
Using Software Metrics to Evaluate Static Single

Assignment Form in GCC

Jeremy Singer1, Christos Tjortjis2, and Martin Ward3

1 School of Computer Science, University of Manchester, UK
jsinger@cs.man.ac.uk

2 Department of Computer Science, University of Ioannina, Greece
3 Software Technology Research Laboratory, De Montfort University, UK

Abstract. Over the past 20 years, static single assignment form (SSA)
has risen to become the compiler intermediate representation of choice.
Compiler developers cite many qualitative reasons for choosing SSA.
However in this study, we present clear quantitative benefits of SSA,
by applying several standard software metrics to compiler intermediate
code in both SSA and non-SSA forms. The average complexity reduc-
tion achieved by using SSA in the GCC compiler is between 32% and
60% according to our software metrics, over a set of standard SPEC
benchmarks.

1 Introduction

Static single assignment form (SSA) is a popular compiler IR. Since the formu-
lation of SSA in the late 1980s [9] it has rapidly become the de factor standard
IR for code analysis and optimization.

In terms of research compiler infrastructures, SUIF [17], Microsoft’s Bartok
[11] and Phoenix, IBM’s Jikes RVM [6], and LLVM all use SSA-based interme-
diate forms. Several commercial compilers have recently been released as open-
source. Among these, Java HotSpot (originally from Sun) and Open64 (originally
from SGI) use SSA. Although Intel’s C compiler is not open-source, it has been
reported to make heavy use of SSA-based optimizations [33]. Regarding the open-
source GNU Compiler Collection (GCC), its development began before SSA was
well-characterized or widely known. However SSA support has been backported
into the original optimization infrastructure [30, 31], as of version 3.4. Thus we
see that many compilers, from a wide variety of vendors, for a diverse range of
source programming languages and target architectures, use SSA.

Despite its popularity and many anecdotal success stories, there has been
little previous work on formal evaluation of the reasons for SSA’s advantages in
static analysis and optimization. This paper employs software metrics to provide
a quantitative evaluation of the comparative merits of SSA. We aim to make our
observations as general as possible, by avoiding any restrictions or assumptions
that are specific for systems, analyses or optimizations.

The major contribution of this paper is in the previously unchartered area
of program meta-analysis, which concerns the analysis of properties of program

analysis tools and techniques. The paper provides a quantitative assessment of
the benefits of SSA in an analysis-independent manner, by means of software

metrics. It shows with several standard measures that an SSA representation of
a procedure has reduced complexity in relation to a non-SSA representation of
the same procedure, in GCC. The average complexity reduction is between 32%

and 60% for selected complexity metrics, over a set of representative benchmark
programs.

2 Program Representations

A control flow graph (CFG) is a static representation of possible flows of execu-
tion in a procedure. The CFG form is the basis for almost all classical (pre-SSA)
intra-procedural data flow analysis techniques. For full details, consult compiler
textbooks [1] [27] [29].

The conversion from CFG to SSA involves systematic renaming of variables.
The key property of SSA is that each variable in the program must have a unique
(hence single) definition point (hence assignment) in the program text (hence
static). In order to achieve this, it is necessary to generate new variable names
at definition points, and propagate these new names to all uses reached by that
definition. At control-flow merge points reached by several definitions of a vari-
able, it may be necessary to insert pseudo-assignments (known as φ-functions) to
merge explicitly these renamed variable definitions into a new variable. In SSA
form, each unique variable definition must dominate all uses of that variable.

SSA is perceived to improve data flow analysis, since: (1) it decreases the
size of def-use chains; and (2) it enables finer-grained variable-specific data flow
information.

A def-use chain links a variable definition with all its uses. It is an additional
data structure alongside a CFG, encapsulating variable data flow in the program.
For instance, if there are 10 definitions of variable x which can reach a control
flow merge point, followed by 10 uses of x, then every definition can reach every
use. This means there are 100 data flow links for x. In the SSA version of the
program, there are just 20 data flow links: 10 from the definitions to the φ-
function at the merge point, and 10 from the φ-function to the uses. Thus SSA
can be seen to simplify def-use chains. Many authors extol this virtue of SSA
and its consequent effect on splitting live ranges [10, 5, 19, 28, 4].

