SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Expe2000;00:1-7 Prepared usingpeauth.cls [Version: 2002/09/23 v2.2]

Conditioned Semantic Slicing P
for Abstraction; Industrial &
Experiment?

Martin Ward*, Hussein Zedah Matthias Ladkaliand Stefan Natelbetg

De Montfort University, Gateway House, The Gateway, LéscgsE1 9BH

SUMMARY

One of the most challenging tasks a programmer can face is &inpting to analyse and understand a
legacy assembler system. Many features of assembler makeadysis difficult, and these are the same
features which make migration from assembler to a high levelanguage difficult. In this paper we discuss
the application of program transformation technology to asist with analysing and understanding legacy
assembler systems. We briefly introduce the fundamentals afur program transformation theory and
program slicing which generalises to conditional semantislicing. These transformations are applied to
a large commercial assembler system to automatically genate high-level abstract descriptions of the
behaviour of each assembler module, with error handling cod sliced away. The assembler system was
then migrated to C. The result is a dramatic improvement in the understandability of the programs: on
average a 6,000 line assembler listing is condensed down td @2 line high level language abstraction. A
second case study, involving over one million lines of soueccode from many different assembler systems
showed equally dramatic results.

KEY WORDS. Slicing, Program Transformation, FermaT, WSL, Legacy éksbler, Reverse Engineering,
Reengineering

Contents
1 INTRODUCTION 2
1.1 Contributions. e e 3

"The work is supported by Software Migrations Limited (SML).

*martin@gkc.org.uk

Shzedan@dmu.ac.uk

Tmatthias@ladkau.de

I stefanNatelberg@t-online.de

*Correspondence to: De Montfort University, Gateway Hol$e Gateway, Leicester, LE1 9BH

Received December 3, 2007
Copyright(© 2000 John Wiley & Sons, Ltd.

2 M. WARD ET AL

2 THE CHALLENGE FOR AUTOMATED ASSEMBLER ANALYSIS 3

3 OUR APPROACH 6

4 WSL AND PROGRAM TRANSFORMATION THEORY 6
41 WSL. . . 8
4.2 Conditional Semantic SlicinginFermaT. 10
4.3 Automated MigrationinPractice e 10
4.4 Example of an Automated Migration of AssemblertoC. 11
4.5 Raising the AbstractionlLevel. L L 19

5 RELATED WORK 24
5.1 AmorphousProgramSlicing 24
5.2 Slicing and Program Transformatian. 24
5.3 Semantic Slicing Versus Dataflow-Based Slicing. 25
5.4 CodeSurfer. 28
5.5 Slicing Nondeterministic Programs. e 28

6 THE Fermal TECHNOLOGY 28
6.1 The TransformationEngine. 28

7 CASE STUDIES 29
7.1 Case Study 1: AFull AssemblerSystem 30
7.2 Case Study 2: A Random Sample of Assembler Modules. 31

8 CONCLUSION 33

Bibliographyd3

1. INTRODUCTION

Over 70% of all business critical software runs on mainfraniewe examine the global distribution
of language use, we find that over 10% of all code currentlypiaration is implemented in assembler.
This amounts to 140-220 billion lines of assembler cddiefiuch of which is running business critical
and safety critical systems. The percentage varies inrdiftecountries, for example, in Germany it
is estimated that about half of all data processing orgéioizs.uses information systems written in
assembler.

There is a large amount of IBM 370 assembler currently in apen, but there is a decreasing pool
of experienced assembler programmers. As a result, thénersasing pressure to move away from
assembler, including pressure to move less critical sys@mway from the mainframe platform, so the
legacy assembler problem is likely to become increasinglgee.

Analysing assembler code is significantly more difficultrttenalysing high level language code.
With a typical well-written high level language programgtfairly easy to see the top level structure of
a section of code at a glance: conditional statements apd e clearly indicated, and the conditions

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

CONDITIONED SEMANTIC SLICING 3
&

are visible. A programmer can glance at a line of code and seeca that it is, say, within a double-
nested loop in the ELSE clause of a conditional statemerserbler code, on the other hand, is simply
a list of instructions with labels and conditional or unciimhal branches. A branch to a label does not
indicate whether it is a forwards or backwards branch, andekwards branch does not necessarily
imply a loop.

If a large body of assembler code can be replaced by a smatieuiat of high level language
code, without seriously affecting performance, then thieptal savings (in the form of software and
hardware maintenance costs) are very large.

In this paper we discuss the application of program tramsé&tion technology to assist with
analysing and understanding legacy assembler systems.iN\eravide a brief introduction to our
program transformation theory and the wide spectrum laggu&SL. We show that transformation
theory provides a unified mathematical framework for progsdicing and for transforming low level
programs into semantically equivalent higher level progsand illustrate the dramatic improvements
in understandability that can be achieved.

1.1. Contributions

In Sectiond.4we give an example which illustrates how a small, but faidynplex assembler module
is transformed into a simple, structured WSL program whicleasily translated into C or COBOL.
The assembler code included a complex control flow structite many tests and branches, and two
examples of self-modifying code (modifying the end of daddrass stored in a Data Control Block,
and modifying a branch instruction). FermaT was able to gaeefficient, structured and maintainable
C and COBOL with no human intervention required.

