Formal Transformations and WSL Part Two

Martin Ward

Reader in Software Engineering

martin@gkc.org.uk

Software Technology Research Lab De Montfort University

A *Syntactic Transformation* changes the syntax of the program but preserves the exact sequence of operations carried out by the program. Many restructuring transformations are purely syntactic.

A *Syntactic Transformation* changes the syntax of the program but preserves the exact sequence of operations carried out by the program. Many restructuring transformations are purely syntactic.

A Semantic Transformation may change the sequence of operations carried out by the program, but preserves the final state.

A *Syntactic Transformation* changes the syntax of the program but preserves the exact sequence of operations carried out by the program. Many restructuring transformations are purely syntactic.

A Semantic Transformation may change the sequence of operations carried out by the program, but preserves the final state.

A syntactic transformation preserves the operational semantics, so these transformations are also called *Operational Transformations*.

A *Syntactic Transformation* changes the syntax of the program but preserves the exact sequence of operations carried out by the program. Many restructuring transformations are purely syntactic.

A Semantic Transformation may change the sequence of operations carried out by the program, but preserves the final state.

A syntactic transformation preserves the operational semantics, so these transformations are also called *Operational Transformations*.

A semantic transformation preserves the denotational semantics.

A Syntactic Transformation

For any condition (formula) **B** and any statements S_1 , S_2 and S_3 :

% if B then S_1 else S_2 fi; S_3

is equivalent to:

if B then S_1 ; S_3 else S_2 ; S_3 fi

A Syntactic Transformation

For any condition (formula) **B** and any statements S_1 , S_2 and S_3 :

if B then S_1 else S_2 fi; S_3

is equivalent to:

if B then S_1 ; S_3 else S_2 ; S_3 fi

In FermaT this result can be produced by applying Absorb_Right or Expand_Forwards on the if statement, or Merge_Left on ${\bf S}_3$

Another Example

If \mathbf{S}_3 does not modify any of the variables in \mathbf{B} then:

is equivalent to:

if B then S_3 ; S_2 else S_3 ; S_1 fi

Another Example

If \mathbf{S}_3 does not modify any of the variables in \mathbf{B} then:

 S_3 ; if B then S_1 else S_2 fi; S_3

is equivalent to:

if B then S_3 ; S_2 else S_3 ; S_1 fi

In FermaT this result can be produced by applying Absorb_Left on the **if** statement, or Merge_Right on S_3

Splitting A Tautology

For any statement **S** and any condition **B**:

S $\,\approx\,$ if B then S else S fi

Adding Assertions:

if B then S_1 else S_2 fi

is equivalent to:

if B then {B}; S_1 else { $\neg B$ }; S_2 fi

Splitting A Tautology

For any statement **S** and any condition **B**:

S $\,\approx\,$ if B then S else S fi

Adding Assertions:

if B then S_1 else S_2 fi

is equivalent to:

```
if B then {B}; S_1 else {\neg B}; S_2 fi
```

Assertions can be introduced and propagated through the program.

Adding Assertions

For any statement **S** and any condition **B**:

while B do S od

is equivalent to:

while B do $\{B\}$; S od; $\{\neg B\}$

A Semantic Transformation

Assignment Merging: (Merge_Left and Merge_Right on assignments)

 $x := 2 * x; \ x := x + 1$

is equivalent to:

$$x := 2 * x + 1$$

Another example:

$$y := n * x$$

is equivalent to:

$$n := n - 1; \ y := (n + 1) * x; \ n := n + 1$$

if n = 0 then x := 1else x := x + 1 fi; x := 2 * x

if
$$n = 0$$
 then $x := 1$
else $x := x + 1$ fi;
 $x := 2 * x$

Expand the **if** statement:

if n = 0 then x := 1; x := 2 * xelse x := x + 1; x := 2 * x fi

if n = 0 then x := 1else x := x + 1 fi; x := 2 * x

Expand the **if** statement:

if n = 0 then x := 1; x := 2 * xelse x := x + 1; x := 2 * x fi

Merge the assignments:

```
 \label{eq:starsest} \begin{array}{l} \text{if} \ n=0 \ \text{then} \ x:=2 \\ \text{else} \ x:=2*(x+1) \ \text{fi} \end{array} \end{array}
```

Expanding a Call

In an action system, any **call** can be replaced by a copy of the body of the action called:

actions A_1 : $A_1 \equiv \mathbf{S}_1$ end ... $A_1 \equiv \dots \boxed{\mathsf{call} A_j} \dots \text{ end}$... $A_n \equiv \mathbf{S}_n$ end endactions

Expanding a Call

In an action system, any **call** can be replaced by a copy of the body of the action called:

actions A_1 : $A_1 \equiv \mathbf{S}_1$ end ... $A_1 \equiv \dots \boxed{\mathbf{S}_j} \dots$ end ... $A_n \equiv \mathbf{S}_n$ end endactions

