
) CHAPTER THREE

= Transformations Involving exiE Statements

Introduction

In this chapter we build on the results of the last chapter to develop a set of
transformations of programs which use unbounded loops and exit statements. These
transformations will allow us to work directly with the programs without having to use the definitional
transformations to prove the equivalence of two statements. In this chapter we consider statements to
be compounds of “primitive statements” (which are either exit statements, or statements which
cannot be terminated by the execution of an exit statement within them). These correspond loosely to
the “basic blocks” of compiler terminology. All the transformations in this section treat primitive
statements as atomic, indivisible units.

The1complexity of interpreting do loops ks a consequence of the “power” of such control
structures; indeed they can be used to simulate any other form f control structure including arbitrary
transfers of control. [Bohm & Jacopini 66] showed that any program using any control structures can
be transformed to a functionally equivalent one which uses only composition, if then else, and
while do control structures. This has been described as “perhaps the first major result of structured
programming” [Ledgard & Marcotty 75].

However if one restricts the transformations to those which increase neither program
length nor execution time then these basic control structures are not sufficient. S.R.Kosaraju in
[Kosaraju 74] proved that the addition of infinite loops of arbitrary depth and exit(n) statements,
where n can be any integer, is sufficient.

These statements are used by Arsac in [Arsac 79] and [Arsac 82] where several program
transformations are developed for recursion removal. [Taylor 84] also discusses them and
propounds their inclusion in programming languages as an alternative to current looping syntax.

The following transformations were inspired by Arsac’s work in this area, we have
generalised these transformations and proved them within our programming system (which unlike
Arsac’s allows nondeterministic programs and specifications as programs as well as a much wider
range of control structures):
Incrementation (but not partial incrementation),
Simple Absorption, and a simple converse,
False Iteration, and a simple converse,
Inversion and Proper Inversion,
Loop Doubling,
First Step Unrolling,
Double Iteration,

1

Loop Absorption

As well as generalising these transformations, we have added the various “selective
unrolling” and “selective unfolding” transformations which (as we shall demonstrate) cannot be
derived from Arsac’s set of transformations.

The rest of this section will concentrate on our proofs of these transformations together
with the proofs of some lemmas which will be needed in the next chapter. First we give some
notation:

Defn: Since an exit statement is not allowed to leave a block or a recursive procedure or loop (other
than a do loop) we can regard such statements as single indivisible wholes as far as this section is
concerned. Hence we define a primitive statement to be either an exit statement, an assignment, an
assertion a block, a recursive procedure, a while loop, a for loop or a nondeterministic iteration.
Thus a primitive statement cannot be terminated by the execution of an exit statement (unless it is an
exit statement). All other statements are compound statements.

Primitive Statements: eg:
Exit Statements exit(k)
Assignments x:=x′.Q
Assertions {Q}
Blocks beg x:S end
Recursive Procedures proc X ≡ S
Counted Repetition for i:=b step s to f do S od
Deterministic Iteration while B do S od
Nondeterministic iteration do B1 → S1 ⊓⊔ ... ⊓⊔ Bn → Sn od
Abstraction rep x/y.Q:S per and beg x/y.Q:S per

Compound Statements: eg:
Composition S1;S2

Deterministic Selection if B then S1 else S2 fi
Nondeterministic Selection if B1 → S1 ⊓⊔ ... ⊓⊔ Bn → Sn fi
Unbounded loops do S od
Nondeterministic Choice oneof S1 ∨ S2 foeno

Defn: For any statements T, S where T is primitive the function occ(T,S) (the number of
occurrences of T in S) is defined as follows:
If T=S then occ(T,S)=1.

2

Otherwise if S is primitive then occ(T,S)=0, (since in this section we regard all primitive statements
as indivisible, so occurrences of a statement within a primitive statement are not counted).

Otherwise occ(T,(S1;S2)) = occ(T,S1)+occ(T,S2)
occ(T, if B then S1 else S2 fi) = occ(T,S1)+occ(T,S2)
occ(T, oneof S1 ∨ S2 foeno) = occ(T,S1)+occ(T,S2)
occ(T,if B1 → S1 ⊓⊔ ... ⊓⊔ Bn → Sn fi) =

∑

16i6nocc(T,Si)
occ(T,do S1 od) = occ(T,S1)

We will use the following simple program to illustrate the transformations developed in
this section. The program sets r to the sum of all integers from 1 to n:
Prog= r:=0; i:=1;

do if i>n then exit fi;
t:=i;
do r:=r+1; t:=t−1;

if t=0 then exit fi od;
i:=i+1 od.

This program has primitive statements: r:=0, i:=1, t:=i, r:=r+1, t:=t−1, i:=i+1 each of
which occurs once, and exit which occurs twice.

Defn: For any statements T,S (where T is primitive) and integers n,d the predicate ts(n,T,S,d)
(which is interpreted “the nth occurrence of T in S is a terminal statement of S which will leave d
enclosing loops”) is defined recursively as follows:
If S is a primitive non-exit statement then ts(n,T,S,d) ⇐⇒ n=1 ∧ d=0 ∧ T=S
ts(n,T,exit(k),d) ⇐⇒ n=1 ∧ d=k ∧ T=exit(k)
ts(n,T,(S1;S2),d) ⇐⇒ ts(n,T,S1,d) ∨ ts(n-occ(T,S1),T,S2,d) if d>0

⇐⇒ ts(n-occ(T,S1),T,S2,d) if d=0
ts(n,T,if B then S1 else S2 fi, d) ⇐⇒ ts(n,T,S1,d) ∨ ts(n-occ(T,S1),T,S2,d)
ts(n,T,if B1 → S1 ⊓⊔ ... ⊓⊔ Bn → Sn fi, d) ⇐⇒

∨

16i6nts(n-
∑

16j<iocc(T,Sj),T,Si,d)
ts(n,T,do S1 od, d) ⇐⇒ ts(n,T,S1,d+1)

With our example the only terminal statement of Prog is the first occurrence of exit,
which will leave zero enclosing do loops thus:
ts(1,exit,Prog,0) ⇐⇒ true while ts(2,exit,Prog,0) ⇐⇒ false.

