
Program Comprehension

Martin Ward

Reader in Software Engineering

martin@gkc.org.uk

Software Technology Research Lab

De Montfort University



Reverse Engineering Definition

The process of analysing a subject system:

1. to identify the system’s components and their

interrelationships and

2. create representations of the system in another form or at a

higher level of abstraction

— Chikofsky and Cross, “Reverse Engineering and Design

Recovery: A Taxonomy”, IEEE Software, January 1990

l



Program Comprehension

Program Comprehension is the process of developing mental

models of a software systems intended architecture, meaning,

and behavior

During maintenance and evolution, software engineers spend

60-90% of their time on program understanding

Programmers have to become part historian, part detective,

and part clairvoyant



Goals of Program Comprehension

Program Comprehension aims to recover high-level information

about a system including:



Goals of Program Comprehension

Program Comprehension aims to recover high-level information

about a system including:

Its structure (components and their interrelationships)



Goals of Program Comprehension

Program Comprehension aims to recover high-level information

about a system including:

Its structure (components and their interrelationships)

Its functionality (what operations are performed on what

components)



Goals of Program Comprehension

Program Comprehension aims to recover high-level information

about a system including:

Its structure (components and their interrelationships)

Its functionality (what operations are performed on what

components)

Its dynamic behavior (how input is transformed to output)



Goals of Program Comprehension

Program Comprehension aims to recover high-level information

about a system including:

Its structure (components and their interrelationships)

Its functionality (what operations are performed on what

components)

Its dynamic behavior (how input is transformed to output)

Its rationale (how was the design process and what decisions

have been taken)



Goals of Program Comprehension

Program Comprehension aims to recover high-level information

about a system including:

Its structure (components and their interrelationships)

Its functionality (what operations are performed on what

components)

Its dynamic behavior (how input is transformed to output)

Its rationale (how was the design process and what decisions

have been taken)

Its construction, modules, documentation, and test suites



Goals of Program Comprehension

Program Comprehension aims to recover high-level information

about a system including:

Its structure (components and their interrelationships)

Its functionality (what operations are performed on what

components)

Its dynamic behavior (how input is transformed to output)

Its rationale (how was the design process and what decisions

have been taken)

Its construction, modules, documentation, and test suites

Program Comprehension does not change the subject system, nor

create a new system. It is the process of examining and

understanding the object system.



Static and Dynamic Software Models

A program can be represented by static and dynamic models:



Static and Dynamic Software Models

A program can be represented by static and dynamic models:

The static model represents the general relationship between

several components of the software while the dynamic model shows

the actual interplay between components during execution.



Static and Dynamic Software Models

A program can be represented by static and dynamic models:

The static model represents the general relationship between

several components of the software while the dynamic model shows

the actual interplay between components during execution.

Static information is extracted directly from the source code. This

information can be visualised by well known diagrams like call

graph, flow chart, dependency graph, class diagram, etc.



Static and Dynamic Software Models

A program can be represented by static and dynamic models:

The static model represents the general relationship between

several components of the software while the dynamic model shows

the actual interplay between components during execution.

Static information is extracted directly from the source code. This

information can be visualised by well known diagrams like call

graph, flow chart, dependency graph, class diagram, etc.

Dynamic information can be gathered by running the target

software under a debugger. The visualisation here is more difficult

since the amount of extracted information is huge and the

important information must be isolated.



Static and Dynamic Software Models

A static model is any collection of information which can be

discovered by examining the source code of the system and

related documents.



Static and Dynamic Software Models

A static model is any collection of information which can be

discovered by examining the source code of the system and

related documents.

A dynamic model is any collection of information which can

be discovered by executing the software and examining input

data, output data, execution traces and any other data

produced by the program execution.



Static and Dynamic Software Models

A static model is any collection of information which can be

discovered by examining the source code of the system and

related documents.

A dynamic model is any collection of information which can

be discovered by executing the software and examining input

data, output data, execution traces and any other data

produced by the program execution.

Static models are usually valid for all possible executions of

the program.



Static and Dynamic Software Models

A static model is any collection of information which can be

discovered by examining the source code of the system and

related documents.

