
) CHAPTER SIX

) Functions and Side-Effects

duction

In this Chapter we extend our system to deal with functions and expressions with side
effects. So far all our expressions and conditions have been terms and formulae in infinitary logic,
which by their nature cannot invoke side effects; this has enabled us to keep our transformations
simple. To allow side effects we introduce the new notation of “expression brackets”, and .
These allow us to include statements as part of an expression, for example the folloing are valid
expressions:

x:=x+1; x
x:=x+1; x−1
x>0 then x else −x fi

The first is equivalent to x++ in C, an expression which returns the value x+1 and has the side effect
of incrementing x. The second is equivalent to ++x which returns the value of x before the
incrementation. The third expression gives the same result as |x| the absolute-value function.
We define our functions in terms of procedures. A function returns a value, so within a

statement a function call can be used instead of a term. So a function call can replace a term in a
formula, or it can return a boolean value and replace a subformula of a formula. We can even have
function calls as parameters to other functions and procedures.

Defn: If S is a statement and t a term then the “generalised expression”:
S;t

is interpreted by replacing any assignment a:= S;t by S;a:=t.
The brackets and are called “expression brackets”.

The final component of a generalised expression can be a condiional expression of the
form: if B then t1 else t2 fi where t1 abd t2 are expressions. In this case it is interpreted as he
generalised expression if B then r:=t1 else r:=t2 fi; r where r is a new (local) variable. Hence
the “conditional assignment”: a:=if B then t1 else t2 fi may be interpreted as: beg r: if B then
r:=t1 else r:=t2 fi; a:=r end which may be transformed to the equivalent: if B then a:=t1 else a:=t2

fi. The expression may be used within a formula, for example:
if S1;t1 6 S2;t2 then S′ fi

becomes:
beg r1,r2: S1; r1:=t1; S2; r2:=t2; if r1 6r2 then S′ fi end.

1

which is equivalent to:
beg r: S1; r:=t1; S2; if r6t2 then S′ fi end.

If also t1 is invariant over S2 then both variables can be eliminated:
S1; S2; if t1 6t2 then S′ fi.

We may also have generalised boolean expressions: To define these we add the constants
tt and ff which represent distinct values. (ie we include tt and ff in our set of constants and tt6=ff in
our set ∆ of formulae). Then if S is a statement and Q a formula we represent a statement of the
form:

if S;Q then S1 else S2 fi by S; if Q then S1 else S2 fi
and a loop of the form:

while S;Q do S′ od by the loop: do S; if ¬Q then exit fi; S′ od
which may also be written as: S; while Q do S′; S od.

If we need to assign the result of a boolean expression to a (boolean) variable then we
assign one of the constants tt or ff to the variable according as the expression evaluates to true or
false. For example:

b:= S;Q becomes: S; if Q then b:=tt else b:=ff fi
Thus a statement of the form if b then S1 else S2 fi where b is a boolean variable becomes:

{b=tt ∨ b=ff}; if b=tt then S1 else S2 fi.

Note that expression brackets may be nested to any depth, for example:
a:= S1; b:=if S2;Q then S3; t1 else t2 fi; b.b

may be represented as:
S1; S2; if Q then S3; b:=t1 else b:=t2 fi; a:=b.b

Defn: Function calls: The definitional transformation of a function call will replace the function
call by a call to a procedure which assigns the value returned by the function to a variable. This
variable then replaces the function call in the expression. Several calls in one expression are replaced
by the same number of procedure calls and new variables. Boolean functions treated as functions
which return one of the values tt or ff (representing true and false). So a boolean function call is
replaced by a formula

(

b=tt
)

where b is a new local variable. The statement in which the function
call appeared is preceded by a procedure call which sets b to tt or ff, depending on the result of the
corresponding boolean function.
For example, the function call:

a:=F(x)+F(y) . where
funct F(x) ≡ if B then t1 else t2 fi.

2

is interpreted:
var r1,r2;
F(x); r1:=r; F(y); r2:=r;
a:=r1+r2. where
proc F(x) ≡ if B then r:=t1 else r:=t2 fi.

The statement:
a:= while B(x) do x:=F(x) od; x+c
funct B(x) ≡ S; x>y .
funct F(x) ≡ if B then t1 else t2 fi.

is interpreted:
do B(x); if r=ff then exit fi;
F(x); x:=r od;

a:=x+c. where
proc B(x) ≡ S; if x>y then r:=tt else r:=ff fi,
proc F(x) ≡ if B then r:=t1 else r:=t2 fi.