Expanding a Call

In an action system, any **call** can be replaced by a copy of the body of the action called:

actions A_1 : $A_1 \equiv \mathbf{S}_1$ end ... $A_1 \equiv \dots \boxed{\mathbf{S}_j} \dots$ end ... $A_n \equiv \mathbf{S}_n$ end endactions

If there are no other calls to A_j , then the action can be deleted

Suppose we have this code in a *regular* action system: **if B then S**₁; **call** A **else S**₂ **fi**; **call** A

Suppose we have this code in a *regular* action system:

- if B then S_1 ; call A
 - else S_2 fi;
- call A
- Expand the if:
- if B then S_1 ; call A; call A else S_2 ; call A fi

Suppose we have this code in a *regular* action system: **if B then S**₁; **call** A **else S**₂ **fi**; **call** AExpand the **if**:

if B then S_1 ; call A; call A else S_2 ; call A fi

Delete after the first call:

if B then S_1 ; call A

else S_2 ; call A fi

Suppose we have this code in a regular action system:
if B then S₁; call A
 else S₂ fi;
call A
Expand the if:
if B then S₁; call A; call A
 else S₂; call A fi

Delete after the first call:

if B then S_1 ; call A else S_2 ; call A fi

Separate:

if B then \boldsymbol{S}_1

else S_2 fi;

call A

Example: if n = 0 then x := 1; call Aelse y := 2 fi; call A

Example: if n = 0 then x := 1; call Aelse y := 2 fi; call ABecomes: if n = 0 then x := 1else y := 2 fi; call A

The first call A has been deleted.

Forward Expansion: if x = 1 then if y = 1 then z := 1 else z := 2 fi else z := 3 fi; if z = 1 then p := q fi

is equivalent to:

```
if x = 1 then if y = 1 then z := 1 else z := 2 fi;
if z = 1 then p := q fi
else z := 3;
if z = 1 then p := q fi fi
```

Absorb Right: if x = 1 then if y = 1 then z := 1 else z := 2 fi else z := 3 fi; if z = 1 then p := q fi

is equivalent to:

```
if x = 1 then if y = 1 then z := 1;

if z = 1 then p := q fi

else z := 21;

if z = 1 then p := q fi fi;

else z := 3;

if z = 1 then p := q fi fi
```

This transformation is also called Merge Left!

Absorb Left into a loop, before:

do do if i > n then exit(2) fi; i := i + 1;if A[i] = v then exit(1) fi od; last := i; count := count + 1;if count > limit then exit(1) fi od; if count > limit then PRINT(last) fi

Absorb Left into a loop, after:

```
do do if i > n then if count > limit then PRINT(last); exit(2)
else exit(2) fi fi;
i := i + 1;
if A[i] = v then exit(1) fi od;
last := i;
count := count + 1;
if count > limit then if count > limit then PRINT(last); exit(1)
else exit(1) fi fi od;
```

do Read_A_Record(file, record);
 if end_of_file?(file) then exit(1) fi;
 Process_Record(record) od

do Read_A_Record(file, record);
 if end_of_file?(file) then exit(1) fi;
 Process_Record(record) od

Is equivalent to:

Read_A_Record(file, record);

do if end_of_file?(file) then exit(1) fi;

Process_Record(record);
Read_A_Record(file, record) od

do Read_A_Record(file, record);
 if end_of_file?(file) then exit(1) fi;
 Process_Record(record) od

Is equivalent to:

 ${\sf Read_A_Record}({\sf file}, {\sf record});$

do if end_of_file?(file) then exit(1) fi;

Process_Record(record);
Read_A_Record(file, record) od

Which is equivalent to:

Read_A_Record(file, record);

while $\neg end_of_file?(file)$ do

Process_Record(record);

 $\mathsf{Read}_\mathsf{A}_\mathsf{Record}(\mathsf{file},\mathsf{record}) \ \textbf{od}$

In general:

 $\text{do } \textbf{S}_1; \ \textbf{S}_2 \ \text{od}$

Is equivalent to:

 $\boldsymbol{\mathsf{S}}_1; \text{ do } \boldsymbol{\mathsf{S}}_2; \ \boldsymbol{\mathsf{S}}_1 \ \text{ od }$

provided \mathbf{S}_1 is a *proper sequence* (It has no **exit** statements which can leave an enclosing loop)

More Generally:

do $\textbf{S}_1;~\textbf{S}_2$ od

Is equivalent to:

do S_1 ; do S_2 ; S_1 od +1 od

where the +1 will increment the **exit** statements which terminate **do S**₂; **S**₁ **od** so that they terminate the new outer loop.