SSA enables effective sparse data flow analysis: Data flow information can
be associated with a variable globally, rather than at each specific control flow
point in the program [37]. Hasti and Horwitz assert that SSA encodes control
flow information directly into variable names, which means that flow-insensitive
analysis of SSA is as accurate as flow-sensitive analysis in certain cases [13].

Thus it is commonly recognised that SSA gives some advantages over the
CFG. Research papers on SSA generally provide comparative evaluations of
CFG versus SSA for a single data flow problem, compiler optimization or system;
for example [2]. However as far as we are aware, the current paper is the first

2

to address the general issue of why SSA is better than CFG in generic and
quantitative terms.

3 Software Metrics

This section describes the various metrics we use, and how we adapt these metric
definitions for SSA. Our objective is to use software metrics to measure the
differences between CFG and SSA representations of a program. So this means
that absolute metric values are not important; we are only concerned with the
relative values for CFG and SSA representations of same program.

There are two novelties to our approach:

1. We apply software metrics to auto-generated code rather than to human-
generated code. This is not common practice, although it has been done
previously for specialized analyses [36, 35, 24].

2. We apply software metrics to compiler IR code rather than to high-level
program source code. To the best of our knowledge, this is the first instance of
such an application. We expect this is due to the limited interaction between
the software metrics and program analysis research communities.

This section focuses on intra-procedural metrics. SSA and CFG are intra-
procedural representations. Although inter-procedural versions exist [22, 34] they
are not in widespread use.

Since the CFG and SSA representations of a procedure share the same control
flow structure, we cannot use control flow metrics like cyclomatic complexity
[23] to compare them. Instead, we must concentrate on metrics that depend on
variable naming conventions. Note that we are considering compiler variables
(sometimes known as temporaries or virtual registers), rather than source code
variables.

3.1 Size Metric

We measure a procedure’s size by the number of basic blocks in the graph, i.e. |B|
for a CFG (B,E, bentry, bexit). This size metric is more appropriate for graph-
based IRs than the most common metric: source lines of code. Note that a
procedure will have the same size in both SSA and non-SSA forms.

In SSA program analysis, computational complexity measures are generally
size related. For a program of size n, the time complexity of the standard SSA
transformation algorithm is O(n2). The SSA vocabulary space complexity and
number of φ-functions are also O(n2).

3.2 Halstead Metrics

Halstead’s complexity metrics [12] were originally developed to measure the com-
plexity of program modules directly by analysis of source code. They are among
the earliest software metrics. The Halstead measures are based on four integer
values:

3

1. n1—the number of distinct operators
2. n2—the number of distinct operands
3. N1—the total number of operators
4. N2—the total number of operands

In our case, we take operands to be virtual registers in the compiler IR
code, and operators to be instructions and pseudo-instructions. Appendix A
gives a full description of how we interpret operators and operands in our metric
calculations.

From these four basic values, five complexity metrics are derived, as shown
in Table 1.

Table 1. Table of Halstead Complexity Metrics

Measure Formula
Program length N = N1 + N2
Program vocabulary n = n1 + n2
Volume V = N ∗ (log

2
n)

Difficulty D = (n1/2) ∗ (N2/n2)
Effort E = D ∗ V

Measurements n1 and N1 concern number of operators. These numbers will
be identical for CFG and SSA programs if we exclude φ-functions from consid-
eration.4 Therefore the only differences occur with n2 and N2, which concern
the names of operands. n2 should change from CFG to SSA, since it measures
number of distinct operands. On the other hand, N2 should remain unchanged,
since SSA only renames existing operands and does not introduce new instruc-
tions. (Again, we exclude φ-functions from consideration.) Generally n2 will be
greater for SSA than CFG, which means that SSA volume V should be larger
than CFG, and SSA difficulty D should be smaller than CFG. Since the volume
increase is logarithmic, whereas the difficulty decrease is linear, the overall SSA
effort E should also decrease in relation to CFG effort.

A high effort score is undesirable; it means that a program module is diffi-
cult to understand and maintain. Section 5.1 presents our empirical results for
analysis using these Halstead metrics.

3.3 Information Flow Complexity Metric

Henry and Kafura present the information flow complexity metric (IFC) [15] as
a system-level design metric. It provides a measure of the information that flows
between the various modules in a system. In the original study [15] it was applied

4 We consider this to be reasonable, since φ-functions are only copies rather than real
computational operations. A simple copy instruction does not count as an operator,
so neither does a φ-function.