More formally we define:

Defn: Generalised expressions and generalised conditions are defined as follows: If S is any
statement (which may include generalised expressions and generalised conditions) and
E1, E2,. . . are generalised expressions and
B1, B2,. . . are generalised conditions and
t is a term including variables x1,. . . ,xn (n>0) and
Q is a formula including free variables x1,. . . ,xn (n>0) and
Q1, Q2,. . . are formulae and
F(x1,...,xn) is a function and
B(x1,...,xn) is a Boolean function (see below) then:

(i) t[E1,...,En/x1,...,xn]
(ii) S;E1

(iii) if B1 then E1 else E2 fi
(iv) if B1 → E1 ⊓⊔ ... ⊓⊔ Bn → Sn fi
(v) F(E1,...,En)

are all generalised expressions and:

3

(i) Q[E1,...,En/x1,...,xn]
(ii) Q[B1,...,Bn/Q1,...,Qn]
(iii) S;B1

(iv) B(E1,...,En)
are all generalised conditions. (Note that setting n=0 shows that any term is also a generalised
expression and any formula is also a generalised condition).

Defn: Functions and Boolean Functions:
A function F(x) is defined by:

funct F(x) ≡ E. where E is a generalised expression.
A Boolean function B(x) is defined by:

funct B(x) ≡ B. where B is a generalised condition.

Interpretation of Generalised Expressions and Generalised Conditions

These are interpreted by “interpretation functions” IE, IC and IS where:
If E is a generalised expression and r a variable which does not occur in E then IE(E,r) is a

statement which sets r to the value which results from evaluating the expression.
If B is a generalised condition and r a variable which does not occur in B then IC(B,r) is a

statement which sets r to one of the special values tt or ff according to whether B evaluates to true
or false.

If S is any statement which includes generalised expressions (in place of terms) and/or
generalised conditions (in place of formulae) then IS(S) is the statement formed by replacing each
assignment a:=E (where E is a generalised expression) by IE(E,a) and replacing each statement
which uses a generalised condition by an equivalent one which uses IC to evaluate the condition.
The definitions are:

Defn: IE(E,r) is defined by:
(i) IE(t[E1,...,En/x1,...,xn], r) =DF

var x1,x2,...,xn

IE(E1,x1); IE(E2,x2); ... IE(En,xn);
r:=t.

where the xi are local variables which may have to be implemented using stacks.
(So for any ordinary term t: IE(t,r) = r:=t)
(ii) IE(S;E1 , r) =DF IS(S); IE(E1,r)

4

(iii) IE(if B1 then E1 else E2 fi, r) =DF

IC(B1,r); if r=tt then IE(E1,r) else IE(E2,r) fi
(iv) IE(if B1 → E1 ⊓⊔ ... ⊓⊔ Bn → Sn fi, r) =DF

var x1,x2,...,xn

IC(B1,x1); IC(B2,x2); ... IC(Bn,xn);
if x1 =tt → IE(E1,r) ⊓⊔ ... ⊓⊔ xn =tt → IE(En,r) fi.

(v) IE(F(E1,...,En), r) =DF

var x1,x2,...,xn

IE(E1,x1); IE(E2,x2); ... IE(En,xn);
Fr(x1,...,xn).

where Fr is the “procedural equivalent” of the function F which sets the global variable r to the
result. ie if F is defined funct F(x) ≡ E. then Fr is defined as:
proc Fr(x) ≡ IE(E,r).

Note, however, that if there are occurrences of F(x) which are interpreted with different
variables then we must choose one variable r for Fr and for the other variables define:
IE(F(E1,...,En), s) =DF var x1,x2,...,xn

IE(E1,x1); IE(E2,x2); ... IE(En,xn);
Fr(x1,...,xn); s:=r.

IC(B,r) is defined by:
(i) IC(Q[E1,...,En/x1,...,xn], r) =DF

var x1,x2,...,xn

IE(E1,x1); IE(E2,x2); ... IE(En,xn);
if Q then r:=tt else r:=ff fi.

(So for any ordinary formula Q: IC(Q,r) = if Q then r:=tt else r:=ff fi)
(ii) IC(Q[B1,...,Bn/Q1,...,Qn], r) =DF

var x1,x2,...,xn

IC(B1,x1); IC(B2,x2); ... IC(Bn,xn);
if Q then r:=tt else r:=ff fi.

(iii) IC(S;B1 , r) =DF IS(S); IC(B1,r)
(iv) IC(B(E1,...,En/x1,...,xn), r) =DF

var x1,x2,...,xn

IC(B1,x1); IC(B2,x2); ... IC(Bn,xn);
Br(x1,...,xn).

where Br is the “procedural equivalent” of the boolean function B which sets the global variable r to
the result. ie if B is defined funct B(x) ≡ B. then Br is defined:

5

proc Br(x) ≡ IC(B,r).

IS(S) is defined by: (where r is a new variable)
(i) IS(S) =DF S

if S contains no generalised expression or generalised condition.
(ii) IS(a:=E) =DF IE(E,a)
(ii) IS(if B then S1 else S2 fi) =DF

IE(B,r); if r=tt then IS(S1) else IS(S2) fi
(iii) IS(if B1 → S1 ⊓⊔ ... ⊓⊔ Bn → Sn fi) =DF

var x1,x2,...,xn

IC(B1,x1); IC(B2,x2); ... IC(Bn,xn);
if x1 =tt → IS(S1) ⊓⊔ ... ⊓⊔ xn =tt → IS(Sn) fi.