A dynamic model is any collection of information which can

be discovered by executing the software and examining input

data, output data, execution traces and any other data

produced by the program execution.

Static models are usually valid for all possible executions of

the program.

Dynamic models may only be valid for the particular input, or

set of inputs, which were used to generate the data.



Abstracting Software Models

Using formal methods an extracted software model can be

abstracted into a formal system.



Abstracting Software Models

Using formal methods an extracted software model can be

abstracted into a formal system.

Formal Methods are mathematically rigorous techniques and tools

for the specification, design and verification of software and

hardware systems



Abstracting Software Models

Using formal methods an extracted software model can be

abstracted into a formal system.

Formal Methods are mathematically rigorous techniques and tools

for the specification, design and verification of software and

hardware systems

Formal Methods can produce specifications which might be used:



Abstracting Software Models

Using formal methods an extracted software model can be

abstracted into a formal system.

Formal Methods are mathematically rigorous techniques and tools

for the specification, design and verification of software and

hardware systems

Formal Methods can produce specifications which might be used:

To produce a precise system documentation as the basis for a

conventional system development.



Abstracting Software Models

Using formal methods an extracted software model can be

abstracted into a formal system.

Formal Methods are mathematically rigorous techniques and tools

for the specification, design and verification of software and

hardware systems

Formal Methods can produce specifications which might be used:

To produce a precise system documentation as the basis for a

conventional system development.

To verify the correctness of the system.



Abstracting Software Models

Using formal methods an extracted software model can be

abstracted into a formal system.

Formal Methods are mathematically rigorous techniques and tools

for the specification, design and verification of software and

hardware systems

Formal Methods can produce specifications which might be used:

To produce a precise system documentation as the basis for a

conventional system development.

To verify the correctness of the system.

To derive a new system through correctness preserving

refinement rules. Such a system has a high degree of

certainty and trustworthiness.



Issues of Program Comprehension

Some things have to be considered before carrying out program

comprehension:



Issues of Program Comprehension

Some things have to be considered before carrying out program

comprehension:

The code of a legacy system is in many cases very specific

and not generic



Issues of Program Comprehension

Some things have to be considered before carrying out program

comprehension:

The code of a legacy system is in many cases very specific

and not generic

The code may include errors



Issues of Program Comprehension

Some things have to be considered before carrying out program

comprehension:

The code of a legacy system is in many cases very specific

and not generic

The code may include errors

The result of the reverse engineering process might include

new errors



Issues of Program Comprehension

Some things have to be considered before carrying out program

comprehension:

The code of a legacy system is in many cases very specific

and not generic

The code may include errors

The result of the reverse engineering process might include

new errors

The process is expensive and a good result can not be

guaranteed



Issues of Program Comprehension

Some things have to be considered before carrying out program

comprehension:

The code of a legacy system is in many cases very specific

and not generic

The code may include errors

The result of the reverse engineering process might include

new errors

The process is expensive and a good result can not be

guaranteed

There are no real standards for reverse engineering



Issues of Program Comprehension

Some things have to be considered before carrying out program

comprehension:

The code of a legacy system is in many cases very specific

and not generic

The code may include errors

The result of the reverse engineering process might include

new errors

The process is expensive and a good result can not be

guaranteed

There are no real standards for reverse engineering

Formal methods can mitigate some of these problems



Different Kinds of Models

A mental model describes the maintainer’s mental

representation of the program to be understood



Different Kinds of Models

A mental model describes the maintainer’s mental

representation of the program to be understood

The programmer’s knowledge base is their accumulated

knowledge before they attempt to understand the code



Different Kinds of Models

A mental model describes the maintainer’s mental

representation of the program to be understood

The programmer’s knowledge base is their accumulated

knowledge before they attempt to understand the code

A cognitive model describes the processes and information

structures used to form the mental model



Different Kinds of Models

A mental model describes the maintainer’s mental

representation of the program to be understood

The programmer’s knowledge base is their accumulated

knowledge before they attempt to understand the code

A cognitive model describes the processes and information

structures used to form the mental model

The assimilation process continuously updates and augments

the programmer’s mental model.