4

to source code modules in UNIX. IFC has since been used for system specification
studies [18] and iterative software design [16]. IFC is often used at a lower level
than system modules; it is very commonly used to quantify information flowing
between source-level procedures in a program [21]. IFC was deemed to be a
measure that could be used to ‘produce reliable software’ enshrined in IEEE
Standard 982.2.

IFC depends on the amount of information flowing into a module, known as
fanIn, through parameters and reads of global data structures. IFC also depends
on the amount of information flowing out of a module, known as fanOut, through
return values and writes to global data structures. Finally IFC depends on the
length of the module. The original formula for calculating the IFC for a module
is given in equation 1.

IFC = length ∗ (fanIn ∗ fanOut)2 (1)

A high IFC score for a module is undesirable. Long modules, and those
involved in lots of information flows have high IFC. The message of the original
paper is that high IFC indicates lack of maintainability. Lots of cross-module
dependencies make it difficult to change the system. This is similar to the more
recent notion of coupling in object-oriented software development [7].

In this study, we adopt IFC to measure the complexity of individual basic
blocks, at an intra-procedural level. Although it does not seem that Henry and
Kafura’s Information Flow metric is immediately applicable here, we re-interpret
the SSA representation (rather than modify the metric) to make the application
straightforward.

Procedural information flow relies on measuring number of input and output

variables in each procedure. This simply equates to parameters as inputs and
return values as outputs in most high-level languages. A single procedure in SSA
can be viewed as a collection of smaller functions in a call graph, where each basic
block from the original procedure now corresponds to a function in the call graph.
Kelsey [20] and Appel[3] give the details of this transformation. They argue that
SSA is a form of functional programming. Each basic block from the original
procedure now becomes a function. Upwardly exposed uses (variables used in a
basic block that are not previously defined in that same block) become input
parameters. Variables whose definitions in this basic block reach to other blocks
(variables that live on exit from this basic block) become output parameters.
We transform our SSA procedures into these kinds of functional programs, then
apply the IFC metric to each function.

Recalling the definition of IFC from equation 1, we now need to clarify how
to evaluate it on a given function.

– The length is the number of operations in the function, which should corre-
spond to the instructions in the original basic block.

– The fanIn is the number of input parameters for the function, which should
correspond to the number of upwardly exposed variable uses in the original
basic block.

5

– The fanOut is the number of output parameters for the function, which
should correspond to the number of variables live on exit from the original
basic block.

We aim to compute IFC scores for basic blocks in CFG and SSA IRs, and
compare them. To make this comparison, we analyse functions with their SSA
variable names to measure fanIn and fanOut, and to compute IFC. Then we re-
move subscripts from the SSA variable names to recover an approximation to the
original CFG variable names. Then we measure fanIn and fanOut for these CFG
variables, and compute IFC scores for the functions with CFG variable names.
Section 5.2 presents our empirical analysis using the IFC metric. Appendix B
gives full details of the IFC calculation.

IFC enables us to measure variable re-use. In SSA, variable names are an
infinite resource; we instantiate a new variable name at each definition point in
the program text. This is not generally the case in standard CFG code. The
CFG representation allows variable recycling, since it does not have a strict
renaming scheme like SSA. We say that CFG variable recycling occurs when
several definitions are multiplexed onto the same name. Sometimes this is due
to higher level programmer concerns, for example the definitions all relate to the
same concept, such as currentTemperature. On the other hand, the recycling
may be entirely co-incidental, for example the programmer (or compiler) re-
uses a tmp variable as a place-holder for a non-trivial arithmetic expression.
However variable re-use can reduce precision in data flow analysis, particularly
for flow-insensitive data flow analysis. Less variable re-use should make data flow
analysis easier, so IFC scores somehow act as a measure of data flow analysis
complexity. We want to compare the IFC metrics for programs in SSA and CFG
representations.

4 EXPERIMENTAL INFRASTRUCTURE

All intermediate code used in our experimental analysis is generated by the
GNU Compiler Collection (GCC) version 4.2.1, running on x86-64 Linux. The
SSA form for each procedure is extracted with the -fdump-tree-ssa flag. This
code is set to be optimized at the -O3 level, however the SSA dump occurs before
most of the optimization takes place. We construct the equivalent CFG code by
simply eliding SSA variable subscripts and φ-functions.