(iv) IS(while B do S od) =DF

do IC(B,r); if r=ff then exit fi;
IS(S) od

(v) IS(do B1 → S1 ⊓⊔ ... ⊓⊔ Bn → Sn fi) =DF

do var x1,x2,...,xn

IC(B1,x1); IC(B2,x2); ... IC(Bn,xn);
if ¬

(

x1 =tt ∨ ... ∨ xn =tt
)

then exit fi;
if x1 =tt → IS(S1) ⊓⊔ ... ⊓⊔ xn =tt → IS(Sn) fi. od

All other statements are defined by interpreting their components.

Transformations of Generalised Expressions

These can be derived from similar transformations of procedures and other statements,
for example unfolding (replacing a function call by a copy of the body) and folding. They should be
used with care because not all transformations of statements will still be valid when some of their
terms are replaced by function calls. For example:

a:=t+t (where t is a term) may be replaced by a:=2.t but:
a:=G()+G() where
funct G() ≡
if true → 0
⊓⊔ true → 1 fi

is only refined by a:=2.G() and not equivalent to it. This is because a:=G()+G() is equivalent to:

6

var r1,r2: G; r1:=r; G; r2:=r; a:=r1+r2. where
proc G ≡
if true → r:=0
⊓⊔ true → r:=1 fi

while a:=2.G() is equivalent to:
var r1: G; r1:=r; a:=2.r1. where
proc G ≡
if true → r:=0
⊓⊔ true → r:=1 fi

The first case is equivalent to: a:=a′.
(

a′ =0 ∨ a′ =1 ∨ a′ =2
)

and this may be refined by

(but is not equivalent to): a:=a′.
(

a′ =0 ∨ a′ =2
)

, which is equivalent to the second case.
[Bauer & Wossner 80] use the notation (0 ⊓⊔ 1) for such a “nondeterministic expression”.

The generalised expression (E1 ⊓⊔ ... ⊓⊔ En), which represents in our notation if true→ E1 ⊓⊔ ... ⊓⊔ true→ En

fi, will (nondeterministically) take one of the values E1,. . . ,En.
To apply one of the transformations we have derived so far to a statement containing

generalised expressions and generalised conditions first transform the statement to an ordinary one
(using the interpretation functions IS, IC and IE), then apply the transformation (making sure that it
still applies), and then apply the interpretation functions “in reverse” (if possible) to get a
transformed statement containing generalised expressions and generalised conditions.

Tail-Recursion

We have the following transformation for tail-recursive procedures:
proc F(x) ≡ if B then S1; F(g(x))

else S2 fi.
≈
proc F(x) ≡ while B do S1; x:=g(x) od; S2.

Note that S1 and S2 may contain further calls of F(x).

This follows from replacing the parameter by a stack:
proc F(x) ≡ S:=〈〉; F. where
F ≡

(

if B then S1 x:=g(x); F fi; S2

)

[S←x; x:=h(x); F; x←S / F(h(x))].

Note that we don’t require F to preserve the value of x so x does not have to be stacked
and restored for the final call F(g(x)) which has therefore been replaced by x:=g(x);F.

7

By the tail-recursion result of the previous Chapter this becomes:
proc F(x) ≡ S:=〈〉; F. where
F ≡

(

while B do S1 x:=g(x) od; S2

)

[S←x; x:=h(x); F; x←S / F(h(x))].
Replace stack S by a parameter again and copy in to get:

proc F(x) ≡ while B do S1; x:=g(x) od; S2.

There is a similar result for functions:
funct F(x) ≡ if B then S1; F(g(x))

else E fi.
where E is any general expression. This is equivalent to:

funct F(x) ≡ while B do S1; x:=g(x) od; E .
The proof follows from transforming the functions to procedures.

Example: Fibonacci Numbers:

The sequence of Fibonacci numbers: 0,1,1,2,3,5,8,13,21,34,...Fn,... is defined by:
F1 = 0
F2 = 1
Fn+2 = Fn+1+Fn for n>0

A function to evaluate Fn given n is:
funct fib(n) ≡ Fn.

To transform this into a program which is not defined in terms of Fn we first take out the
cases n=1 and n=2:
funct fib(n) ≡ if n=1 then {n=1}; Fn

elsf n=2 then {n=2}; Fn

else {n>2}; Fn fi.

Now {n=1}; Fn ≈ {n=1}; 0
and {n=2}; Fn ≈ {n=2}; 1 from the definition of Fn, while:
{n>2}; Fn ≈ {n>2}; Fn−1+Fn−2

We get:

8

funct fib(n) ≡ if n=1
then 0

elsf n=2 then 1
else Fn−1+Fn−2 fi.

Finally we can replace Fn−1+Fn−2 by fib(n−1)+fib(n−2) since 16n−1<n and 16n−
2<n (this follows from the theorem on recursive implementation of a specification). The result is:
funct fib(n) ≡ if n=1

then 0
elsf n=2 then 1

else fib(n−1)+fib(n−2) fi.