Loop inversion can be used to merge two copies of a statement into one, for example:

simplifies to:

do GET(DDIN **var** WREC);

if end_of_file?(DDIN) then exit(1) fi; WORKP := WREC.NUM; TOTAL := TOTAL + WORKP od;
A program with repeated statements:

do ...;

```
if end_of_file(DDIN)
```

```
then exit(1) fi;
```

```
PUT_FIXED(RDSOUT, WPRT var result_code, os);
```

```
fill(WPRT[1]  var WPRT[2..80])  od;
```

```
PUT_FIXED(RDSOUT, WPRT var result_code, os);
```

```
fill(WPRT[1]  var WPRT[2..80])
```

```
Absorb into the loop:
```

```
do ...;
if end_of_file(DDIN)
    then PUT_FIXED(RDSOUT, WPRT var result_code, os);
        fill(WPRT[1] var WPRT[2..80]);
        exit(1) fi;
    PUT_FIXED(RDSOUT, WPRT var result_code, os);
    fill(WPRT[1] var WPRT[2..80]) od;
```

Absorb into the **if** statement:

```
do ...;
if end_of_file(DDIN)
then PUT_FIXED(RDSOUT, WPRT var result_code, os);
fill(WPRT[1] var WPRT[2..80]);
exit(1)
else PUT_FIXED(RDSOUT, WPRT var result_code, os);
fill(WPRT[1] var WPRT[2..80]) fi od;
```

Separate Left:

```
do ...;
   PUT_FIXED(RDSOUT, WPRT var result_code, os);
   fill(WPRT[1] var WPRT[2..80]);
   if end_of_file(DDIN)
      then exit(1) od;
```

Here, there are two copies of S_2 which we want to merge: if B_1 then S_1 ; S_2 elsif B_2 then S_2 else S_3 fi

Here, there are two copies of S_2 which we want to merge: if B_1 then S_1 ; S_2 elsif B_2 then S_2 else S_3 fi The result is: if $B_1 \lor B_2$ then if B_1 then S_1 fi;

```
S_2
else S_3 fi
```

An Example

```
if end_of_file?(DDIN)
   then F_LAB140 := 1; call LAB170 fi;
if WLAST ≠ WREC.WORD
   then call LAB170 fi
Absorb:
```

```
if end_of_file?(DDIN)
  then F_LAB140 := 1; call LAB170
elsif WLAST ≠ WREC.WORD
  then call LAB170 fi
Join Cases:
```

```
if end_of_file?(DDIN) ∨ WLAST ≠ WREC.WORD
    then if end_of_file?(DDIN)
        then F_LAB140 := 1 fi;
        call LAB170 fi
```

The General Induction Rule

If **S** is any statement with bounded nondeterminacy, and **S**' is another statement such that

$$\Delta \vdash \mathbf{S}^n \leq \mathbf{S}'$$

for all $n < \omega$, then:

 $\Delta \vdash \mathbf{S} \leq \mathbf{S}'$

Here, "bounded nondeterminacy" means that in each specification statement there is a finite number of possible values for the assigned variables.

Loop Merging

If **S** is any statement and **B**₁ and **B**₂ are any formulae such that $B_1 \Rightarrow B_2$ then:

while B_1 do S od;

while ${\boldsymbol{\mathsf{B}}}_2$ do ${\boldsymbol{\mathsf{S}}}$ od

is equivalent to:

while ${\boldsymbol{\mathsf{B}}}_2$ do ${\boldsymbol{\mathsf{S}}}$ od

General Recursion Removal

Suppose we have a recursive procedure whose body is a regular action system in the following form:

proc $F(x) \equiv$ actions A_1 : $\dots A_i \equiv \mathbf{S}_i$. $\dots B_j \equiv \mathbf{S}_{j0}; F(g_{j1}(x)); \mathbf{S}_{j1}; F(g_{j2}(x));$ $\dots; F(g_{jn_j}(x)); \mathbf{S}_{jn_j}$.

... endactions.

where $\mathbf{S}_{j1}, \ldots, \mathbf{S}_{jn_j}$ preserve the value of x and no \mathbf{S} contains a call to F (i.e. all the calls to F are listed explicitly in the B_j actions) and the statements $\mathbf{S}_{j0}, \mathbf{S}_{j1}, \ldots, \mathbf{S}_{jn_j-1}$ contain no action calls.

General Recursion Removal

proc $F'(x) \equiv$ var $L := \langle \rangle, m := 0$: actions A_1 : $\ldots A_i \equiv \mathbf{S}_i[\text{call } \hat{F}/\text{call } Z].$ $\ldots B_i \equiv \mathbf{S}_{i0};$ $L := \langle \langle 0, g_{j1}(x) \rangle, \langle \langle j, 1 \rangle, x \rangle, \langle 0, g_{j2}(x) \rangle, \rangle$ $\ldots, \langle 0, g_{jn_j}(x) \rangle, \langle \langle j, n_j \rangle, x \rangle \rangle + L;$ call F. $\dots \hat{F} \equiv \mathbf{if} \ L = \langle \rangle$ then call Zelse $\langle m, x \rangle \xleftarrow{\text{pop}} L;$ if $m = 0 \rightarrow \text{call } A_1$ $\Box \ldots \Box m = \langle j, k \rangle$ $\rightarrow \mathbf{S}_{ik}[\mathsf{call}\ \hat{F}/\mathsf{call}\ Z]; \mathsf{call}\ \hat{F}$... fi fi. endactions end.