3

We write ts(n,T,S) for ts(n,T,S,0) and write ts(S) for {T|∃n.ts(n,T,S)} and ts(S,d)
for {T|∃n.ts(n,T,S,d)}. Thus ts(Prog)= {exit}.

We say T is a terminal statement of S, or T is terminal in S if ∃n.ts(n,T,S).

Theorem: If ts(S)= {} then ⊢ S ≈ abort.
ie if S has no terminal statement then S cannot terminate.
Proof: By induction on n and on the structure of S prove:
If ts(S,n)= {} then ⊢depth:=n; guardn(S); {depth60} ≈ abort

Defn: If occ(T,S)>n>1 then the depth of the nth occurrence of the primitive statement T in S,
called δ(n,T,S), is defined:
If T=S then δ(1,T,S)=0
δ(n,T,(S1;S2)) = δ(n,T,S1) if occ(T,S1)>n

δ(n−occ(T,S1),T,S2) otherwise
δ(n,T,oneof S1 ∨ S2 foeno) =
δ(n,T,if B then S1 else S2 fi) = δ(n,T,S1) if occ(T,S1)>n

δ(n−occ(T,S1),T,S2) otherwise
δ(n,T,if B1 → S1 ⊓⊔ ... ⊓⊔ Bn → Sn fi) = δ(n-

∑

16j<iocc(T,Sj),T,Si) where i is the smallest integer
such that occ(T,Si)>n-

∑

16j<iocc(T,Sj)
δ(n,T,do S1 od) = δ(n,T,S1)+1

Defn: If T is primitive and ts(n,T,S) holds then the terminal value of the nth occurrence of T in S,
τ(n,T,S), is defined as |T| − δ(n,T,S) where |exit(k)| =k and |T| =0 for all other primitive
statements.
Note that if T is terminal then we must have τ(n,T,S)>0.

The terminal value of a statement is the number of enclosing loops which would be
terminated by the execution of that statement. This means that the next statement to be executed
after the nth occurrence of T in S will be the first statement outside τ(n,T,S) loops.
For example: δ(1,exit,Prog)=1, δ(2,exit,Prog)=2, δ(1,i:=1,Prog)=0 etc.

τ(1,exit,Prog) = |exit| − δ(1,exit,Prog) = 1−1 = 0.
If τ(n,T,S)=0 then the next statement executed after the execution of T in S will be the

statement immediately following S. If τ(n,T,S)>0 then the execution of T in S will cause the
termination of the first τ do loops enclosing S.

4

It often occurs that we wish to substitute certain occurrences of primitive statements by
other statements, and do all the substitutions simultaneously. Such a substitution is defined as
follows:

Defn: Global Substitution: If P(n,T,S) is a predicate on n,T and S, and S′(n,T,S) is a statement
for any n,T and S then the effect of replacing the nth occurrence of the primitive statement T in S by
S′(n,T,S) for every n and T such that P(n,T,S) holds is denoted:

S[S′(n,T,S)/(n,T)|P(n,T,S)]
For any statement S′′, statement function S′, integer k and predicate P:
S′′[S′(n,T,S)/(n−k,T)|P(n,T,S)] is defined:
(i) S′′[S′(n,T,S)/(n−k,T)|P(n,T,S)]

= S′′ if S′′ is primitive and P(k+1,S′′,S) fails.
(ii) S′′[S′(n,T,S)/(n−k,T)|P(n,T,S)]

= S′(k+1,S′′,S) if S′′ is primitive and P(k+1,S′′,S) holds.
(iii)

(

S1;S2

)

[S′(n,T,S)/(n−k,T)|P(n,T,S)]
= S1[S

′(n,T,S)/(n−k,T)|P(n,T,S)∧] ;
S2[S

′(n,T,S)/(n−k−occ(T,S1),T)|P(n,T,S)]
(iv) if B then S1 else S2 fi, similar to (iii).
(v)

(

if B1 → S1 ⊓⊔ ... ⊓⊔ Bm → Sm fi
)

[S′(n,T,S)/(n−k,T)|P(n,T,S)]
= if B1 → S1[S

′(n,T,S)/(n−k,T)|P(n,T,S)]
⊓⊔ ...

κκκκ ⊓⊔ Bi → Si[S
′(n,T,S)/(n−k−

∑

16j<iocc(T,Sj),T)|P(n,T,S)] ⊓⊔ ...fi

(vi)
(

do S1 od
)

[S′(n,T,S)/(n−k,T)|P(n,T,S)]
= do S1[S

′(n,T,S)/(n−k,T)|P(n,T,S)] od

We will often abbreviate δ(n,T,S) by δ, ts(n,T,S)∧R(τ(n,T,S)) by R(τ) (where R is a relation on
integers) and (n,T) by T so for example:

S[S′(n,T,S)/(n,T)|ts(n,T,S)∧ τ(n,T,S)=0] becomes S[S′(n,T,S)/T|τ =0]

Such substitutions will be used extensively in the rest of this section to prove properties of
statements and transformations of them by induction on their structure.

Note that for n0 < ω the statement S[S′/(n,T)|n=n0 ∧ T=T0] is S with S′ replacing
the n0th occurrence of T0. We abbreviate this to S[S′/(n0,T0)].

Defn: Incrementation:
An example of global substitution is incrementation: if S is a statement and k an integer then S+k

5

denotes the substitution of all terminal statements exit(m) by exit(m+k) and all other primitive
terminal statements T by T;exit(k). ie:

S+k =DF S[T+k/(n,T)|τ(n,T,S)>0] = S[T+k/T|τ >0]

Thus Prog+1 is identical to Prog except that the first occurrence of exit is replaced by
exit(2). Note that the second occurrence of exit is not a terminal statement of Proc so is not
incremented.