We create custom perl scripts to analyse the GCC-generated SSA dumps. Our
scripts extract the key parts of each SSA dump, namely operators and operands
in each basic block, without needing to parse the entire debug dump information.
This partial parsing is accomplished using techniques based on island grammars

[26]. We treat each GCC virtual operand as a variable, in our metrics. We treat
each GCC machine operation at an operator, in our metrics. Appendix A gives
a full description of the metrics calculations.

The programs to be analysed are the C language programs in the integer
section of the SPEC CPU 2000 benchmark suite [14]. Table 2 summarises the

6

procedural properties for each benchmark. Sizes are measured in terms of num-
ber of distinct basic blocks in each procedure. This measure is invariant of the
CFG/SSA transformation. Note that the 176.gcc benchmark is by far the largest
in terms of number of procedures to analyse; it also has the largest single pro-
cedure.

Table 2. Table of SPEC benchmarks used in experiments, with details of their proce-
dure sizes

benchmark # procs proc size
min max mean

164.gzip 67 1 148 27.6
175.vpr 175 0 547 29.9
176.gcc 1807 1 1821 46.1
181.mcf 26 1 106 20.2

186.crafty 39 1 370 60.0
197.parser 323 1 435 27.3
254.gap 698 1 204 29.2

255.vortex 499 1 213 17.5
256.bzip2 74 1 214 17.8
300.twolf 190 1 409 47.3

5 Analysis

This section reports on several metric comparisons between CFG and SSA, using
the software metrics described in Section 3 and the tools described in Section 4.

5.1 Halstead Effort Comparisons

This investigation studies the relative difference in Halstead effort between CFG
and SSA versions of the each procedure.

The average ratio of SSA effort to CFG effort can be computed by dividing
the total SSA effort for all 3893 procedures by the total CFG effort for the
same procedures. In effect, this is an arithmetic mean, where each procedure’s
contribution is weighted by its original CFG effort. Such a calculation generally
rewards reductions for higher effort procedures, since these can cause greater
efficiency savings. This average SSA:CFG ratio is computed as 0.63, which means
that the SSA effort is 37% lower than the CFG effort.

Figure 1 shows how the CFG to SSA Halstead effort ratio changes with
program size. Again note the logarithmic scale on the x-axis. Each procedure
is denoted by a single (x, y) point, where x is the procedure size and y is the
CFG:SSA effort ratio. Points above the line y = 1 indicate that the procedure has
a lower complexity in SSA than in CFG form. The majority of points fall above

7

y = 1. The best fit curve is a line y = ax + b, computed by linear least-squares
regression. This best fit curve indicates that the magnitude of the complexity
reduction for SSA transformation increases with procedure size.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 10 100 1000 10000

C
F

G
:S

S
A

 r
at

io
 fo

r
H

al
st

ea
d

ef
fo

rt
 m

et
ric

size

Fig. 1. Correlation of CFG:SSA Halstead effort ratios with procedure size

We report the reduction in total effort for each benchmark program as a result
of the SSA transformation. For a single benchmark b, this value is computed by
summing the CFG Halstead effort scores for all procedures in b, then summing
the SSA Halstead effort scores for all procedures in b, then reporting the relative
value of the sum of SSA scores in relation to the sum of CFG scores. Thus
a relative value of 1.0 means the SSA transformation does not affect Halstead
complexity, for this benchmark. A relative value below 1.0 means that the SSA
transformation reduces the Halstead complexity, for this benchmark. Figure 2
shows these results. The Halstead effort is reduced by the SSA transformation,
for all benchmarks. As shown in the graph, the geometric mean of the complexity
ratio is 0.68, which means that the average complexity reduction for a SPEC
benchmark program in SSA form is 32%, according to Halstead’s effort metric.

5.2 Information Flow Complexity Comparison

The final investigation studies the relationship between IFC scores for SSA and
CFG versions of each basic block in each procedure.

From our set of benchmarks, there are 3893 procedures. The total number
of basic blocks over all these procedures is 141513. We adjust the IFC metrics

8

 0

 0.2

 0.4

 0.6

 0.8

 1

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
4.

ga
p

25
5.

vo
rt

ex

25
6.

bz
ip

2

30
0.

tw
ol

f

ge
om

ea
n

S
S

A
 e

ffo
rt

 r
el

at
iv

e
to

 C
F

G
 e

ffo
rt

Fig. 2. Reduction in Halstead Effort after the SSA transformation (smaller is better).

scores by adding one to each individual score. This avoids problems with zero
values when we compute SSA:CFG ratios and plot log-scale graphs.