Suppose we have a statement \mathbf{S}' which we wish to transform into the recursive procedure ($\mu X.\mathbf{S}$). This is possible whenever:

Suppose we have a statement \mathbf{S}' which we wish to transform into the recursive procedure ($\mu X.\mathbf{S}$). This is possible whenever:

1. The statement \mathbf{S}' is refined by $\mathbf{S}[\mathbf{S}'/X]$. In other words, if we replace recursive calls in \mathbf{S} by copies of \mathbf{S}' then we get a refinement of \mathbf{S}' ; and

Suppose we have a statement \mathbf{S}' which we wish to transform into the recursive procedure ($\mu X.\mathbf{S}$). This is possible whenever:

- 1. The statement \mathbf{S}' is refined by $\mathbf{S}[\mathbf{S}'/X]$. In other words, if we replace recursive calls in \mathbf{S} by copies of \mathbf{S}' then we get a refinement of \mathbf{S}' ; and
- 2. We can find an expression **t** (called the *variant function*) whose value is reduced before each occurrence of **S**' in $\mathbf{S}[\mathbf{S}'/X]$.

Suppose we have a statement \mathbf{S}' which we wish to transform into the recursive procedure ($\mu X.\mathbf{S}$). This is possible whenever:

- 1. The statement \mathbf{S}' is refined by $\mathbf{S}[\mathbf{S}'/X]$. In other words, if we replace recursive calls in \mathbf{S} by copies of \mathbf{S}' then we get a refinement of \mathbf{S}' ; and
- 2. We can find an expression **t** (called the *variant function*) whose value is reduced before each occurrence of **S**' in $\mathbf{S}[\mathbf{S}'/X]$.

If both these conditions are satisfied, then:

 $\Delta \vdash \mathbf{S}' \leq (\mu X.\mathbf{S})$

1. Start with a specification: SPEC

- 1. Start with a specification: SPEC
- 2. Transform to a program containing copies of the specification:

SPEC \approx ... SPEC ... SPEC ... SPEC ...

- 1. Start with a specification: SPEC
- 2. Transform to a program containing copies of the specification:

SPEC \approx ... SPEC ... SPEC ... SPEC ...

3. Show that the variant expression is reduced before each copy:

SPEC $\approx \ldots \{ \mathbf{t} < t_0 \}$; SPEC $\ldots \{ \mathbf{t} < t_0 \}$; SPEC $\ldots \{ \mathbf{t} < t_0 \}$; SPEC \ldots

- 1. Start with a specification: SPEC
- 2. Transform to a program containing copies of the specification:

SPEC
$$\approx$$
 ... SPEC ... SPEC ... SPEC ...

3. Show that the variant expression is reduced before each copy:

SPEC $\approx \ldots \{ \mathbf{t} < t_0 \}$; SPEC $\ldots \{ \mathbf{t} < t_0 \}$; SPEC $\ldots \{ \mathbf{t} < t_0 \}$; SPEC $\ldots \{ \mathbf{t} < t_0 \}$; SPEC \ldots

4. Apply the Recursive Implementation transformation to get a recursive procedure:

SPEC
$$\approx (\mu X \dots \{ \mathbf{t} < t_0 \}; X \dots \{ \mathbf{t} < t_0 \}; X \dots \{ \mathbf{t} < t_0 \}; X \dots \}$$

- 1. Start with a specification: SPEC
- 2. Transform to a program containing copies of the specification:

SPEC
$$\approx$$
 ... SPEC ... SPEC ... SPEC ...

3. Show that the variant expression is reduced before each copy:

SPEC $\approx \ldots \{ \mathbf{t} < t_0 \}$; SPEC $\ldots \{ \mathbf{t} < t_0 \}$; SPEC $\ldots \{ \mathbf{t} < t_0 \}$; SPEC $\ldots \{ \mathbf{t} < t_0 \}$; SPEC \ldots

4. Apply the Recursive Implementation transformation to get a recursive procedure:

SPEC $\approx (\mu X \dots \{ \mathbf{t} < t_0 \}; X \dots \{ \mathbf{t} < t_0 \}; X \dots \{ \mathbf{t} < t_0 \}; X \dots \}$

5. If necessary, apply Recursion Removal to get an iterative procedure.

Suppose we want to develop a factorial program.