Example: If P is
if B then exit fi;
do do a; if C then exit fi od;

b; if D then exit(2) fi; od; c.

where a,b and c are primitive then P+3 is
if B then exit(4) fi;
do do a; if C then exit fi od;

b; if D then exit(5) fi; od; c; exit(3).

Defn: Partial Incrementation:
This is similar to incrementation except that only those terminal statements which have a

terminal value greater than some given value are incremented.
S+(k,d) =DF S[T+k/(n,T)|ts(n,T,S) ∧ τ(n,T,S)>d]

For example:
do S od+(k,d) = do S[T+k/(n,T)|ts(n,T,S) ∧ τ(n,T,S)>d+1] od

= do S+(k,d+1) od

Clearly S+(k,0) = S+k.
Also

(

S1;S2

)

+(k,d) = S1+(k,d); S2+(k,d) if d>0
= S1+(k,1); S2+(k,d) if d=0.

This is because terminal statements of S1 with terminal value zero lead to the execution of S2 so are
not terminal statements of S1;S2 but those with terminal value >0 are terminal statements of S1;S2.
For the other compounds we can apply the +(k,d) directly to each component.
For primitive non-exit statements S+(k,d) = S; exit(k).
For exit statements: exit(l)+(k,d) = exit(l+k).

Using the example above, P+(3,1) is:

6

if B then exit fi;
do do a; if C then exit fi od;

b; if D then exit(5) fi; od; c.

For most of our substitutions we will not want to replace the non-exit primitive
statements but only to add another statement after them. This is to ensure that adding exit(0) (ie
skip) after a non-exit primitive does not affect our substitutions. For example the definition of
simple absorption is:

S;S′ ≈ S[S′ + δ/T|τ =0]
which should be interpreted as:

S;S′ ≈ S[S′(n,T,S)/(n,T)|ts(n,T,S) ∧ τ(n,T,S)=0]
where S′(n,T,S) = T; S′ + δ(n,T,S) if T is a non-exit primitive

= S′ + δ(n,T,S) otherwise.

TRANSFORMATIONS:

Lemma A: For all integers d,k
∆ ⊢ {depth=k+l}; guardk+l(S+(k,l))

≈ {depth=k+l}; guardk+l(S); if depth6k then depth:=depth−k fi
This says that if after executing S the depth is 6k then the last terminal statement executed
corresponds to a one of the statements of S+(k,l) which has been incremented by l. To get the same
effect we execute depth:=depth−k in this case. If the depth is >k then the corresponding terminal
statement of S+(k,l) would not be incremented so we do nothing. This lemma will be used in the
proofs of several important transformations.

Proof: By induction on the structure of S:
Let IF = if depth6k then depth:=depth−k fi
Note that {depth=k+l}; depth:=depth−n ≈ {depth=k+l}; guardk+l(exit(n))

Case (i): S is an exit statement and l6 |S| -say S is exit(n) with n>l.
{depth=k+l}; guardk+l(S+(k,l)) ≈ {depth=k+l}; depth:=depth−(n+k)

≈ {depth=k+l}; depth:=depth−n; if depth6k then depth:=depth−k fi

Case (ii): S is an exit statement and l> |S| -say S is exit(n) with n<l.

7

{depth=k+l}; guardk+l(S+(k,l))
≈ {depth=k+l}; depth:=depth−n since the terminal value n is <l.

≈ {depth=k+l}; depth:=depth−n; {depth>k}
≈ {depth=k+l}; depth:=depth−n; if depth6k then depth:=depth−k fi

Case (iii): S is a non-exit primitive and l=0. Thus S does not change depth.
{depth=k+l}; guardk+l(S+(k,l)) ≈ {depth=k+l}; S; depth:=depth−k

≈ {depth=k+l}; S; if depth6k then depth:=depth−k fi

Case (iv): S is a non-exit primitive and l>0. Thus S does not change depth and the incrementation
does not take place.
{depth=k+l}; guardk+l(S+(k,l)) ≈ {depth=k+l}; S; {depth>k}

≈ {depth=k+l}; S; if depth6k then depth:=depth−k fi

Case (v): S=S1;S2 and l=0.
{depth=k+l}; guardk+l((S1;S2)+(k,l))

≈ {depth=k+l}; guardk+l(S1+(k,1)); guardk+l(S2+k)
≈ {depth=k+l}; guardk+l(S1); IF;

if depth=k+l then {depth=k+l}; guardk+l(S2+k) fi
by induction hypothesis and properties of guard.

≈ {depth=k+l}; guardk+l(S1);
if depth6k then depth:=depth−k; {depth60} fi;
if depth=k+l then {depth=k+l}; guardk+l(S2); IF fi

by induction hypothesis again.
≈ {depth=k+l}; guardk+l(S1);
if depth6k
then depth:=depth−k
else if depth=k+l then {depth=k+l}; guardk+l(S2); IF fi fi
≈ {depth=k+l}; guardk+l(S1);
if depth=k+l then guardk+l(S2) fi; IF

by forward contraction of if.
≈ {depth=k+l}; guardk+l(S1); guardk+l(S2); IF
≈ {depth=k+l}; guardk+l(S1;S2); IF

8

Case (vi): S=S1;S2 and l>0.
{depth=k+l}; guardk+l((S1;S2)+(k,l))

≈ {depth=k+l}; guardk+l(S1+(k,l)); guardk+l(S2+(k,l))
≈ {depth=k+l}; guardk+l(S1); IF;

if depth=k+l then {depth=k+l}; guardk+l(S2+(k,l)) fi
by induction hypothesis and properties of guard.

≈ {depth=k+l}; guardk+l(S1;S2); IF
as for last case.

Case (vii): S= if B1 → S1 ⊓⊔ ... ⊓⊔ Bn → Sn fi
Use case analysis on B1,. . . ,Bn and the induction hypothesis on S1,. . . ,Sn to get:
{depth=k+l}; if B1 → guardk+l(S1); IF

⊓⊔ ...
⊓⊔ Bn → guardk+l(Sn); IF fi

Then backward and forward expansion of the outer if gives the result.