The mean SSA:CFG ratio for IFC over all analysed basic blocks is 0.91.
Figure 3 shows the results. There is one (x, y) point for each basic block. The
x-axis gives the adjusted IFC score for the SSA version of a basic block; the
y-axis gives the adjusted IFC score for the corresponding CFG version. Note
that 90% of basic blocks have the same IFC score for both IRs. Where there is
a difference, then the CFG score is always higher than the SSA score. Thus all
points are on or above the line y = x. Note the logarithmic scales on both axes
in this graph.

We had expected more than 10% of the basic blocks to have lower IFC
for SSA than for CFG. We account for this because (i) many basic blocks are
extremely small and simple, so there is no difference between the CFG and SSA
forms; and (ii) in the GCC compiler, the CFG creation phase is allowed to use
unlimited virtual operands, like SSA creation (although without the possibility
of φ-functions). As Cooper and Torczon explain [8] this is an attempt to reduce
incidental sharing. However, there is still some reuse that can only be eliminated
by transformation from CFG to SSA.

There are several interesting trends in the graph in Figure 3. For instance,
some basic blocks have an IFC score of zero for SSA; although such scores are
adjusted to one for reasons mentioned earlier. This anomaly generally occurs be-
cause the SSA fanOut score for these basic blocks is zero, implying that there are
no outgoing live variables from the blocks in SSA. Such blocks define only global
variables. Due to issues of pointer aliasing and inter-procedural optimization, the
GCC variant of SSA gives each use of a global variable a separate subscripted
virtual operand name. Thus definitions of global variables (marked with the VDEF

9

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
F

G
 IF

C
 s

co
re

 (
+

1)

SSA IFC score (+1)

Fig. 3. Comparison of Information Flow Complexity scores for basic blocks in SSA and
CFG forms

pseudo-operation in GCC’s SSA form) appear to be defining variables that are
never used. Thus the fanOut is computed to be zero. It is legitimate to ques-
tion whether this interpretation of IFC is fair. We argue that the answer is yes,
since separate subscripts enable data flow disambiguation, which makes it easier
to analyse inter-procedural data flows for global variables. In contrast, the CFG
representation does not split namespaces for global variables, so inter-procedural
analysis is correspondingly less efficient or effective.

For the 10% of basic blocks that have greater IFC for CFG than SSA, in some
cases the CFG IFC score is orders of magnitude greater, due to the squared term
in the IFC equation.

As with Halstead effort above, we also report the reduction in metrics scores
for each individual benchmark program as a result of the SSA transformation.
For a single benchmark b, this value is computed by summing the CFG IFC scores
for all basic blocks in b, then summing the SSA IFC scores for all basic blocks in b,
then reporting the relative value of the sum of SSA scores in relation to the sum
of CFG scores. Thus a relative value of 1.0 means the SSA transformation does
not affect IFC. A relative value below 1.0 means that the SSA transformation
reduces IFC. Figure 4 shows these results. The IFC metric is reduced by the
SSA transformation, for all benchmarks. The geometric mean of the SSA:CFG
complexity ratio is 0.4, which means that the average complexity reduction for
a SPEC benchmark program in SSA form is 60%, according to the IFC metric.

Note that the complexity reduction is most dramatic for 176.gcc and 254.gap.
These benchmarks have several data structure initialization procedures with

10

extremely long basic blocks. The long blocks have high CFG fanOut scores but
significantly lower SSA fanOut scores. The squared term in the IFC equation
accounts for the massive difference in total complexity.

 0

 0.2

 0.4

 0.6

 0.8

 1

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
4.

ga
p

25
5.

vo
rt

ex

25
6.

bz
ip

2

30
0.

tw
ol

f

ge
om

ea
n

S
S

A
 e

ffo
rt

 r
el

at
iv

e
to

 C
F

G
 e

ffo
rt

Fig. 4. Reduction in Information Flow Complexity after the SSA transformation
(smaller is better).

6 Discussion

The analyses in Section 5 show that the translation of a program from CFG to
SSA generally reduces its complexity according to two standard metrics.