Suppose we want to develop a factorial program.

The specification is very simple.

Define SPEC to be the statement:

y := n!

where n is a non-negative integer.

Suppose we want to develop a factorial program.

The specification is very simple.

Define SPEC to be the statement:

y := n!

where n is a non-negative integer.

Transform this into an **if** statement:

if n = 0 then y := n! else y := n! fi

Suppose we want to develop a factorial program.

The specification is very simple.

Define SPEC to be the statement:

y := n!

where n is a non-negative integer.

Transform this into an **if** statement:

if n = 0 then y := n! else y := n! fi

When n = 0, we know that n! = 1, so:

if
$$n = 0$$
 then $y := 1$ else $y := n!$ fi

If n > 0 then n! = n.(n-1)!, so:

If n > 0 then n! = n.(n-1)!, so:

If n > 0 then n! = n.(n - 1)!, so:

$$y := n! \approx y := n.(n-1)!$$

 $\approx y := (n-1)!; \ y := n.y$
 $\approx n := n-1; \ y := n!; \ n := n+1; \ y := n.y$

The specification has been transformed as follows: SPEC \approx if n = 0then y := 1else n := n - 1; SPEC; n := n + 1; y := n.y fi

Note that n is reduced before the copy of SPEC on the right.

Apply the Recursive Implementation Theorem: SPEC \approx proc $F() \equiv$ if n = 0then y := 1else n := n - 1; F(); n := n + 1; y := n.y fi end

This is an executable implementation of SPEC.

```
Apply Recursion Removal:

SPEC \approx var \langle i := 0 \rangle:

while n \neq 0 do

i := i + 1; n := n - 1 od;

y := 1;

while i > 0 do

i := i - 1; n; = n + 1; y := n.y od end
```

(Here, i represents the number of recursive calls still pending.)

Simplify: SPEC \approx var $\langle i := n \rangle$: n := 0; y := 1;while i > 0 do i := i - 1; n; = n + 1; y := n.y od end

Simplify: SPEC \approx var $\langle i := n \rangle$: n := 0; y := 1;while i > 0 do i := i - 1; n; = n + 1; y := n.y od end Let j = n - i + 1 and simplify: SPEC $\approx y := 1;$ for j := 1 to n step 1 y := j.y od end

Simplify: SPEC \approx var $\langle i := n \rangle$: $n := 0; \ y := 1;$ while i > 0 do $i := i - 1; \ n; = n + 1; \ y := n.y$ od end Let j = n - i + 1 and simplify: SPEC $\approx y := 1;$ for j := 1 to n step 1 y := j.y od end

A long-winded process for such a simple specification.

Simplify: SPEC \approx var $\langle i := n \rangle$: $n := 0; \ y := 1;$ while i > 0 do $i := i - 1; \ n; = n + 1; \ y := n.y$ od end Let j = n - i + 1 and simplify: SPEC $\approx y := 1;$ for j := 1 to n step 1 y := j.y od end

A long-winded process for such a simple specification.

But the transformations apply to *any* recursive procedure!

Sorting Example

Specification of a sorting program SORT(a, b) is:

 $A[a..b] := A'[a..b].(\mathsf{sorted}(A'[a..b]) \land \mathsf{permutation_of}(A'[a..b], A[a..b]))$

If $a \ge b$ then A[a..b] is already sorted.

Otherwise, permute the elements of A so that there is an element A[p] such that:

$$A[a..p-1] \leqslant A[p] \leqslant A[p+1..b]$$

Define the specification partition as:

$$\begin{split} \langle A[a..b], p \rangle &:= \langle A'[a..b], p' \rangle. (a \leqslant p \leqslant b \\ & \land A'[a..p-1] \leqslant A'[p] \leqslant A'[p+1..b] \\ & \land \text{ permutation_of}(A'[a..b], A[a..b])) \end{split}$$

Sorting Example

Now SORT $(a, b) \approx$ var $\langle p := 0 \rangle$: if b > a then partition; SORT(a, p - 1); SORT(p + 1, b) fi

Apply Recursion Introduction to get the *quicksort* algorithm: **proc** qsort $(a, b) \equiv$ **var** $\langle p := 0 \rangle$: **if** b > a **then** partition; qsort(a, p - 1); qsort(p + 1, b) **fi**
Loop Unrolling

```
while B do
if B_1 then S_1
elsif ...
elsif B_i then S_i
...
```

```
else S_n fi od
```

```
Unroll one step of the loop:
```

```
while B do

if B_1 then S_1

elsif ...

elsif B_i then S_i; if B \land Q then if B_1 then ... fi fi

...
```

```
else S_n fi od
```

We can unroll simultaneously at multiple terminal positions.