Case (viii): S=do S1 od.
{depth=k+l}; guardk+l(do S1 od+(k,l))

≈ {depth=k+l}; guardk+l(do S1+(k,l+1) od) by a previous result
≈ {depth=k+l}; depth:=depth+1;
while depth=k+l+1 do {depth=k+l+1}; guardk+l+1(S1+(k,l+1)) od
≈ {depth=k+l}; depth:=depth+1;
while depth=k+l+1 do {depth=k+l+1}; guardk+l+1(S1); IF od

by induction hypothesis.
≈ {depth=k+l}; depth:=depth+1;
while depth=k+l+1 do {depth=k+l+1}; guardk+l+1(S1) od; IF

by forward expansion of do.
≈ {depth=k+l}; guardk+l(do S1 od); IF

This proves the Lemma.

Cor A: ∆ ⊢ {depth=d}; guardd(S+d) ≈ {depth=d}; depth:=depth−d; guard0(S)
Proof: From Lemma A
{depth=d}; guardd(S+d)

≈ {depth=d}; guardd(S); if depth6d then depth:=depth−d fi
≈ {depth=d}; guardd(S); depth:=depth−d since S cannot increase depth
≈ {depth=d}; depth:=depth−d; guard0(S) from a property of guard.

9

Lemma B: If S is d-reducible and has no terminal statement with terminal value d then:
∆ ⊢ {depth=d+1}; guardd+1(S)

≈ {depth=d+1}; guardd+1(S[T−1/T|τ >d+1]);
if depth61 then depth:=depth−1 fi

Proof: By induction on the structure of S using the same cases as Lemma A.

Simple Absorption: ∆ ⊢ S;S′ ≈ S[S′ + δ/T|τ =0]
The statement S′ following S is “absorbed” into it by replacing all of the terminal

statements of S which would lead to S′ by S′ incremented by the depth of the terminal statement.
This is used a great deal when restructuring an unstructured program.

For our example program: Prog; do r:=r−1; if r=0 then exit fi
is equivalent to Prog with the first occurrence (only) of exit replaced by:

do r:=r−1; if r=0 then exit(2) fi

Proof of Simple Absorption: Prove that for all d
{depth=d}; guardd(S); guard0(S

′) ≈ {depth=d}; guardd(S[S′ + δ+d/T|τ =d])
See the proof of the converse for the cases used.

Defn: S′ is a term of S if for each k the replacement of S′+k by exit(k) in S produces a terminal
statement with terminal value zero.
This is a generalisation of Arsac’s definition of a term in [Arsac 79]. A further generalisation is:

Defn: For d∈ N, S′ is a d-term of S if for any k each replacement of S′+k by exit(k) in S
produces a terminal statement with terminal value d.
Thus a term (defined by the previous definition) is a 0-term.

Lemma: S′ is a d-term of do S1 od iff S′ is a
(

d+1
)

-term of S1.
Proof: If some occurrence exit(k) is a terminal statement of do S od with terminal value d then the
same occurrence is a terminal statement of S with terminal value d+1 and vice versa. Thus if
replacing some occurrence of S′+k by exit(k) in do S od gives a terminal statement with terminal
value d then the same substitution in S gives a terminal statement with terminal value d+1.
Conversely if replacing S′+k in S gives a terminal statement with terminal value d+1 then this will
be a terminal statement of do S od with S′+k replaced by exit(k) having terminal value d. For
S1;S2, a d-term of S1 is a d-term of the compound iff d>0. A d-term of S2 is always a d-term of
the compound. For all other compound statements, a d-term of any component is a d-term of the

10

compound.

Theorem: If S′ is a term of S and every terminal statement of S with terminal value zero occurs
within an occurrence of S′+k in S (for some k) then

∆ ⊢ S ≈ S[exit(k)/S′+k];S′

This is a converse to simple absorption, it is a generalisation of Arsac’s version, which
makes it more practically useful.
Proof: Prove the following by induction on the structure of S:
If S′ is a d-term of S and any terminal statement of S with terminal value d is within an occurrence
of S′+k in S (for some k) then

S = S[exit(k)/S′+k][S′ + δ+d/T|τ =d].
We may assume S′ is not primitive or of the form S′

1;S
′

2 since otherwise we may replace S′+k
throughout S by if true then S′ fi + k which is not primitive and not a sequence.

Case (i): S= S′+n for some n. We must have n=d since S′ is a d-term of S:
(

S′+d
)

[exit(k)/S′+k][S′ + δ+d/T|τ =d]
= exit(d)[S′ + δ+d/T|τ =d] = S′+d

Case (ii): S is primitive. Hence S6=S′+k for any k. Thus:
S[exit(k)/S′+k][S′ + δ+d/T|τ =d] = S[S′ + δ+d/T|τ =d]

= S since S cannot be exit(d) by premise.

Case (iii): S= S1;S2.
(

S1;S2

)

[exit(k)/S′+k][S′ + δ+d/T|τ =d]

=
(

S1[exit(k)/S′+k]; S2[exit(k)/S′+k]
)

[S′ + δ+d/T|τ =d]
since each occurrence of S′+k must be within S1 or S2 since S′+k is not a sequence.

= S1[exit(k)/S′+k][S′ + δ+d/T|τ =d]; S2[exit(k)/S′+k][S′ + δ+d/T|τ =d]
= S1;S2 by induction hypothesis

Case (iv): S= if B then S1 else S2 fi and S6=S′+k. Any occurrence of S′+k must be within
either S1 or S2. Use the induction hypothesis and forward expansion of if.

Case (v): S= do S1 od. By Lemma S1 is a
(

d+1
)

-term of S1 so
(

do S1 od
)

[exit(k)/S′+k][S′ + δ+d/T|τ =d]

=
(

do S1[exit(k)/S′+k] od
)

[S′ + δ+d/T|τ =d]
= do S1[exit(k)/S′+k][S′ + δ+d+1/T|τ =d+1] od

11

= do S1 od by induction hypothesis
Which proves the Theorem.