1. The average per-benchmark Halstead effort metric is 32% lower.
2. The average per-benchmark IFC metric is 60% lower.

Low scores for Halstead and IFC metrics usually indicate well-constructed
and easily maintained code. This observation is conventionally applied to high-
level source code, where low metrics values indicate that the code should be
straightforward for programmers to understand and modify. We argue that the
same observation may be applied to low-level intermediate code, where low met-
rics values indicate that the code should be straightforward for compilers to
analyse and optimize. Therefore, given the results of our metrics-based analyses
in Section 5, we conclude that SSA code is easier for compilers to optimize than
equivalent CFG code. Intuitively, SSA-based optimization is simpler and more
elegant.

11

The experience of the compiler construction community harmonizes with
such a conclusion. They also observe that SSA facilitates better compiler analysis
and optimization passes. For instance, Muchnick [27] states:

SSA . . . simplifies and makes more effective several kinds of optimiz-
ing transformations, including constant propagation, value numbering,
invariant code motion and removal, strength reduction, and partial re-
dundancy elimination.

Again, compiler researchers prefer SSA over CFG because SSA introduces
more local variables, which can lead to more precise data flow information being
associated with each variable. This is especially true for flow-insensitive analy-

sis, where one unit of data flow information is stored for each variable globally;
which contrasts with flow-sensitive analysis, where there are Nv units of data
flow information for each variable v (one for each of the Nv locations where v is
in scope). For example, Hasti and Horwitz [13] show that the SSA transforma-
tion makes flow-insensitive pointer analysis as accurate as flow-sensitive analysis
in some cases. Our metrics-based analysis reinforces this intuition: that SSA is
superior to CFG because it has more variables. Halstead’s effort metric captures
this property, since the effort score is inversely proportional to the number of
unique variable names (n2). The original motivation is that information is as-
sumed to be spread uniformly over all the variable names, which makes it easier
analysis to generate precise information about a single name when there are
more variable names.

Some members of the compiler community raise the objection that SSA adds
overhead to the IR, not only due to the expanded vocabulary but also because
of the many φ-function insertions required. To quote Muchnick [27] again:

The occasional large increase in program size is of some concern in us-
ing SSA form but, given that it makes some optimizations much more
effective, it is usually worthwhile.

This is clearly a valid concern; there is some baggage that comes with SSA. How-
ever as Muchnick states, the benefit outweighs the cost in general. This tradeoff
is obvious in the Halstead metrics. The volume metric increases with the CFG
to SSA transformation, due to the extra infrastructure. However the difficulty

metric decreases due to the increased vocabulary. As observed in Section 3.2,
difficulty decreases at a faster rate that volume increases; so the effort (which is
the product of volume and difficulty) also decreases in general.

Another common qualitative justification for SSA is that it localises data
flows, due to aggressive live range splitting [5, 32]. This reduces accidental sharing
of variable names. It means that variable optimizations may have fewer global
side-effects. In SSA, data flow optimizations can often occur at the peephole
optimization level due to the localization of data flows. Our new interpretation
of the IFC metric (at the basic block level) quantifies this localization. Our
analysis shows that the CFG to SSA transform does reduce static data flow
dependences between basic blocks.

12

We note one caveat from our analyses. As mentioned earlier, the GCC trans-
lator from high-level source code to CFG intermediate code (known as the gim-

plifier [25, 30]) is allowed to introduce unlimited new variable names. Although
the CFG IR does not have the single assignment property before its conversion
to SSA, it often has simplified live ranges in relation to the original high-level
program. Thus our metrics-based complexity reduction from CFG to SSA should
be treated as a lower bound. If the gimplifier did not introduce large numbers
of new variable names, then the complexity reduction would be even greater for
SSA.

However perhaps this would not be a fair evaluation of CFG, since its variable
naming convention is often far from naive. For instance, Cooper and Torczon [8]
motivate and describe their CFG-based variable naming scheme for a 1980’s
FORTRAN compiler before they became aware of SSA:

Unfortunately, associating multiple expressions with a single temporary
name obscured the flow of data and degraded the quality of the opti-
mization. The decline in code quality overshadowed any compile-time
benefits. Further experimentation led to a short set of [variable renam-
ing] rules that yielded strong optimization while mitigating growth in
the name space. . . . The compiler used these rules until we adopted SSA
form, which has its own naming discipline.