Program Understanding Theories

Top-down approach: start with the most abstract problem

domain concepts and attempt to map them onto the source

code

Brooks 83

Bottom-up approach: focus on understanding the behaviour

of small pieces of code and later combining this information

into larger abstractions

Pennington 87

Opportunistic approach: the programmer/maintainer switches

between Top-down and Bottom-up during the comprehension

process. The switching depends on the initial knowledge.

Letovsky 86



Top-down Approach

Tries to reconstruct the mappings from the problem domain

into the programming domain that were made during the

development of the system:

Programmer creates assumptions or hypotheses based on

both acquired or existing knowledge to arrive at an

understanding

Hypotheses are checked against the source code to prove

their validity

Beacons are places in the source code that prove or falsify

a hypotheses

An example of a high level hypothesis is: “This program

produces invoices.” This hypothesis maps the task domain

(invoicing), to the programming domain (the program itself).



Bottom-up Approach

Typically used when unfamiliar with code/application

Look for recognizable idioms within the code

E.g. the “swap” idiom

t := x; x := y; y := t;

E.g. the “accumulation” pattern:

while F (i) do

total := total+A[i];

i := i+ 1 od;

Combine recognized units to understand ever larger sections

of code: eg recognise that the “swap” is part of a “sort”

process



Opportunistic Approach

Programmers frequently change between top-down and

bottom-up approaches

E.g. Begin with top-down, gain an overview of the functions

of the program

Then selectively apply bottom-up strategies when nearing

code level

Use the information derived from bottom-up analysis to verify

the hypotheses resulting from top-down reading



From Studying Real Programmers

The maintenance programmer needs answer to seven basic

questions [Erdos/Sneed]:

1. Where is a particular subroutine or procedure invoked?

2. What are the arguments and results of a particular function?

3. How does the flow of control reach a particular location?

4. Where is a particular variable set, used or queried?

5. Where is a particular variable declared?

6. Where is a particular data object accessed, i.e. created, read,

updated, or deleted?

7. What are the inputs and outputs of a particular module?



Program Comprehension and Tools

Source and binary code is often the only source of

information for understanding programs

Reverse engineering describes the extraction of high level

design information from code

Collecting information:

Parsers, debuggers, profilers, event recorders

Abstracting information:

Making understandable, high level models

Navigating information:

Tools such as interactive slicers, graph displays, editors



Program Comprehension Overview



Source Code vs. Binaries

Source Code

Better form of representation

Not always available

Result depends on the parser (the parser’s view may be

different from the compilers!)

Binaries

Faster information collection (eg Java byte code)

Legality issues

Loss of information: variable names, comments, structure



Usage of Binaries

(Reverse engineering, decompilation, disassembly)

Recovery of lost source code

Migration of applications to a new hardware platform

Translation of code written in obsolete languages not

supported by current compiler tools

Determination of the existence of viruses or malicious code in

the program

Recovery of someone else’s source code (to determine an

algorithm for example)



Static Models

Finding out the static structure, architecture:

Code (using a parser)

Documents

Interviews

Static slicing

Visualisation:

Class diagrams

Call graphs

Control flow graphs

Data flow graphs

Program dependence graphs



Dynamic Models

Finding out the run-time behaviour of software

Debugger

Profiler

Source code instrumentation

Execution and Testing: profiling, testing and observing

program behaviour

Dynamic slicing

Visualisation:

Scenarios (sequence diagrams)

State diagrams

Hierarchical graphs



Abstracting the Static Model

Abstracting the high-level components, eg subsystems

Automatic abstraction:

Using the structure of the language

Using measurements

Manual abstraction



Abstracting the Dynamic Model

Finding behaviour patterns, repeating sequences of events

E.g. initialising a dialogue

Using static abstractions

E.g. representing interactions between high-level software

elements in sequence diagrams

Dynamic information may be combined with the high-level

static model to produce more detail



Analysing the Static Model

Syntax, type checking, interfaces

Control flow and data flow analysis

Structure analysis

Static slicing

Size, complexity and other metrics

Navigation



Analysing the Dynamic Model

Dynamic slicing

Object creation and related dependencies

Dynamic binding, polymorphism

Method calls

Looking for dead code/reachability analysis

Memory management

Performance and related problems

Concurrency



Program Slicing

Idea: when attempting to understand a program we often

need to know how variables got their values at specific points



Program Slicing

Idea: when attempting to understand a program we often

need to know how variables got their values at specific points

Informal Definition: A program slice is a subset of a program

which contains all the statements which can potentially affect

the values of certain variables of interest at given positions in

the program (E.g. we are interested in the value of variable x

on line 232. The sliced program contains everything needed

to compute x at that point)