False Iteration: ∆ ⊢ S ≈ do S+1 od
Proof: {depth=1}; guard1(S+1)

≈ {depth=1}; guard1(S); depth:=depth−1
by a previous result.
Thus {depth=0}; depth:=1; while depth=1 do {depth=1}; guard1(S+1) od

≈ {depth=0}; depth:=1;
while depth=1 do

{depth=1}; guard1(S); depth:=depth−1 od
By loop unrolling this is:

≈ {depth=0}; depth:=1;
if depth=1
then {depth=1}; guard1(S); {depth61}; depth:=depth−1; {depth60};

while depth=1 do
{depth=1}; guard1(S); {depth61};
depth:=depth−1; {depth60} od

≈ {depth=0}; depth:=1; guard1(S); depth:=depth−1
≈ {depth=0}; guard0(S) by the following Lemma.

Lemma: For any n∈ N and any statement S:
∆ ⊢ depth:=depth+1; guardn+1(S); depth:=depth−1 ≈ guardn(S)

Proof: By induction on the structure of S:

Cor: By induction on m we have the more general form:
∆ ⊢ guardn(S) ≈ depth:=depth+m; guardn+m(S); depth:=depth−m

Defn: S is reducible if replacing any terminal statement exit(k), which has terminal value one, by
exit(k−1) gives a terminal statement of S.

Note that any statement can be made reducible by the use of absorption. For example:
if i=n then exit fi; i:=i+1.
is not reducible, but by absorption we get:
if i=n then exit

else i:=i+1 fi.

12

which is reducible. It reduces to:
if i=n then skip

else i:=i+1 fi.

Defn: S is d-reducible if replacing any terminal statement exit(k), which has terminal value d+1,
by exit(k−1) gives a terminal statement of S. Note that this is always the case for d>0.

Theorem: If S is reducible and all terminal statements of S have terminal value greater than zero
then:

∆ ⊢ do S od ≈ S[T−1/T|τ >0] = S−1
where exit(k)−1 = exit(k−1) for k>0. In the substitution T must be an exit(k) with k>0 for it
to have τ >0 so T−1 is always defined. This is a converse to false iteration.
Proof: From Lemma A with k=1 and l=d we have:
{depth=d+1}; guardd+1(S+(1,d))

≈ {depth=d+1}; guardd+1(S); if depth61 then depth:=depth−1 fi
From Lemma B we have:
{depth=d+1}; guardd+1(S)

≈ {depth=d+1}; guardd+1(S−(1,d+1)); if depth61 then depth:=depth−1 fi
Hence if S is d-reducible and has no terminal statement with terminal value d then:
{depth=d+1}; guardd+1((S−(1,d+1))+(1,d))

≈ {depth=d+1}; guardd+1(S−(1,d+1)); if depth61 then depth:=depth−1 fi
≈ {depth=d+1}; guardd+1(S)

ie (S−(1,d+1))+(1,d) ≈ S.
Putting d=1 we get: S ≈ (S−(1,1))+1
Hence do S od ≈ do (S−(1,1))+1 od ≈ S−(1,1) = S−1 (by false iteration).

A consequence of these two results is:

Theorem: If S′ is a term of S then:
∆ ⊢ S ≈ do

(

S+1
)

[S′+k+1/exit(k)]; S′+1 od
This can be used to combine multiple copies of a statement into a single copy by putting a

false loop around the program, replacing each copy of the statement by an exit and putting a single
copy at the end of the loop body. Multiple copies of a statement often occur during the removal of
recursion and during the restructuring of an unstructured program.
Proof: If S′ is a term of S then S′+1 is a term of S+1 and S+1 has no terminal statement with
terminal value zero, so by absorption:

13

S+1 ≈
(

S+1
)

[S′+k+1/exit(k)]; S′+1
And by false iteration: S ≈ do S+1 od.

Defn: S is a proper sequence iff every terminal statement of S has terminal value zero, ie
∀T,n. ts(n,T,S)⇒ τ(n,T,S)=0

Thus a proper sequence cannot change depth.

If the body of a loop has no terminal statement with terminal value zero then the loop is a
“false loop” (the body is only executed once since the execution of any terminal statement in the body
will cause termination of the loop). If the body is reducible then the loop can br removed. Note that a
statement can always be made reducible by absorption so this is always possible: but the absorption
may cause an increase in the program text length. Such “false loops” are useful in “factoring out”
several occurrences of a statement into a single occurrence. For example:
if B1 then S1; if B2 then S2 ≈ do if B1 then S1; if B2 then S2+1 fi fi;

else S fi S+1 od
else S fi

where the second version has only one copy of S. If we make the body of the loop on the RHS
reducible by absorbing S+1 and then remove the false iteration we get the LHS.

Loop inversion: ∆ ⊢ while B do S1; if B then S2 fi od
≈ if B then S1 fi; while B do S2; if B then S1 fi od

Proof: Since the assertion {B} can be inserted in the loop while B do... od it is sufficient to prove:
∆ ⊢ while B do if B then S1 fi; if B then S2 fi od

≈ if B then S1 fi; while B do if B then S2 fi; if B then S1 fi od
Let IF1 = if B then S1 fi, IF2 = if B then S2 fi. So we are trying to prove

∆ ⊢ while B do IF1; IF2 od ≈ IF1; while B do IF2; IF1 od
where the two statements inside the loop have been reversed–hence the name of the theorem. Use
induction to show that:
∆ ⊢ while B do IF1; IF2 odn 6 IF1; while B do IF2; IF1 odn for n>1.
Then show that:
∆ ⊢ IF1; while B do IF2; IF1 odn 6 while B do IF1; IF2 odn+1 for n>1.
The theorem follows from the general induction rule for iteration.