Each call of this function with argument >2 causes two further calls, it is easy to see
therefore that fib(n) results in 2n−1−1 function calls (for n>1) so the function as it stands is
hopelessly inefficient. Noting however that fib(n) is defined in terms of fib(n−1) and fib(n−2) (for
n>2) prompts us to try the definition:

funct g(n) ≡ 〈fib(n), fib(n−1)〉.
for n>1.
Hence g(2)= 〈fib(2), fib(1)〉 = 〈1,0〉.

Unfolding g(n+1) (for n>1) gives:
g(n+1)= 〈fib(n+1), fib(n)〉

= 〈fib(n)+fib(n−1), fib(n)〉 since n+1>2.

This is defined in terms of fib(n) and fib(n−1) so we can write it in terms of g(n):
= 〈g(n)[1]+g(n)[2], g(n)[1]〉
= beg 〈a,b〉:=g(n); 〈a+b, a〉 end

Hence we can prove (by the recursive implementation theorem again) that g is equivalent to:
funct g(n) ≡ if n=2 then 〈1,0〉

else beg 〈a,b〉:=g(n−1); 〈a+b, a〉 end fi.

A procedural version of this, where r:=g(n) ≈ G(n) is:

proc G(n) ≡ if n=2 then r:=〈1,0〉
else beg 〈a,b〉:=g(n−1); r:=〈a+b, a〉 end fi.

9

Our recursion-removal techniques can now be applied to get:
proc G(n) ≡ n0:=n; r:=〈1,0〉;

for n:=2 to n0 step 1 do r:=〈r[1]+r[2], r[1]〉 od.

Hence we can write fib in the linear form: (replacing r by a and b where r= 〈a,b〉):
funct fib(n) ≡
if n=0 then 0
elsf n=1 then 1

else a:=1; b:=0;
for i:=2 to n step 1 do
〈a,b〉:=〈a+b,a〉 od;

a fi.

However, there is a still more efficient way of computing Fibonacci numbers. From the
original definition it is possible to prove the equations (for j>2):
F2j = F2

j+F2
j+1

F2j+1 =
(

2.Fj+Fj+1

)

.Fj+1 and F2j−1 =
(

2.Fj+1−Fj

)

.Fj

Dijkstra gives proofs for these equations in [Dijkstra 79] where he challenges “proponents
of program transformations” to transform the linear form of the Fibonacci numbers program into a
logarithmic form which the equations suggest should be possible. We have already shown that the
linear form given above is equivalent to the specification funct fib(n) ≡ Fn. We shall now take up
Dijkstra’s challenge and transform this into a logarithmic order function using transformation we
have already developed.

From funct fib(n) ≡ Fn. we can use the proof of the equations above to transform this directly to:
funct fib(n) ≡

x:=Fn.
(

∀j∈ N.
((

n=2.j ⇒
(

Fn =F2
j+F2

j+1

))

∧
(

n=2.j+1 ⇒
(

Fn =
(

2.Fj+Fj+1

)

.Fj+1

)))

;
x .

From this we can derive the following recursive function (using the theorem for the
recursive implementation of specifications):

10

funct fib2(j) ≡ if j=1 then 0
elsf j=2 then 1

elsf even(j) then fib2(j/2)2+fib2(j/2+1)2

else
(

2.fib2((j−1)/2)+fib2((j−1)/2+1)
)

.fib2((j−1)/2+1) fi.

Define the expression 〈a÷b〉 by: 〈a÷b〉 =DF 〈(a div b), (a mod b)〉.
Then if we let 〈q,r〉 = 〈j÷2〉 we have:

even(j) ⇐⇒
(

q=j/2 ∧ r=0
)

and odd(j) ⇐⇒
(

q=(j−1)/2 ∧ r=1
)

.
So we can write fib2 as:
funct fib2(j) ≡ if j=1 then 0

elsf j=2 then 1
else 〈q,r〉:=〈j÷2〉;

if r=0
then fib2(q)2+fib2(q+1)2

else
(

2.fib2(q)+fib2(q+1)
)

.fib2(q+1) fi fi.

Here we see that fib2(j) (for j>2) is defined in terms of fib2(q) and fib2(q+1). This
suggests that we define a new function G2(j) to be (for j>2):

funct G2(j) ≡ 〈fib2(j), fib2(j−1)〉.
Taking out the cases j=2 and j=3 gives:
funct G2(j) ≡ if j=2 then 〈1,0〉

elsf j=3 then 〈1,1〉
else {j>2}; 〈fib2(j),fib2(j−1)〉 fi.

Unfolding the calls to fib2 gives:
funct G2(j) ≡ if j=2 then 〈1,0〉

elsf j=3 then 〈1,1〉
else 〈 〈q,r〉:=〈j÷2〉;

if r=0
then fib2(q)2+fib2(q+1)2

else
(

2.fib2(q)+fib2(q+1)
)

.fib2(q+1) fi ,
〈q,r〉:=〈(j−1)÷2〉;
if r=0
then fib2(q)2+fib2(q+1)2

else
(

2.fib2(q)+fib2(q+1)
)

.fib2(q+1) fi 〉 fi.