In a similar way, the CFG intermediate code generation process in GCC does
some principled variable renaming. Nevertheless, no matter how much variable
renaming is applied to CFG; apart from the SSA constraint, there is still poten-
tial for unnecessary inefficiency in compiler analyses.

So, if it were needed, this paper provides clear quantitative evidence to en-
dorse the adoption of SSA in GCC.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 2nd edn. (2006)

2. Amme, W., von Ronne, J., Franz, M.: Quantifying the benefits of ssa-based mobile
code. Electronic Notes in Theoretical Computer Science 141(2), 103–119 (2005)

3. Appel, A.W.: SSA is functional programming. ACM SIGPLAN Notices 33(4), 17–
20 (Apr 1998)

4. Braun, M., Hack, S.: Register spilling and live-range splitting for SSA-form pro-
grams. In: Proceedings of the International Conference on Compiler Construction.
Lecture Notes in Computer Science, vol. 5501. Springer (2009)

5. Briggs, P.: Register allocation via graph coloring. Ph.D. thesis, Rice University
(1992)

6. Burke, M.G., Choi, J.D., Fink, S., Grove, D., Hind, M., Sarkar, V., Serrano, M.J.,
Sreedhar, V.C., Srinivasan, H., Whaley, J.: The jalapeño dynamic optimizing com-
piler for java. In: Proceedings of the ACM 1999 Conference on Java Grande. pp.
129–141 (1999)

7. Chidamber, S., Kemerer, C.: A metrics suite for object oriented design. IEEE
Transactions on Software Engineering 20(6), 476–493 (1994)

13

8. Cooper, K.D., Torczon, L.: Engineering a Compiler. Morgan Kaufmann (2004)
9. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: An efficient

method of computing static single assignment form. In: Proceedings of the 16th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
pp. 25–35 (1989)

10. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems 13(4), 451–490 (Oct 1991)

11. Fitzgerald, R., Knoblock, T., Ruf, E., Steensgaard, B., Tarditi, D.: Marmot: An
optimizing compiler for Java. Software: Practice and Experience 30(3), 199–232
(2000)

12. Halstead, M.H.: Elements of Software Science. Elsevier (1977)
13. Hasti, R., Horwitz, S.: Using static single assignment form to improve flow-

insensitive pointer analysis. In: Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 97–105 (1998)

14. Henning, J.L.: SPEC CPU2000: Measuring CPU performance in the new millen-
nium. IEEE Computer 33(7), 28–35 (2000)

15. Henry, S., Kafura, K.: Software structure metrics based on information flow. IEEE
Transactions on Software Engineering 7(5), 510–518 (1981)

16. Henry, S., Selig, C.: Predicting source-code complexity at the design stage. IEEE
software 7(2), 36–44 (1990)

17. Holloway, G.: The Machine-SUIF static single assignment library (2001), http:
//www.eecs.harvard.edu/hube/software/nci/ssa.html

18. Ince, D., Shepperd, M.: An empirical and theoretical analysis of an information
flow-based system design metric. In: Proceedings of the European Conference on
Software Engineering. Lecture Notes in Computer Science, vol. 387, pp. 86–99
(1989)

19. Johnson, R., Pingali, K.: Dependence-based program analysis. In: Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. pp. 78–89 (1993)

20. Kelsey, R.A.: A correspondence between continuation passing style and static single
assignment form. ACM SIGPLAN Notices 30(3), 13–22 (Mar 1995)

21. Laird, L.M., Brennan, M.C.: Software measurement and estimation: a practical
approach. Wiley (2006)

22. Liao, S.W., Diwan, A., Bosch, Jr., R.P., Ghuloum, A., Lam, M.S.: SUIF explorer:
an interactive and interprocedural parallelizer. In: Proceedings of the 7th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. pp.
37–48 (1999)

23. McCabe, T.: A complexity measure. Proceedings of the 2nd International Confer-
ence on Software Engineering (1976)

24. McDonald, P., Strickland, D., Wildman, C.: Estimating the effective size of auto-
generated code in a large software project. In: Proceedings of the 17th International
Forum on COCOMO and Software Cost Modeling (2002)

25. Merrill, J.: GENERIC and GIMPLE: A new tree representation for entire functions.
In: Proceedings of the First Annual GCC Developers’ Summit. pp. 171–179 (2003),
ftp://gcc.gnu.org/pub/gcc/summit/2003/GENERIC%20and%20GIMPLE.pdf