Inversion:
∆ ⊢ do S1;S2 od ≈ do S1; do S2;S1 od+1 od

14

Proof: Let IF1 = if depth=1 then guard1(S1) fi, IF2 = if depth=1 then guard1(S2) fi
{depth=0}; guard0(do S1;S2 od)

≈ {depth=0}; depth:=1; while depth=1 do guard1(S1;S2) od
≈ {depth=0}; depth:=1; while depth=1 do IF1; IF2 od
≈ {depth=0}; depth:=1; IF1; while depth=1 do IF2; IF1 od

by loop inversion.
≈ {depth=0}; depth:=1; guard1(S1); while depth=1 do guard1(S2;S1) od
≈ {depth=0}; depth:=1; guard1(S1);
if depth=1 then {depth=1}; while depth=1 do guard1(S2;S1) od fi

≈ {depth=0}; depth:=1; guard1(S1);
if depth=1
then depth:=2; while depth=2 do guard2(S2;S1);

if depth61 then depth:=depth−1 fi; od;
{depth<1} fi

≈ {depth=0}; depth:=1; guard1(S1);
if depth=1
then depth:=2 while depth=2 do guard2(

(

S2;S1

)

+(1,1)) od;
{depth<1} fi

≈ {depth=0}; depth:=1; guard1(S1); guard1(do S2;S1 od+1); {depth<1}
≈ {depth=0}; depth:=1;
if depth=1
then guard1(S1); guard1(do S2;S1 od+1);
while depth=1 do guard1(S1; do S2;S1 od+1) od fi

≈ {depth=0}; depth:=1; while depth=1 do guard1(S1; do S2;S1 od+1) od
by loop rolling.

≈ {depth=0}; guard0(do S1; do S2;S1 od+1 od)

Hence: do S1;S2 od ≈ do S1; do S2;S1 od+1 od as required.

This transformation is often used in converting a do loop with an exit in the middle into a
while loop by moving some statements outside the loop. For example if S1 and S2 are proper
sequences then:
do S1; if B then exit fi; S2 od ≈ do S1; do if B then exit fi; S2; S1 od+1 od

≈ S1; do if B then exit fi; S2; S1 od (since S1 is a proper sequence)
≈ S1; while ¬B do S2; S1 od. (since S1 and S2 are proper sequences).

15

Theorem: If S1 is reducible then
∆ ⊢ do S1;S2 od ≈ S1[do S2;S1 od+δ+1/T|τ =0]−1

Proof: By inversion:
do S1;S2 od ≈ do S1; do S2;S1 od+1 od
By absorption S1; do S2;S1 od+1 ≈ S1[do S2;S1 od+δ+1/T|τ =0]

Claim: S1[do S2;S1 od+δ+1/T|τ =0] is reducible and has no terminal statement with terminal
value zero. To prove this claim, prove the following by induction on the structure of S:
For any k, if S s d-reducible then S[S′+k+δ+d/T|τ =d] is also d-reducible and has no terminal
statement with terminal value d.
+hen by false iteration: do S1;S2 od ≈ do S1[do S2;S1 od+δ+1/T|τ =0] od

R ≈ S1[do S2;S1 od+δ+1/T|τ =0]−1
which proves the theorem.

Proper Inversion:
If S1 is a proper sequence then: ∆ ⊢ do S1;S2 od ≈ S1; do S2;S1 od
Proof: If S1 is a proper sequence then for any statement S:

(

S1;S
)

+1 = S1+(1,1); S2+1 = S1; S+1
since all of the terminal statements of S1 have terminal value zero.
Thus do S1;S2 od ≈ do S1; do S2;S1 od+1 od ≈ do

(

S1; do S2;S1 od
)

+1 od
≈ S1; do S2;S1 od by false iteration.

Repetition:
(a) ∆ ⊢ S1 6S ∧ S2 6S ⇒ do S1;S2 od 6 do S od
(b) ∆ ⊢ S6S1 ∧ S6S2 ⇒ do S od 6 do S1;S2 od

Cor: ∆ ⊢ do S od ≈ do S;S od (Loop doubling)
∆ ⊢ S2 6S1 ⇒ do S1;S2 od 6 do S1 od
∆ ⊢ S1 6S2 ⇒ do S1 od 6 do S1;S2 od

Proof: These are in fact all consequences of loop doubling:
(a) If S1 6S and S2 6S then S1;S2 6 S;S and hence do S1;S2 od 6 do S;S od ≈ do S od
(b) If S6S1 and S6S2 then S;S 6 S1;S2 and hence do S od ≈ do S;S od 6 do S1;S2 od

Proof of Loop Doubling:
{depth=0}; guard0(do S od) ≈ {depth=0}; depth:=1; while depth=1 do guard1(S) od

16

Let IF ≡ if depth=1 then guard1(S) fi ≈ guard1(S).
Let DO1 ≡ while depth=1 do IF od
DO2 ≡ while depth=1 do IF;IF od

We need to prove DO1 ≈ DO2.
Proof is by induction rule for loops:

Claim: DO2n
1 6 DO2 for all n< ω.

Trivial for n=0 so suppose it holds for n.

DO
2(n+1)
1 ≈ DO2n+2

1 ≈ if depth=1 then IF; if d=1 then IF; DO2n
1 fi fi

6 if depth=1 then IF; if d=1 then IF; DO2 fi fi by induction hyp
≈ if depth=1 then IF; IF; DO2 fi by case analysis on inner if
≈ DO2 by loop rolling.

Claim: DOn
2 6 DO1 for all n< ω.

Trivial for n=0 so suppose it holds for n.

DOn+1
2 ≈ if depth=1 then IF; IF; DOn

2 fi
κκκ 6 if depth=1 then IF; IF; DO1 fi by induction hypothesis
≈ if depth=1 then IF; if depth=1 then IF; DO1 fi fi by case analysis
≈ if depth=1 then IF; DO1 fi by loop rolling
≈ DO1.

Hence by induction rule for loops DO1 ≈ DO2.