11

If 〈q,r〉 = 〈j÷2〉 and 〈q1,r1〉 = 〈(j−1)÷2〉 then
r=0 ⇒

(

q1 =q ∧ r1 =1
)

and r=1 ⇒
(

q1 =q+1 ∧ r1 =0
)

.
So we may replace the outer else clause by:
〈q,r〉:=〈j÷2〉; if r=0

then 〈fib2(q)2+fib2(q+1)2,
(

2.fib2(q)+fib2(q+1)
)

.fib2(q+1)〉

else 〈
(

2.fib2(q−1)+fib2(q)
)

.fib2(q), fib2(q)2+fib2(q+1)2〉 fi

fib2(q+1) = fib(q+1) = fib(q)+fib(q−1) = fib2(q)+fib2(q−1)
since fib and fib2 are equivalent.

Now G2(j) is defined in terms of fib2(q) and fib2(q−1) (for j>3) so we can write it in terms of
G2(q):
funct G2(j) ≡ if j=2 then 〈1,0〉

elsf j=3 then 〈1,1〉
else 〈q,r〉:=〈j÷2〉;
〈a,b〉:=G2(q);

if r=0 then 〈a2+
(

a+b
)2

,
(

2.a+a+b
)

.
(

a+b
)

〉

else 〈
(

2.b+a
)

.a, b2+a2〉 fi fi.
Since the argument is halved for each recursive call G2(j) only takes log(j) time.

To transform this to an iterative version we will use the standard method (a protocol
stack). Convert to the procedural equivalent which sets 〈a,b〉 to G2(j):
proc H(j) ≡
if j=2 then a:=1; b:=0
elsf j=3 then a:=1; b:=1

else 〈q,r〉:=〈j÷2〉;
H(q);

if r=0 then 〈a,b〉:=〈a2+
(

a+b
)2

,
(

3.a+b
)

.
(

a+b
)

〉

else 〈a,b〉:=〈
(

2.b+a
)

.a, b2+a2〉 fi fi.

Note that the only variable whose value is required after the inner call is r and this has the
value 0 or 1 so it can be stored on a stack which may be implemented by the binary representation of
an integer s. If we initialise s to 1 then we can tell that the stack is empty (when s=1) which is true
only for the outermost call. We get the iterative form:

12

proc H(j) ≡ s:=1;
while j>3 do 〈j,r〉:=〈j÷2〉; s:=2.s+r od;
a:=1; b:=j−2;
while s>1 do
〈s,r〉:=〈s÷2〉;

if r=0 then 〈a,b〉:=〈a2+
(

a+b
)2

,
(

3.a+b
)

.
(

a+b
)

〉

else 〈a,b〉:=〈
(

2.b+a
)

.a, b2+a2〉 fi od.

The first loop sets j to the most significant two bits of the binary representation of its
original value (so j=2 or 3 after the first loop). The other bits are reversed, a 1 is added in front and
the result put into s. The second loop reads the bits of s from the least significant upwards up to but
not including the initial 1.

This leads to the following iterative function for fib(n) in time O(log(n)):
funct fib(n) ≡
if n=1 then 0

else s:=1;
while n>3 do 〈n,r〉:=〈n÷2〉; s:=2.s+r od;

a:=1; b:=n−2;
while s>1 do
〈s,r〉:=〈s÷2〉;

if r=0 then 〈a,b〉:=〈a2+
(

a+b
)2

,
(

3.a+b
)

.
(

a+b
)

〉

else 〈a,b〉:=〈
(

2.b+a
)

.a, b2+a2〉 fi od;
a fi.

Although this seems at first sight to be a long sequence of transformations to derive a
simple program, the transformations used will occur in many other problems. With practice several
of them can be applied in one step; in fact most of the transformation could be applied automatically
by a suitable programming system with a little guidance required from the programmer.

Example of Function Inversion

Consider the modulo function:
funct mod(a,b) ≡ ιx.

(

∃m. a=m.b+x ∧ 06x<b
)

.
where ιx.Q means “the unique x such that Q holds” ie:

r:=ιx.Q ≈ 〈r〉.〈〉.
(

Q[r/x] ∧ ∀x.
(

Q ⇒ x=r
))

13

From this we can derive:
funct mod(a,b) ≡ if a>2.b then mod(mod(a,2.b),b)

elsf a>b then mod(a−b,b)
else a fi.

We have 0 6 mod(a,2.b) < 2.b from the original definition, so unfolding the outer call
of mod in the first line of the second definition gives:
funct mod(a,b) ≡ if a>2.b then if mod(a,2.b)>b then mod(mod(a,2.b),b)

else mod(a,2.b) fi
elsf a>b then mod(a−b,b)

else a fi.