Program Slicing

Idea: when attempting to understand a program we often

need to know how variables got their values at specific points

Informal Definition: A program slice is a subset of a program

which contains all the statements which can potentially affect

the values of certain variables of interest at given positions in

the program (E.g. we are interested in the value of variable x

on line 232. The sliced program contains everything needed

to compute x at that point)

More Formal Definition: A program slice S is a reduced,

executable program obtained from a program P by removing

statements, such that S replicates part of the behaviour of P

[Weiser 1984]



Program Slicing

Idea: when attempting to understand a program we often

need to know how variables got their values at specific points

Informal Definition: A program slice is a subset of a program

which contains all the statements which can potentially affect

the values of certain variables of interest at given positions in

the program (E.g. we are interested in the value of variable x

on line 232. The sliced program contains everything needed

to compute x at that point)

More Formal Definition: A program slice S is a reduced,

executable program obtained from a program P by removing

statements, such that S replicates part of the behaviour of P

[Weiser 1984]

This would now be called an executable backward static slice



Classification of Slices

Direction

Backward Forward

Source of information

Static (source code) Dynamic (runtime)

Type of result

Executable (correct syntax) Closure (syntax unimportant)

Procedure calls

Interprocedural Intraprocedural

Syntax Preserving

Syntactic Semantic



Program Slicing

Slicing allows one to find semantically meaningful

decompositions of programs, where the decompositions

consist of elements that are not textually contiguous

Program slicing is a technique for visualising dependencies

and restricting attention to just the components of a program

relevant to evaluation of certain expressions.



Program Slicing

Classes of slicing techniques:

Static slicing

Dynamic slicing

Amorphous slicing

Conditioned slicing

Semantic slicing

Conditioned Semantic slicing etc. . .



Program Slicing Applications

Program understanding

Program comprehension

Maintenance

Testing

Debugging

Complexity measurement: functional cohesion

Program integration

Assist parallelisation

Comparison of program versions



Slicing Example

sum := 0;

prod := 1;

i := 1;

while i 6 n do

sum := sum+A[i];

prod := prod ∗A[i];

i := i+ 1 od;

PRINT(“sum = ”, sum);

PRINT(“prod = ”, prod)

Slice with respect to the variable prod on the last line



Slicing Example

sum := 0;

prod := 1;

i := 1;

while i 6 n do

sum := sum+A[i];

prod := prod ∗A[i];

i := i+ 1 od;

PRINT(“sum = ”, sum);

PRINT(“prod = ”, prod)

Slice with respect to the variable prod on the last line

These statements can be deleted



Slicing Example

prod := 1;

i := 1;

while i 6 n do

prod := prod ∗A[i];

i := i+ 1 od;

PRINT(“prod = ”, prod)

Slice with respect to the variable prod on the last line

The resultant slice



Computing a Slice

Slices can be constructed by tracking control dependencies and

data dependencies.

Control Dependency If the result of a condition at one place can

directly affecy whether another statement will subsequently be

executed or not, then there is a control dependency. To be

precise: if there is one edge from the control node where there is

a path to the statement, and another edge where every path to

the end node misses the statement, then the statement is control

dependent on the condition.

Data Dependency If there is a control flow path from an

assignment to a variabe in one place to a reference in another

place, with no intervening assignment to the variable, then there

is a data dependency.



Slicing Example

For example:

while p?(i) do

if q?(c)

then x := f ;

c := g fi;

i := h(i) od

Which statements do not contribute to the final value of x?



Slicing Example

while p?(i) do

if q?(c)

then x := f ;

c := g fi;

i := h(i) od

Some of the control and data dependencies:

x := f
ctrl
−→ q?(c)

q?(c)
data
−→ c := g

x := f
ctrl
−→ p?(i)

q?(i)
ctrl
−→ p?(i)

p?(i)
data
−→ i := h(i)

It seems that everything is needed! ?