Entire Loop Unrolling

```
while B do
if B_1 then S_1
elsif ...
elsif B_i then S_i
```

. . .

```
else S_n fi od
```

Unroll multiple loop steps:

```
while B do

if B_1 then S_1

elsif ...

elsif B_i then S_i; while B \land Q do if B_1 then ... fi od

...

else S_n fi od
```

We can unroll simultaneously at multiple terminal positions.

Entire Loop Unrolling

For example, let $\mathbf{Q} = \mathbf{B}_i$, and assume that the \mathbf{B}_i are disjoint:

```
while B do
```

```
if \mathbf{B}_1 then \mathbf{S}_1
```

elsif ...

elsif B_i then S_i

else S_n fi od

becomes:

. . .

```
while B do

if B_1 then S_1

elsif ...

elsif B_i then while B \land B_i do S_i od

...
```

else S_n fi od

Suppose we want to develop an integer exponentiation algorithm.

Suppose we want to develop an integer exponentiation algorithm. The specification is very simple:

$$\mathsf{EXP}(x,n) \ =_{\mathsf{DF}} \ y := x^n$$

where n is a non-negative integer.

Suppose we want to develop an integer exponentiation algorithm. The specification is very simple:

$$\mathsf{EXP}(x,n) \ =_{\mathsf{DF}} \ y := x^n$$

where n is a non-negative integer.

Suppose we want to develop an integer exponentiation algorithm. The specification is very simple:

$$\mathsf{EXP}(x,n) \ =_{\mathsf{DF}} \ y := x^n$$

where n is a non-negative integer.

1.
$$x^0 = 1$$
 for all *x*;

Suppose we want to develop an integer exponentiation algorithm. The specification is very simple:

$$\mathsf{EXP}(x,n) \ =_{\mathsf{DF}} \ y := x^n$$

where n is a non-negative integer.

1.
$$x^0 = 1$$
 for all *x*;

2.
$$x^{2n} = (x * x)^n$$
 and;

Suppose we want to develop an integer exponentiation algorithm. The specification is very simple:

$$\mathsf{EXP}(x,n) \ =_{\mathsf{DF}} \ y := x^n$$

where n is a non-negative integer.

1.
$$x^0 = 1$$
 for all *x*;

2.
$$x^{2n} = (x * x)^n$$
 and;

3.
$$x^{n+1} = x * x^n$$

Apply Splitting_A_Tautology and Insert_Assertions:

```
\begin{split} \mathsf{EXP}(x,n) &\approx \text{ if } n = 0 \text{ then } \{n = 0\}; \ \mathsf{EXP}(x,n) \\ & \text{ elsif even}?(x) \text{ then } \{n > 0 \land \mathsf{even}?(n)\}; \ \mathsf{EXP}(x,n) \\ & \text{ else } \{n > 0 \land \mathsf{odd}?(n)\}; \ \mathsf{EXP}(x,n) \text{ fi} \end{split}
```

Apply Splitting_A_Tautology and Insert_Assertions:

$$\begin{aligned} \mathsf{EXP}(x,n) &\approx \text{ if } n = 0 \text{ then } \{n = 0\}; \ \mathsf{EXP}(x,n) \\ & \text{ elsif even}?(x) \text{ then } \{n > 0 \land \mathsf{even}?(n)\}; \ \mathsf{EXP}(x,n) \\ & \text{ else } \{n > 0 \land \mathsf{odd}?(n)\}; \ \mathsf{EXP}(x,n) \text{ fi} \end{aligned}$$

```
Use the assertions to refine each copy of EXP(x, n):

if n = 0 then y := 1

elsif even?(n) then \{n > 0 \land even?(n)\};

EXP(x * x, n/2)

else \{n > 0 \land odd?(n)\};

EXP(x, n - 1); y := x * y fi
```

Apply Splitting_A_Tautology and Insert_Assertions:

```
\begin{split} \mathsf{EXP}(x,n) &\approx \text{ if } n = 0 \text{ then } \{n = 0\}; \ \mathsf{EXP}(x,n) \\ & \text{ elsif even}?(x) \text{ then } \{n > 0 \ \land \ \mathsf{even}?(n)\}; \ \mathsf{EXP}(x,n) \\ & \text{ else } \{n > 0 \ \land \ \mathsf{odd}?(n)\}; \ \mathsf{EXP}(x,n) \text{ fi} \end{split}
```

```
Use the assertions to refine each copy of EXP(x, n):

if n = 0 then y := 1

elsif even?(n) then \{n > 0 \land even?(n)\};

EXP(x * x, n/2)

else \{n > 0 \land odd?(n)\};

EXP(x, n - 1); y := x * y fi
```

This is the elaborated specification

Apply the Recursive Implementation Theorem: **proc** $\exp(x, n) \equiv$ **if** n = 0 **then** y := 1 **elsif** even?(n) **then** $\exp(x * x, n/2)$ **else** $\exp(x, n - 1); y := x * y$ **fi**.