But b 6 mod(a,2.b) < 2.b
so 0 6 mod(a,2.b)−b < b
so we get:
funct mod(a,b) ≡ if a>2.b then if mod(a,2.b)>b then mod(a,2.b)−b

else mod(a,2.b) fi
elsf a>b then mod(a−b,b)

else a fi.
From function inversion we get:
funct mod(a,b) ≡

var r:=a, dd:=b;
while r>dd do r:=r; dd:=2.dd od;
var z:=r;

while 〈r,dd〉 6= 〈a,b〉 do dd:=dd/2;
z:= if z>dd then z−dd

else z fi od;
z .

This is simplified to:
funct mod(a,b) ≡

var r:=a, dd:=b;
while r>dd do dd:=2.dd od;
while dd6=b do dd:=dd/2;

if r>dd then r:=r−dd fi od;
r .

14

Here we have started from a specification of the mod function and used our
transformations to derive an efficient program for division of numbers represented in binary
notation.

Constant Propogation

A= while B do c:=E1; x:=E2 od

B= x:=f(x) where
funct f(x) ≡ if B then c:=E1; f(E2)

else x fi.

C= c:=E1; while B do x:=E2 od

D= c:=E1; x:=f(x) where
funct f(x) ≡ if B then f(E2)

else x fi.

(1) ∆ ∪ {f not in B,E1,E2} ⊢ A ≈ B
(2) ∆ ∪ {f not in B,E2} ⊢ C ≈ D
(3) ∆ ∪ {x:=E1 and c:=E2 independent, c not in B,

E1 defined and no side-effects, B invariant over E1} ⊢ A6C
(4) ∆ ∪ {x:=E1 and c:=E2 independent, f not in E1, c not in B,

E1 defined and no side-effects, B invariant over E1} ⊢ B6D

(1) and (2) follow from theorem for tail-recursion.

(3) follows from the induction rule for iteration. The induction step is:
while B do c:=E1; x:=E2 odn+1

≈ if B then c:=E1; x:=E2; while B do c:=E1; x:=E2 odn fi
6 if B then c:=E1; x:=E2; c:=E1; while B do x:=E2 od fi
≈ if B then c:=E1; c:=E1; x:=E2; while B do x:=E2 od fi by independence.
≈ if B then c:=E1; x:=E2; while B do x:=E2 od fi

since E1 is defined and has no side effects.
≈ c:=E1; if B then x:=E2; while B do x:=E2 od fi since B is invar over E1.
≈ c:=E1; while B do x:=E2 od by loop rolling.

15

The proof of (4) is similar to that of (3) but using the induction rule for iteration.

If E1 is determinate then we get equivalence for (3) and (4).

Transforming a Cascade Recursion to Linear Recursion

Consider the following two functions:

funct F(x) ≡ if P(x) then G(x) else F(F(H(x))) fi.

funct F1(x) ≡ if P(x) then G(x) else F1(G(H(x))) fi.

In this section we use program transformations to aid in determining a set of constraints
on P, G and H such that F and F1 are equivalent.

Defn: For each x define k(x)∈ N such that:
P(Hk(x)) ∧

(

∀i, 06i<k(x). ¬P(Hi(x))
)

where this exists (it exists for all x on which F terminates).

Theorem: Under the condition:
(1) ∀x. P(x)⇒P(HG(x))

we have F(x)=F1(x) for all x which satisfy P(x)∨P(H(x)).
Proof: Suppose x satisfies P(x)∨P(H(x)), if P(x) holds then F(x)=F1(x)=G(x) (trivial).
So suppose ¬P(x) holds, then by the premise we must have P(H(x)) holds. By defn of F we have
F(x) = F(F(H(x))) = F(G(H(x))) since P(H(x)).
Suppose P(GH(x)) holds, then F(x) = GGH(x)
By defn of F1 we have F1(x) = F1(GH(x)) = GGH(x) as required.

Conversely suppose ¬P(GH(x)) holds, then F(x) = F(F(H(GH(x)))).

By (1) P(H(x)) ⇒ P(HGH(x)) so F(x) = F(GHGH(x)) = F(
(

GH
)2

(x)).

As above, if P(
(

GH
)2

(x)) holds then F(x)=G
(

GH
)2

(x), otherwise F(
(

GH
)3

(x)), etc.

Continuing in this way we see that F(x) = G
(

GH
)n

(x) where n is the smallest such that

P(
(

GH
)n

(x)) holds. But this is the result F1 gives since if ¬P(GH(x)) then

F1(x)=F1(
(

GH
)2

(x)) etc.

16

Hence F(x)=F1(x) on {x|P(x)∨P(H(x))} as required.

