;

$$
\begin{aligned}
& L \stackrel{\text { push }}{\rightleftarrows} x ; n:=n-1 \\
& \text { else } L \stackrel{\text { push }}{\rightleftarrows} x ; n:=n-1 \mathbf{f i} \text { od; }
\end{aligned}
$$

$$
y:=1
$$

while $L \neq\langle \rangle$ do $x \stackrel{\mathrm{pop}}{\longleftarrow} L ; y:=x * y$ od.
Separate common code out of the if statement. The test is now redundant, since the inner while loop is equivalent to skip when $n$ is odd:

## Algorithm Derivation

proc $\exp (x, n) \equiv$

$$
\operatorname{var}\langle L:=\langle \rangle\rangle:
$$

while $n \neq 0$ do
while even? $(n)$ do $x:=x * x ; n:=n / 2$ od;
$n:=n-1 ; L \stackrel{\text { push }}{\longleftarrow} x$ od;
$y:=1$;
while $L \neq\langle \rangle$ do $x \stackrel{\mathrm{pop}}{\longleftarrow} L ; y:=x * y$ od.
If we move the assignment $y:=1$ to the front, then we can merge the bodies of the two while loops.

Note: The order of execution of the statements in the second while loop is reversed.

## Algorithm Derivation

proc $\exp (x, n) \equiv$

$$
\operatorname{var}\langle L:=\langle \rangle\rangle:
$$

$$
y:=1
$$

while $n \neq 0$ do
while even? $(n)$ do $x:=x * x ; n:=n / 2$ od;
$n:=n-1 ; L \stackrel{\text { push }}{\rightleftarrows} x$;
$x \stackrel{\text { pop }}{\rightleftarrows} L ; y:=x * y$ od.
Local variable $L$ is now redundant, since $L \stackrel{\text { push }}{\leftrightarrows} x ; L \stackrel{\text { pop }}{\leftrightarrows} x \approx$ skip: proc $\exp (x, n) \equiv$
$y:=1 ;$
while $n \neq 0$ do
while even? $(n)$ do $x:=x * x ; n:=n / 2$ od;
$n:=n-1 ; y:=x * y$ od.

## Classes of Transformations

- Simplify
- Move
- Delete
- Join
- Reorder/Separate
- Rewrite
- Use/Apply
- Abstraction
- Refinement


## Classes of Transformations

- Simplify: The selected item is transformed into simpler code
- Eg: Simplify, Delete_Comments, Fix_Assembler, Reduce_Loop, Flag_Removal, Syntactic_Slice


## Classes of Transformations

- Simplify: The selected item is transformed into simpler code
- Eg: Simplify, Delete_Comments, Fix_Assembler, Reduce_Loop, Flag_Removal, Syntactic_Slice
- Move: The selected item is moved (and remains selected)
- Eg: Move_To_Left, Move_To_Right, Take_Out_Of_Loop


## Classes of Transformations

- Simplify: The selected item is transformed into simpler code
- Eg: Simplify, Delete_Comments, Fix_Assembler, Reduce_Loop, Flag_Removal, Syntactic_Slice
- Move: The selected item is moved (and remains selected)
- Eg: Move_To_Left, Move_To_Right, Take_Out_Of_Loop
- Delete: The selected item is deleted, or parts of the item are deleted
- Eg: Delete_Item, Delete_All_Assertions, Delete_All_Redundant, Delete_All_Skips


## Classes of Transformations

- Join: Items are absorbed into or combined with the selected item, or the selected item is merged into some other item
- Eg: Absorb_Left, Absorb_Right, Merge_Left, Merge_Right, Expand_Forward, Join_All_Cases


## Classes of Transformations

- Join: Items are absorbed into or combined with the selected item, or the selected item is merged into some other item
- Eg: Absorb_Left, Absorb_Right, Merge_Left, Merge_Right, Expand_Forward, Join_All_Cases
- Reorder/Separate: The order of components in the selected item is changed, or code is taken out of the item
- Eg: Reverse_Order, Separate_Exit_Code, Separate_Left, Separate_Right


## Classes of Transformations

- Join: Items are absorbed into or combined with the selected item, or the selected item is merged into some other item
- Eg: Absorb_Left, Absorb_Right, Merge_Left, Merge_Right, Expand_Forward, Join_All_Cases
- Reorder/Separate: The order of components in the selected item is changed, or code is taken out of the item
- Eg: Reverse_Order, Separate_Exit_Code, Separate_Left, Separate_Right
- Rewrite: The selected item is transformed in some way, with surrounding code unchanged.
- Eg: Collapse_Action_System, Else_If_To_Elsif, Elsif_To_Else_If, Floop_To_While, Combine_Wheres, Replace_With_Value, While_To_Floop, Double_To_Single_Loop


## Classes of Transformations

- Use/Apply: The selected item (eg an assertion) is used to transform later code. For example, the fact that an assertion appears at this point is used to simplify subsequent tests
- Eg: Apply_To_Right, Delete_What_Follows, Use_Assertion


## Classes of Transformations

- Use/Apply: The selected item (eg an assertion) is used to transform later code. For example, the fact that an assertion appears at this point is used to simplify subsequent tests
- Eg: Apply_To_Right, Delete_What_Follows, Use_Assertion
- Abstraction: This transformation is informally an abstraction operation: eg replacing a statement by an equivalent specification statement
- Eg: Prog_to_Spec, Raise_Abstraction


## Classes of Transformations

- Use/Apply: The selected item (eg an assertion) is used to transform later code. For example, the fact that an assertion appears at this point is used to simplify subsequent tests
- Eg: Apply_To_Right, Delete_What_Follows, Use_Assertion
- Abstraction: This transformation is informally an abstraction operation: eg replacing a statement by an equivalent specification statement
- Eg: Prog_to_Spec, Raise_Abstraction
- Refinement: This transformation is informally a refinement operation: eg refining a specification statement into an equivalent statement
- Eg: Refine_Spec