This is now an executable, recursive implementation of the specification $\mathsf{EXP}(x,n)$

```
Replace parameter n by a global variable:

proc \exp(x, n) \equiv \exp(x).

proc \exp(x) \equiv

if n = 0 then y := 1

elsif even?(n) then n := n/2; \exp(x * x)

else n := n - 1; \exp(x); y := x * y fi.
```

Apply Recursion Removal to exp1:

```
\begin{array}{ll} \operatorname{proc}\, \exp\!1(x) &\equiv \\ \operatorname{var}\, \left\langle L := \left\langle \right\rangle \right\rangle : \\ \operatorname{actions}\, A : \\ A &\equiv \operatorname{if}\, n = 0 \, \operatorname{then}\, y := 1; \, \operatorname{call}\, \hat{F} \\ & \operatorname{elsif}\, \operatorname{even}?(n) \, \operatorname{then}\, n := n/2; \, x := x * x; \, \operatorname{call}\, A \\ & \operatorname{else}\, n := n-1; \, L \xleftarrow{\operatorname{push}} x; \, \operatorname{call}\, A \, \operatorname{fi.} \\ \hat{F} &\equiv \operatorname{if}\, L = \left\langle \right\rangle \, \operatorname{then}\, \operatorname{call}\, Z \\ & \operatorname{else}\, x \xleftarrow{\operatorname{pop}}\, L; \, y := x * y; \, \operatorname{call}\, \hat{F} \, \operatorname{fi.}\, \operatorname{endactions}\, \operatorname{end.} \end{array}
```

Restructure the regular action system:

```
\begin{array}{ll} \operatorname{proc}\,\exp(x,n) &\equiv \\ \operatorname{var}\,\left\langle L:=\left\langle \right\rangle \right\rangle: \\ & \operatorname{while}\,n \neq 0 \,\operatorname{do} \\ & \operatorname{if}\,\operatorname{even}?(n) \,\operatorname{then}\,x:=x*x; \,\,n:=n/2 \\ & \operatorname{else}\,n:=n-1; \,\,L \xleftarrow{\operatorname{push}}x \,\operatorname{fi}\,\operatorname{od}; \\ & y:=1; \\ & \operatorname{while}\,L\neq\left\langle \right\rangle \,\operatorname{do}\,x \xleftarrow{\operatorname{pop}}L; \,\,y:=x*y \,\operatorname{od}. \end{array}
```

Apply Entire Loop Unrolling after the assignment n := n/2 with the condition $n \neq 0 \land \text{even}?(n)$:

proc $\exp(x, n) \equiv$ var $\langle L := \langle \rangle \rangle$: while $n \neq 0$ do if even?(n) then x := x * x; n := n/2; while $n \neq 0 \land even?(n)$ do if even?(n) then x := x * x; n := n/2else n := n - 1; $L \stackrel{\text{push}}{\leftarrow} x$ fi od; y := 1; while $L \neq \langle \rangle$ do $x \stackrel{\text{pop}}{\leftarrow} L$; y := x * y od.

Simplify: **proc** $\exp(x, n) \equiv$ **var** $\langle L := \langle \rangle \rangle$: **while** $n \neq 0$ **do if** even?(n) **then while** even?(n) **do** x := x * x; n := n/2 **od else** $n := n - 1; L \xleftarrow{\text{push}} x$ **fi od**; y := 1;**while** $L \neq \langle \rangle$ **do** $x \xleftarrow{\text{pop}} L; y := x * y$ **od**.

Unroll a step after the inner **while** loop:

 $\begin{array}{ll} \operatorname{proc}\,\exp(x,n) &\equiv \\ \operatorname{var}\,\left\langle L := \left\langle \right\rangle \right\rangle: \\ & \operatorname{while}\,n \neq 0 \,\operatorname{do} \\ & \operatorname{if}\,\operatorname{even}?(n) \,\operatorname{then}\,\operatorname{while}\,\operatorname{even}?(n) \,\operatorname{do}\,x := x \ast x; \, n := n/2 \,\operatorname{od}; \\ & L \stackrel{\operatorname{push}}{\leftarrow} x; \, n := n-1 \\ & \operatorname{else}\,L \stackrel{\operatorname{push}}{\leftarrow} x; \, n := n-1 \,\operatorname{fi}\,\operatorname{od}; \\ & y := 1; \\ & \operatorname{while}\,L \neq \left\langle \right\rangle \,\operatorname{do}\,x \stackrel{\operatorname{pop}}{\leftarrow} L; \, y := x \ast y \,\operatorname{od}. \end{array}$

Separate common code out of the **if** statement. The test is now redundant, since the inner **while** loop is equivalent to **skip** when n is odd:

proc $\exp(x, n) \equiv$ var $\langle L := \langle \rangle \rangle$: while $n \neq 0$ do while even?(n) do x := x * x; n := n/2 od; n := n - 1; $L \stackrel{\text{push}}{\leftarrow} x$ od; y := 1; while $L \neq \langle \rangle$ do $x \stackrel{\text{pop}}{\leftarrow} L$; y := x * y od.