If we assume another condition; that G and H be commutative ie:
(2) ∀x. GH(x)=HG(x),

then we can prove a more general theorem connecting F and F1:

Theorem: Under the conditions (1) and (2) we have:
∀x. F(x) = Fk+1

1 (Hk(x))
where k=k(x) is as defined above. (We assume that F is defined everywhere).
Proof: By induction on k.
If k=0 then P(x) holds and the last theorem gives F(x)=F1(x).
So suppose k>0 and the theorem holds for all x st k(x)<k.
Let x be st k(x)=k. k>0 ⇒ ¬P(x) holds so F(x)=F(F(H(x)))
k(H(x))=k-1 <k (by definition of k(x)) so by induction hypothesis on H(x):

F(H(x))=Fk−1+1
1 (Hk−1(H(x))) = Fk

1(H
k(x))

Each application of F1 does a number of applications of G and H in some order with one more
application of G than H. The order is immaterial since G and H commute.
So we can write Fk

1(x)=Gk+mHm(x) for some m∈ N, so
F(H(x))=Gk+mHk+m(x).
Also the last application of G in the last application of F1 must have been on something for

which P holds, ie P(Gk+m−1Hk+m(x)) holds (k+m−1>0 since k>1).
So by (1) P(HG(Gk+m−1Hk+m(x))) holds, ie P(H(Gk+mHk+m(x))) holds. So by applying the last
theorem to Gk+mHk+m(x) we get:

F(F(H(x))) = F(Gk+mHk+m(x)) = F1(G
k+mHk+m(x)) = F1(F

k
1(H

k(x))) = Fk+1
1 (Hk(x))

Result proved by induction.
Finally, if we add the third condition:

(3) ∀x. P(G(x))⇒P(X)
complete equivalence is obtained:

Theorem: Under conditions (1), (2) and (3) we have ∀x. F(x)=F1(x).
Proof: We can calculate k(x) iteratively by the function:
funct k(x) ≡ if P(x) then 0 else k(H(x))+1 fi.

F1 is already in iterative form so we can write an iterative procedure to calculate F
k(x)+1
1 (Hk(x)(x))

which is equivalent to F(x).

17

First we note P(Hk(x)(x)) always holds and so F1(H
k(x)(x))=G(Hk(x)(x)). So

F(x) = F
k(x)+1
1 (Hk(x)(x)) = F

k(x)
1 (GHk(x)(x))

The following routine sets x to F1(x0) where x0 is the initial value of x:
F1 ≡ while ¬P(x) do x:=GH(x) od; x:=G(x)

We can use this to give an iterative routine for F:
Fκκ ≡ κκk:=0;
while ¬P(x) do x:=H(x); k:=k+1 od; {k=k(x0) ∧ x=Hk(x0)};
x:=G(x); {k=k(x0) ∧ x=GHk(x0)};
while k6=0 do F1; k:=k-1 od.

where we have added some assertions to make it clearer.
Copy F1 into F to get:

F ≡ κκκκk:=0;
while ¬P(x) do x:=H(x); k:=k+1 od;
x:=G(x);
while k6=0 do
while ¬P(x) do x:=GH(x) od;
x:=G(x); k:=k-1 od.

Writing the last two statements of F in the form of unguarded loops and exits gives:
F2 ≡ κκκκx:=G(x);
do if k=0 then exit fi;
do if P(x) then exit fi;
x:=GH(x) od;
x:=G(x); k:=k-1 od.

we can exchange the last two assignments since they are independent:
F2 ≡ κκκκx:=G(x);
do if k=0 then exit fi;
do if P(x) then exit fi;
x:=GH(x) od;
k:=k-1; x:=G(x) od.

this is of the form: a; do t; b; a od where a and b are proper sequences of statements (ie they
contain no exit(n)s within less than n nested loops). So we can apply loop inversion to this to get do
a; t; b od ie:

18

F2 ≡ κκκκdo x:=G(x)
if k=0 then exit fi;
do if P(x) then exit fi;
x:=GH(x) od;

k:=k-1 od.

Since the assignment x:=G(x) doesn’t change the value of k we can push it inside the if statement)o
get: if k=0 then x:=G(x); exit else x:=G(x) fi; and detach the else part (since the if part causes
an exit) to get if k=0 then x:=G(x); exit fi; x:=G(x);.
Now use the inverse of absorption on x:=G(x) to take it outside the loop:

F2 ≡ do if k=0 then exit fi;
x:=G(x);
do if P(x) then exit fi;
x:=GH(x) od;

k:=k-1 od;
x:=G(x).

Re-writing this using while loops gives:
F2 ≡ while k6=0 do

x:=G(x);
while ¬P(x) do
x:=GH(x) od;

k:=k-1 od;
x:=G(x).

and finally copy this back into F to get:
F ≡ k:=0;
while ¬P(x) do x:=H(x); k:=k+1 od;
while k6=0 do
x:=G(x);
while ¬P(x) do
x:=GH(x) od;

k:=k-1 od;
x:=G(x).

F1 ≡ while ¬P(x) do x:=GH(x) od; x:=G(x).