26. Moonen, L.: Generating robust parsers using island grammars. In: Proceedings of
the Eighth Working Conference on Reverse Engineering. pp. 13–22 (2001)

27. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann (1997)

14

28. Mycroft, A.: Type-based decompilation. In: Proceedings of the 8th European Sym-
posium on Programming. Lecture Notes in Computer Science, vol. 1576, pp. 208–
223. Springer (1999)

29. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
(1999)

30. Novillo, D.: Tree SSA—a new optimization infrastructure for GCC. In: Proceedings
of the First Annual GCC Developers’ Summit. pp. 181–193 (2003), http://www.
airs.com/dnovillo/Papers/tree-ssa-gccs03.pdf

31. Novillo, D.: Design and implementation of Tree SSA. In: Proceedings of the Second
Annual GCC Developers’ Summit. pp. 119–130 (2004), http://www.airs.com/

dnovillo/Papers/tree-ssa-gcc2004.pdf

32. Quintão Pereira, F.M., Palsberg, J.: Register allocation by puzzle solving. In: Pro-
ceedings of the 2008 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation. pp. 216–226 (2008)

33. Schouten, D., Tian, X., Bik, A., Girkar, M.: Inside the Intel compiler. Linux Journal
2003(106), 4 (2003), http://www.linuxjournal.com/article/4885

34. Staiger, S., Vogel, G., Keul, S., Wiebe, E.: Interprocedural Static Single Assignment
Form. In: Proceedings of the 14th Working Conference on Reverse Engineering.
pp. 1–10 (2007)

35. Succi, G., Liu, E.: A relations-based approach for simplifying metrics extraction.
Applied Computing Review 7(3), 27–32 (1999)

36. Ward, M., Bennett, K.: Formal methods to aid the evolution of software. Inter-
national Journal of Software Engineering and Knowledge Engineering 5(1), 25–47
(1995)

37. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
ACM Transactions on Programming Languages and Systems 13(2), 181–210 (Apr
1991)

A Operators and Operands in our Metrics Calculations

We have precise definitions of what constitutes an operator or an operand, for
the GCC intermediate code that we analyse. This allows us to apply the Halstead
metrics consistently to all procedures that we analyse.

Operands are real and virtual statement operands from GCC Tree SSA [31].
A real operand represents a single, non-aliased, memory location which is atom-
ically read or modified by a statement (i.e., variables of non-aggregate types
whose address is not taken). A virtual operand represents either a partial or
aliased reference (i.e., structures, unions, pointer dereferences and aliased vari-
ables).

Operators are basic GIMPLE three-address operators, as outlined in Table
3. Each operator takes in one or more operand values and performs a single
computational operation.

B Calculation of Information Flow Complexity Metric

The IFC metric value for a function (that was originally a basic block in an SSA
procedure) depends on three fundamental measures: length, fanIn and fanOut.

15

Table 3. GIMPLE operators

operator(s) description
[] array subscript

+, −, ∗, / arithmetic, pointer deref
&, |, ˜, ˆ logical
<<, >> shift

==, ! =, <, >, <=, >= comparison
case switch statement test

VUSE, VMAYDEF, VMUSTDEF,PHI Tree SSA pseudo-operators

The length is computed as the number of GIMPLE operators in the func-
tion. Since GIMPLE is a three-address code, there is generally one operator per
instruction.

Given a function f that is derived from original basic block b, the fanIn is
computed as the number of input parameters for f . There is one input parameter
to f for each variable that has an upwardly exposed use in b, whose variable
definition dominates b. Again, there is one input parameter to f for each variable
that is defined by a φ-function at the head of b. (Appel [3] explains how variables
defined on the left hand side of φ-functions become formal parameters in function
definitions, and variables used on the right hand side of φ-functions become
actual parameters in function calls.)

The fanOut for f is computed as the number of variables defined in f that are
used in another function, plus the number of return values for f . Note that some
functions define variables that are never used elsewhere. This may be because
the live range of such a variable is restricted that single function. Another reason
is that GCC has special virtual operands. Each aliased memory location has a
distinctly named virtual operand for every static occurrence of that location: i.e.
each aliased location has an associated virtual operand that is redefined at every
potential definition or use of that location. Such virtual operands may appear to
be defined and never used. Section 5.2 discusses how we handle such operands.

16