Arsac’s Version of the Repetition Transformation
Arsac in [Arsac 79] gives the following, more general, version of this transformation:

do S1 od ≈ do S2 od ⇐⇒ do S1 od ≈ do S1;S2 od

However, this fails in general, to see this take S2 =skip. Then the RHS is:
do S1 od ≈ do S1; skip od which holds for any S1 while the LHS is:
do S1 od ≈ do skip od ≈ abort which is clearly not true in general.

The other implication, namely:
do S1 od ≈ do S2 od ⇒ do S1 od ≈ do S1;S2 od
looks more convincing but also fails in general. Take
S1 = if x60 then exit fi; x:=x−1

17

S2 = if x60 then exit fi; x:=x−2
Then it is easy to see that: {x>0 ∧ even(x)} ⊢ do S1 od ≈ do S2 od ≈ x:=0
But if x=2 initially then do S1;S2 od ≈ x:=−1
So do S1 od ≈ do S1;S2 od cannot be true.

Arsac uses this transformation to derive a version of “selective unrolling” (see next
Chapter) which cannot in fact be derived from the transformations he gives. This invalidates his
claim that his set of transformations is “complete” in the sense that any syntactic transformation (ie a
transformation that preserves the sequence of states) can be derived from them. For example, the
following example of selective unrolling cannot be derived from the transformations given by Arsac:

do if B then S1 ≈ do if B then S1; if B then S1 fi
else S2 fi od. else S2 fi od.

This is because each of his transformations preserves the property that the number of copies of S1

within any loop equals the number of copies of S2. This property holds for the first version, but for
the second version we have two copies of S1 and only one of S2. Hence no sequence of Arsac’s
transformations will convert the LHS into the RHS.

First Step Unrolling:
∆ ⊢ do S od ≈ do S; do S od+1 od
Proof: do S od ≈ do S;S od loop doubling.

≈ do S; do S;S od+1 od inversion.
≈ do S; do S od+1 od loop doubling.

If S is reducible then do S od ≈ S[do S od+1+δ/T|τ =0]−1

Proof: do S od ≈ do S;S od loop doubling.
≈ S[do S;S od+1+δ/T|τ =0]−1 inversion.
≈ S[do S od+1+δ/T|τ =0]−1 loop doubling.

Double Iteration:
If S is reducible then: ∆ ⊢ do do S od od ≈ do S[T−1/T|τ >0] od ≈ do S−1 od

Note that any statement can be made reducible by the repeated application of absorption,
hence any double loop can be converted to a single loop if required. However in general this will cause
an increase in program text length. The choice of whether to use a single loop or a double loop can be
made on the basis of which version best expresses the solution of the problem.

18

Defn: If k6d then S−(k,d) =DF S[T−k/T|τ >d].
Note

(

S+(k,d)
)

−(k,d) = S, in fact
(

S+(k,d)
)

−(k,d′) = S holds for any d′ with
d6d′ <d+k.
The converse

(

S−(k,d)
)

+(k,d) = S is not valid: for example S−(k,k) is the same as S−k.

Lemma A: If k6d then
{depth=d}; guardd(S−(k,d)) ≈ guardd(S); if depth60 then depth:=depth+k fi

The proof is similar to the corresponding Lemma for partial incrementation.

The following Lemma is also used in the next Chapter in the theorem on transforming a
regular action system to iterative form:

Lemma B: The following are equivalent:
(i) {x=a}; while x=a do x:=b; S; if x=b then x:=a fi od.
(ii) {x=a}; while x=a ∨ x=b do x:=b; S od.
(iii) {x=a}; while x=a do x:=b; while x=b do S od od.
Proof: For (i) ≈ (ii) prove that the nth truncations are equivalent and use the induction rule for
iteration.

For (iii) 6 (ii) we also use induction to prove
{x=a}; while x=a do x:=b; while x=b do S od odn

6 {x=a}; while x=a ∨ x=b do x:=b; S od -the base case (n=1) is trivial.
{x=a}; while x=a do x:=b; while x=b do S od odn+1

≈ {x=a}; if x=a then x:=b; while x=b do S od;
while x=a do x:=b; while x=b do S od odn fi

n>1 so {x6=a} ⊢ while x=a do... odn ≈ skip. So this is
≈ {x=a}; x:=b; while x=b do S od; {x6=b};

if x=a then while x=a do x:=b; while x=b do S od odn fi
6 {x=a}; x:=b; while x=b do S od; {x6=b};

if x=a then while x=a ∨ x=b do x:=b; S od fi
by induction hypothesis.

≈ {x=a}; x:=b; while x=b do S od; {x6=b};
if x=a ∨ x=b then while x=a ∨ x=b do x:=b; S od fi

≈ {x=a}; x:=b; S; while x=b do S od; while x=a ∨ x=b do x:=b; S od
by loop unrolling and removing the if.

≈ {x=a}; x:=b; S; while x=a ∨ x=b do x:=b; S od by loop merging.

19

≈ {x=a}; while x=a ∨ x=b do x:=b; S od by loop unrolling.

Finally to prove (ii) 6 (iii) use induction to prove
{x=a}; while x=a ∨ x=b do x:=b; S odn

6 {x=a}; while x=a do x:=b; while x=b do S od od

Proof: of double iteration:
{depth=0}; guard0(do do S od od)

≈ {depth=0}; depth:=1;
while depth=1 do depth:=2; while depth=2 do guard2(S) od od

{depth=0}; guard0(do S od−1)
≈ {depth=0}; guard0(do S[T−1/T|τ >0] od)
≈ {depth=0}; depth:=1; while depth=1 do guard1(S[T−1/T|τ >0]) od

Let IF ≡ if depth60 then depth:=depth+1 fi. Then by Lemma A:
{depth=0}; guard0(do S od−1)

≈ {depth=0}; depth:=1;
while depth=1 do guard1(S); if depth60 then depth:=depth+1 fi od
≈ {depth=0}; depth:=1;
while depth=1 do depth:=2; guard2(S); depth:=depth−1;

if depth60 then depth:=depth+1 fi od
≈ {depth=0}; depth:=1;
while depth=1 do depth:=2; guard2(S);

if depth>1 then depth:=depth−1 fi od
by case analysis on depth:=depth−1; if depth60 then depth:=depth+1 fi.