To show that the final versions of F and F1 are equivalent we will introduce a change in the data
representation: for a fixed x0 we represent GiHj(x0) by the ordered pair of natural numbers (i,j),

19

thus our representation function is: Ψ(GiHj(x0))=(i,j) i,j∈ N.
P(x) becomes P1(i,j) where P1(i,j) ⇐⇒ P(GiHj(x0))
x:=H(x) becomes j:=j+1 and x:=G(x) becomes i:=i+1.

This representation is well-defined because G and H commute, so the result of any sequence of G’s
and H’s applied to x0 can be expressed in the form GiHj(x0) for some pair 〈i,j〉. Under this
representation F and F1 for a given x0 become K; j:=j+1 and K1; j:=j+1 where

Kκκκ ≡ i:=0; j:=0; k:=0;
while ¬P1(i,j) do i:=i+1; k:=k+1 od; {k=k(x0) ∧ i=k};
while k6=0 do
j:=j+1;
while ¬P1(i,j) do i:=i+1; j:=j+1 od;
k:=k+1 od.

K1 ≡ i:=0; j:=0; while ¬P1(i,j) do i:=i+1; j:=j+1 od.
where we have left out the final j:=j+1 in both routines to simplify the exposition.
If we can show that the final values of i and j after K are the same as after K1 then we have proved
the equivalence of F and F1 for all initial values x0.

This can be proved using the following assertions:
(1) K and K1 both finish on the diagonal of the (i,j) plane, ie i=j finally.

Proof: In K1 the assertion i=j is set up by the first assignments and remains invariant over the loop.
In K the assertion i-k-j=0 is set up by the first assignments and preserved in the first loop. In the
inner loop the value of i-j-k is preserved so the assertion i-k-j=0 is satisfied after each outer loop.
On exit we have k=0 hence i=j.

(2) For K1 P1(i,i) holds on exit (since i=j) and ∀l, 06l<i. ¬P1(l,l) holds.
Proof: i and j are only incremented when ¬P1(i,j) holds.
Also ∀l, i6l P1(l,l) holds since P1(l,l)⇒P1(l+1,l+1) by condition (1).
So K1 finishes on the first point on the diagonal such that P1 holds.

(3) For K
((

i>0 ∧ j>0
)

⇒ ¬P1(i−1,j−1)
)

is an invariant.
Proof: It trivially holds in the first loop since j=0. In the outer loop, after the execution of j:=j+1 we
have:
Case(i): j=1: i=k>0 so ¬P1(i−1,0) holds (by defn of k) so ¬P1(i−1,j−1) holds.
Case(ii): j>1: i=k>0 so ¬P1(i−1,j−2) holds, since the invariant holds before the assignment, so by
condition (3) P1(i−1,j−1+1)=P1(i−1,j−1) so ¬P1(i−1,j−1) holds.

20

In the inner loop the guard gives ¬P1(i,j) so after the assignments ¬P1(i−1,j−1) holds.
Let i1 be the value of i after K1.
By (1) and (3) we have after K: i=j ∧ P1(i,i) ∧

(

i>0 ⇒ ¬P1(i−1,i−1)
)

By (2): P1(i,i) ⇒ i>i1 >0 while
(

i>0 ⇒ ¬P1(i−1,i−1)
)

⇒i−1<i1. Hence i=i1 and K and K1

are equivalent.

Hence F and F1 are equivalent as required.

Example:

McCarthy’s “91-Function” (cf [McCarthy 60]) is defined:
funct F(x) ≡
if x>100 then x−10 else F(F(x+11)) fi.

Here P(x)⇐⇒ x>100, G(x)=x−10 and H(x)=x+11. So for all x: GH(x)=HG(x)=x+1. The
three conditions hold since:
(1): ∀x. x>100 ⇒ x+1>100
(2): ∀x. GH(x)=HG(x)=x+1
(3): ∀x. x−10>100 ⇒ x>100.

So by applying the theorem F is equivalent to F1 where:
funct F1(x) ≡
if x>100 then x−10 else F1(x+1) fi.

This is equivalent to the tail-recursive procedure:
proc F1 ≡
if x>100 then r:=x−10 else x:=x+1; F1 fi

If x6101 initially then this repeatedly increments x until it is greater than 100 and the subtracts 10.
Hence if x6101 initially this procedure is equivalent to:
proc F2 ≡ r:=91. (From which we get the name of the function!).

A rigorous proof of this uses the induction rule for recursion. We have:
{x6101}; if x>100 then r:=x−10 else r:=91 fi
≈ {x6101}; if x>100 then {x=101}; r:=x−10 else r:=91 fi
≈ {x6101}; if x>100 then r:=91 else r:=91 fi
≈ {x6101}; r:=91.

21

If we let t be the term: 101−x then we have:
{x6101}; if x>100 then r:=x−10 else x:=x+1; F1 fi
≈ {x6101}; t0:=101−x; {t0 >0};
if x>100 then r:=x−10 else x:=x+1; {101−x<t0}; F1 fi

Hence by the induction rule for recursion, for x6101 initially, F1 is equivalent to:
proc F2 ≡ r:=91. and hence F is equivalent to funct F3(x) ≡ 91.

22