Slicing Example

Tracking all data and control dependencies will always produce a

valid slice, but not necessarily a minimal slice.

What is the minimal slice?

while p?(i) do

if q?(c)

then x := f ;

c := g fi;

i := h(i) od



Slicing Example

Tracking all data and control dependencies will always produce a

valid slice, but not necessarily a minimal slice.

What is the minimal slice?

while p?(i) do

if q?(c)

then x := f ;

c := g fi;

i := h(i) od

The assignment to c is redundant: once x has been assigned the

value f , it does not matter whether it is assigned again, or how

many times!



Slicing Example

A semantic slice gives a more concise and understandable result:

while p?(i) do

if q?(c)

then x := f ;

c := g fi;

i := h(i) od



Slicing Example

A semantic slice gives a more concise and understandable result:

while p?(i) do

if q?(c)

then x := f ;

c := g fi;

i := h(i) od

Becomes:

if p?(i) ∧ q?(c) then x := f fi



Software Architecture Recovery

Aims at presenting existing software systems at the more abstract,

architectural level. An architecture reconstruction process consists

normally of 4 steps:

1. Definition of architecturally significant concepts.

2. Data gathering, in which a model of a system is built in terms

of the concepts defined in step 1.

3. Abstraction, in which the model is enriched with (domain

specific) abstractions that lead to a higher view of the system.

4. Presentation of the reconstructed architecture in a series of

formats, such as graphs, hyperlinks, UML diagrams, and

message sequence charts, taking the required architectural

view (logical, process, physical, development) into account.



Example Dali Tool

Semiautomatic technique

Extracting different views (static, dynamic)

Putting extracted views to repository

Combining views to more complex views



Example Dali Tool



Architecture Recovery Framework



Reading by Stepwise Abstraction

This technique was developed by Mills for identifying defects in

code documents. During code reading, the reader looks at critical

subroutines in the program and determines their function. Once

the function is determined then the function, as a behavior, can

be used to describe that block of code (abstraction). The reader

works through the program hierarchy in this manner assembling

abstractions to describe higher level components until the

function of the program is determined. This is a bottom-up

strategy requiring the understanding of code, and requiring the

reader to map the code to suggested problem domain activity.

Basili & Selby (1987) investigated the effectiveness and efficiency

of this technique in a professional environment. Their results show

that the technique detects more software faults, and has a higher

fault detection rate than functional or structural testing.



Active Design Reviews

Parnas and Weiss (1985) suggested a modification of the Fagan

inspection process. Reviewers are given a checklist which

attempted to focus their attention on particular issues within the

document being reviewed. Different reviewers were given different

checklists, therefore each reviewer would concentrate on different

aspects of the document. Hence, when the review team

assembled members of the group brought differing perspectives

which were then integrated during the course of the review.



Defect-based Reading

Defect-based reading (Porter95) was developed as a strategy for

identifying defects in requirements documents. Defects were

categorized. A set of questions was developed for each defect

class that would help characterize the class. The questions guides

the reader by providing a set of steps (called a scenario) that

should be performed during reading. The reader tries to answer

the questions presented by the scenario while reading.



Perspective-based Reading

Perspective-based reading (Laitenberger95) is similar to

defect-based reading in that different readers are given different

tasks. In perspective-based reading readers have different

roles—tester, designer and user—that guide the activity. These

roles have associated with them operational descriptions (called

scenarios). A scenario consists of a set of questions, much like

that found in defect-based reading, and activities that guides the

reading of the document. Perspective-based reading has been

applied to the inspection of requirements documents.



Data Reverse Engineering

Data reverse engineering concentrates on the data aspect of the

system that is the organization. It is a collection of methods and

tools to help an organization determine the structure, function,

and meaning of its data. — Elliot Chikofsky “Data Reverse

Engineering: Slaying the Legacy Dragon”

Data reverse engineering (DRE) grew up through the database

community and the software engineering community.