≈ {depth=0}; depth:=1;
while depth=1 do depth:=2; guard2(S);

if depth=2 then depth:=depth−1 fi od
since depth can only be decreased.

≈ {depth=0}; depth:=1;
while depth=1 do depth:=2; while depth=2 do guard2(S) od od

by Lemma B.
≈ guard0(do do S od od).

Cor: For any S:
∆ ⊢ do do do S od od od ≈ do do S od−1 od

20

Proof: any terminal statement of do S od with terminal value one must be a terminal statment of S
with terminal value two. So reducing such a statement by one gives a terminal statement with terminal
value one of S and hence a terminal statement of do S od. Hence do S od is reducible and we can
apply the last result.
Thus more than two nested do loops around the same statement are never needed.

Loop Absorption:
If S1 is reducible then
∆ ⊢ do do S1 od; S2 od ≈ do S1[S2 + δ+1/T|τ =1]−1 od
Proof: do do S1 od; S2 od

≈ do
(

do S1 od
)

[S2 + δ/T|τ =0] od by absorption.
≈ do do S1[S2 + δ+1/T|τ =1] od od

Now S1[S2 + δ+1/T|τ =1] is reducible and has no terminal statement with terminal value zero (by
a previous Lemma). So we can apply double iteration to get:
do do S1 od; S2 od ≈ do S1[S2 + δ+1/T|τ =1]−1 od

This can often be used to replace a double-nested loop by a single loop. For example, suppose we
have:
do S1; do S2 od; S3 od where S1 and S2 are reducible.
Move the inner loop to the beginning by proper inversion to give:
S1; do do S2 od; S3; S1 od
Apply loop absorption to give:
S1; do S2[

(

S3;S1

)

+ δ+1/T|τ =1] od −1
which is now a single loop.

This can also be used to combine several copies of one statement inside a single loop by
transforming it to a double loop. We replace the single loop by a double loop, replace each copy of the
statement by an exit of the inner loop and put a single copy of the statement between the two loops,
after the inner loop

Lemma 1: If S′ is a term of S then:
∆ ⊢ S+1 ≈

(

S+(1,1)
)

[exit(k+1)/S′+(1,1)+k][S′ + δ+1/T|τ =1][T+1/T|τ =0]
Proof: We use induction on the structure of S and prove the more general result:
S+1 ≈

(

S+(1,d)
)

[exit(k+1)/S′+(1,1)+k][S′ + δ+d/T|τ =d][T+1/T|τ <d]

where d>1 and S′ is a
(

d−1
)

-term of S. As usual we may assume S′ is compound and not a
sequence since otherwise we may replace S′+k by
if true then S′+k fi.

21

Let [A] = [exit(k+1)/S′+(1,1)+k], [B] = [S′ + δ+d/T|τ =d], [C] = [T+1/T|τ <d].
The only difficult case is:
Case (iv): S= S1;S2 and d>1.
(

S+(1,d)
)

[A][B][T+1/T|τ <d]

≈
(

S1+(1,d)
)

[A][B][T+1/T|0< τ <d];
(

S2+(1,d)
)

[A][B][T+1/T|τ <d]

Claim: If d>1 then
(

S1+(1,d)
)

[A][B][T+1/T|0< τ <d] ≈ S1+(1,1)
Then by induction hypothesis
(

S+(1,d)
)

[A][B][T+1/T|τ <d]

≈ S1+(1,1); S2+1 ≈
(

S1;S2

)

+1 ≈ S+1.
Proof of Claim: Prove by induction on the structure of S that:
If d>1 and 0<l<d and S′ is a

(

d−1
)

-term of S then

∆ ⊢
(

S+(1,d)
)

[exit(k+1)/S′+(1,1)+k][S′ + δ+d/T|τ =d][T+1/T|l< τ <d] ≈ S+(1,l)

This claim is also used in Case (vi): S = do S1 od.

Lemma 2: do do S; exit od od ≈ do do S od od.
Proof: Consider:
{depth=0}; depth:=1; while depth=1 do

depth:=2; while depth=2 do guard2(S);
if depth=2 then depth:=1 fi od od.

By Lemma B ((iii)⇒(i))this is equivalent to:
{depth=0}; depth:=1; while depth=1 do

depth:=2; guard2(S); if depth=2 then depth:=1 fi; {depth6=2}
if depth=2 then depth:=1 fi od.

The second if can be removed and then Lemma B ((i)⇒(iii)) gives:
{depth=0}; depth:=1; while depth=1 do

depth:=2; while d=2 do guard2(S) od od.
Hence the result.

Loop Expansion:
If S′ is a term of S then
∆ ⊢ do S od ≈ do do

(

S+(1,1)
)

[exit(k+1)/S′+(1,1)+k] od; S′ od
Proof: do S od ≈ do do S+1 od od by false iteration.

≈ do do (S+(1,1))[A][S′ + δ+1/T|τ =1][T+1/T|τ =0] od od by Lemma 1.
≈ do do (S+(1,1))[A][S′ + δ+1/T|τ =1]; exit od od by the inverse of absorption.
≈ do do (S+(1,1))[A][S′ + δ+1/T|τ =1] od od by Lemma 2.

22

≈ do do (S+(1,1))[A] od; S′ od by the inverse of absorption.

The following Lemma provides a form of induction rule for unbounded loops:

Lemma: If ∆ ⊢ do (S;)n; abort od 6 S′ for all n< ω then do S od 6 S′.
Proof: Prove by induction on n:
{depth=k}; guardk(do (S;)n; abort od) ≈ {depth=k}; depth:=k+1;

while depth=k+1 do guardk+1(S) odn

Then the induction rule for loops gives the result.

23