If we move the assignment y := 1 to the front, then we can merge the bodies of the two **while** loops.

Note: The order of execution of the statements in the second **while** loop is reversed.

proc $\exp(x, n) \equiv$ var $\langle L := \langle \rangle \rangle$: y := 1;while $n \neq 0$ do while even?(n) do x := x * x; n := n/2 od; $n := n - 1; L \stackrel{\text{push}}{\longleftarrow} x;$ $x \xleftarrow{\text{pop}} L; y := x * y \text{ od.}$ Local variable L is now redundant, since $L \stackrel{\text{push}}{\leftarrow} x$; $L \stackrel{\text{pop}}{\leftarrow} x \approx$ skip: **proc** $\exp(x, n) \equiv$ y := 1;

y .- 1, while $n \neq 0$ do while even?(n) do x := x * x; n := n/2 od; n := n - 1; y := x * y od.

- Simplify
- Move
- Delete
- 🍠 Join
- Reorder/Separate
- Rewrite
- Use/Apply
- Abstraction
- Refinement

Simplify: The selected item is transformed into simpler code

Eg: Simplify, Delete_Comments, Fix_Assembler, Reduce_Loop, Flag_Removal, Syntactic_Slice

Simplify: The selected item is transformed into simpler code

- Eg: Simplify, Delete_Comments, Fix_Assembler, Reduce_Loop, Flag_Removal, Syntactic_Slice
- Move: The selected item is moved (and remains selected)
 - Eg: Move_To_Left, Move_To_Right, Take_Out_Of_Loop

Simplify: The selected item is transformed into simpler code

- Eg: Simplify, Delete_Comments, Fix_Assembler, Reduce_Loop, Flag_Removal, Syntactic_Slice
- Move: The selected item is moved (and remains selected)
 - Eg: Move_To_Left, Move_To_Right, Take_Out_Of_Loop
- Delete: The selected item is deleted, or parts of the item are deleted
 - Eg: Delete_Item, Delete_All_Assertions, Delete_All_Redundant, Delete_All_Skips

- Join: Items are absorbed into or combined with the selected item, or the selected item is merged into some other item
 - Eg: Absorb_Left, Absorb_Right, Merge_Left, Merge_Right, Expand_Forward, Join_All_Cases

- Join: Items are absorbed into or combined with the selected item, or the selected item is merged into some other item
 - Eg: Absorb_Left, Absorb_Right, Merge_Left, Merge_Right, Expand_Forward, Join_All_Cases
- Reorder/Separate: The order of components in the selected item is changed, or code is taken out of the item
 - Eg: Reverse_Order, Separate_Exit_Code, Separate_Left, Separate_Right

- Join: Items are absorbed into or combined with the selected item, or the selected item is merged into some other item
 - Eg: Absorb_Left, Absorb_Right, Merge_Left, Merge_Right, Expand_Forward, Join_All_Cases
- Reorder/Separate: The order of components in the selected item is changed, or code is taken out of the item
 - Eg: Reverse_Order, Separate_Exit_Code, Separate_Left, Separate_Right
- Rewrite: The selected item is transformed in some way, with surrounding code unchanged.
 - Eg: Collapse_Action_System, Else_If_To_Elsif, Elsif_To_Else_If, Floop_To_While, Combine_Wheres, Replace_With_Value, While_To_Floop, Double_To_Single_Loop

- Use/Apply: The selected item (eg an assertion) is used to transform later code. For example, the fact that an assertion appears at this point is used to simplify subsequent tests
 - Eg: Apply_To_Right, Delete_What_Follows, Use_Assertion

- Use/Apply: The selected item (eg an assertion) is used to transform later code. For example, the fact that an assertion appears at this point is used to simplify subsequent tests
 - Eg: Apply_To_Right, Delete_What_Follows, Use_Assertion
- Abstraction: This transformation is informally an abstraction operation: eg replacing a statement by an equivalent specification statement
 - Eg: Prog_to_Spec, Raise_Abstraction

- Use/Apply: The selected item (eg an assertion) is used to transform later code. For example, the fact that an assertion appears at this point is used to simplify subsequent tests
 - Eg: Apply_To_Right, Delete_What_Follows, Use_Assertion
- Abstraction: This transformation is informally an abstraction operation: eg replacing a statement by an equivalent specification statement
 - Eg: Prog_to_Spec, Raise_Abstraction
- Refinement: This transformation is informally a refinement operation: eg refining a specification statement into an equivalent statement
 - Eg: Refine_Spec