Over the years, the research and publications in DRE by both

communities has been mainly in three areas :

1. DRE translation and methodologies algorithms

2. DRE tools

3. The DRE of specific applications and experiences in DRE



Data Reverse Engineering

DRE was very prevalent during the Y2K work that was done at

the end of the millennium. Currently, DRE is assisting in various

areas:

Analysis of legacy systems

Evaluation of packages

Test planning

Extracting of business rules

Kathi Hogshead Davis and Peter H. Aiken, “Data Reverse

Engineering: A Historical Survey” Proceedings of the Seventh

Working Conference on Reverse Engineering (WCRE), 2000



Data Reverse Engineering

For example: relational data bases (RDBs):

flat/hierarchical files ⇒ RDBs

RDBs ⇒ OO model



Data Reverse Engineering

Physical Schema:

Data

Schema catalogue

Code

Documentation

Analyse to: Logical Schema:

Domain expert

Developer

Reengineer

Abstract to: Conceptual Schema:

Reengineer



Data Reverse Engineering

Enables:

Extension

Migration

Wrapping

Integration

Distribution

. . .



Reverse Engineering of OO Software

The process of reverse engineering Object-Oriented systems has

two main aspects:

Identifying the object structure

G. Canfora and A.Cimitile, “An Improved Algorithm for

Identifying Objects in Code”, Software Practice and

Experience 26 (1), 25–48, January 1996

Identifying design patterns and frameworks which form the

architecture.

Santanu Paul and Atul Prakash, A Framework for Source

Code Search Using Program Patterns”, IEEE Transactions on

Software Engineering 20 (6), 463–474, June 1994



Reverse Engineering of OO Software

Dynamic behavior may be hard to detect from static model

(creating and deleting objects, garbage collection, dynamic

binding,...)

This emphasises dynamic modelling

Pure object languages support encapsulation (classes,

packages,.. .)

Helps in static reverse engineering

Increases usability of metrics

OO paradigm supports the use of design patterns

Reusability of applications (pattern recognition)


	Reverse Engineering Definition
	Program Comprehension
	Goals of Program Comprehension
	Goals of Program Comprehension
	Goals of Program Comprehension
	Goals of Program Comprehension
	Goals of Program Comprehension
	Goals of Program Comprehension
	Goals of Program Comprehension

	Static and Dynamic Software Models
	Static and Dynamic Software Models
	Static and Dynamic Software Models
	Static and Dynamic Software Models

	Static and Dynamic Software Models
	Static and Dynamic Software Models
	Static and Dynamic Software Models
	Static and Dynamic Software Models

	Abstracting Software Models
	Abstracting Software Models
	Abstracting Software Models
	Abstracting Software Models
	Abstracting Software Models
	Abstracting Software Models

	Issues of Program Comprehension
	Issues of Program Comprehension
	Issues of Program Comprehension
	Issues of Program Comprehension
	Issues of Program Comprehension
	Issues of Program Comprehension
	Issues of Program Comprehension

	Different Kinds of Models
	Different Kinds of Models
	Different Kinds of Models
	Different Kinds of Models

	Program Understanding Theories
	Top-down Approach
	Bottom-up Approach
	Opportunistic Approach
	From Studying Real Programmers
	Program Comprehension and Tools
	Program Comprehension Overview
	Source Code vs. Binaries
	Usage of Binaries
	Static Models
	Dynamic Models
	Abstracting the Static Model
	Abstracting the Dynamic Model
	Analysing the Static Model
	Analysing the Dynamic Model
	Program Slicing
	Program Slicing
	Program Slicing
	Program Slicing

	Classification of Slices
	Program Slicing
	Program Slicing
	Program Slicing Applications
	Slicing Example
	Slicing Example
	Slicing Example

	Computing a Slice
	Slicing Example
	Slicing Example
	Slicing Example
	Slicing Example

	Slicing Example
	Slicing Example

	Software Architecture Recovery
	Example Dali Tool
	Example Dali Tool
	Architecture Recovery Framework
	Reading by Stepwise Abstraction
	Active Design Reviews
	Defect-based Reading
	Perspective-based Reading
	Data Reverse Engineering
	Data Reverse Engineering
	Data Reverse Engineering
	Data Reverse Engineering
	Data Reverse Engineering
	Reverse Engineering of OO Software
	Reverse Engineering of OO Software