In Section7 we present two case studies of migrating large-scale adeerapstems. These
demonstrate that the program transformation technologg uis the small example is able to scale
up to apply to large bodies of assembler code while still fhomg a dramatic reduction in complexity.
A programmer attempting to understand the function of aramniliar module has no option but to
examine the listing (the source files usually do not includeugh information, since much of the
details are hidden in macros and copybooks). In our caséestuthe average listing was over 6,000
lines long, while the average abstract WSL program was o8%/lihes.

2. THE CHALLENGE FOR AUTOMATED ASSEMBLER ANALYSIS

The technical difficulty of generating a high-level abst@description of assembler code should not be
underestimated. Translating assembler instructionsgatiiresponding HLL (High Level Language)

code, and even unscrambling spaghetti code caused by thaf lamels and branches, is only a very

small part of the analysis task. Other technical problerokigte:

e Register operations: registers are used extensively enasler programs for intermediate data,
pointers, return addresses and so on. The high-level canlddskliminate the use of registers
where possible;

e Condition codes: test instructions set a condition code agsflwhich can then be tested by
conditional branch instructions. These need to be combirtedtructured branching statements

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

4 M. WARD ET AL

such adf statements owhile loops: note that the condition code may be tested more the®,on
perhaps at some distance from the instruction which se&®itt is not sufficient simply to look
for a compare instruction followed by a conditional branch;

e Subroutine call and return: in IBM 370 assembler a subreutiall is implemented as a BAL
(Branch And Link) instruction which stores the return adsrén a register and branches to the
subroutine entry point (there is no hardware stack). Torrettom the subroutine the program
branchesto the address in the register via a BR (Branch ts®egnstruction. Return addresses
may be saved and restored in various places, loaded intdexetif register, overwritten, or
simply ignored. Also, a return address may be incrementelréinch over parameter data which
appears after the BAL instruction). Merely determining @hinstructions form the body of the
subroutine can be a major analysis task: there is nothingppotee programmer from branching
from the middle of one subroutine to the middle of anothetiray for example;

e The 370 instruction set includes an EX (EXecute) instructichich takes a register number
and the address of another instruction. The referencerligigin is loaded and then modified
by the value in the register, and then the modified instractioexecuted. This can be used
to implement a “variable length move” instruction, by malify the length field of a “move
characters” instruction, but any instruction can be EXeduEXecuting another EX instruction
causes an ABEND (Abnormal program termination, or “crasBYme programmers will write
EX RO, * (which causes the instruction to execute itself) preciselgchieve an ABEND: so the
translator has to take this into account also;

e Jump tables: these are typically a branch to a computed sseldieich is followed by a table of
unconditional branch instructions. The effect is a muléiywbranch, similar to the “computed
GOTOQO” in FORTRAN. There are many ways to implement a jumpeablassembler: often the
branch into the table will be a “branch to register” instiantwhich must be distinguished from
a “branch to register” used as a subroutine return;

e Self-modifying code: a common idiom is to implement a “firshé through switch” by
modifying a NOP instruction into an unconditional branch,modifying an unconditional
branch into a NOP. A NOP is a “no operation” instruction. Thlisactually implemented as
a “branch never”. So by overwriting the part of the instrootiwhich records the conditions
under which the branch is taken, a “branch never” can be atetvénto a “branch always” and
vice versa. Less commonly a conditional branch can be maddifiecreated. Overwriting one
instruction with a different one is not uncommon, but moreeyal self-modifying code (such
as dynamically creating a whole block of code and then exagiut) is rare in 370 assembler
systems;

e System macros: the macro expansion for a system macro thystares values in a few registers
and then either executes an SVC call (a software interrujptiwimvokes an operating system
routine) or branches to the operating system. It does notensakise to translate the macro
expansion to HLL, so the macros should be detected and a&tadsseparately. Some macros
may cause “unstructured” transfer of control: for example system GET macro (which reads
a record from a file) will branch to a label on reaching the efithe file. The end of file label is
not listed in the macro, but in the DCB (Data Control Block)ighitself may only be indirectly
indicated in the GET macro line. The DCB itself may refer to@BEE macro which records the
label to branch to when an end of file condition is encountered

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

CONDITIONED SEMANTIC SLICING 5
&

e User macros: users typically write their own macros, andefraay include customised versions
of system macros. The translation technology needs to bayh@stomisable to cope with
these and to decide in each case whether to translate the whaectly, or translate the macro
expansion;

e Structured macros: in the case of so-called “structuredasd¢lF, WHILE etc.) itis best simply
to translate the macro expansion because there are natiesision using structured macros in
unstructured ways. The simplest solution is to translagenttacro expansion and use standard
WSL to WSL transformations to restructure the resultingeod

e Data translation: all the assembler data declarations tebd translated to suitable HLL data
declarations. Assembler imposes no restrictions on datstya four byte quantity can be used
interchangeably as an integer, a floating point number, atpgian array of four characters,
or 32 separate one-bit flags. Ideally, the HLL data shouldal dut in memory in the same
way as the assembler data: so that accessing one data el@mantoffset from the address of
another data element will work correctly. Reorganisingdata layout (if required) is a separate
step that should be carried aafter migration, rather than attempting to combine two complex
operations (migration and data reorganisation) into alsipgocess. Symbolic data names and
values should be preserved where possible, for example:

RECLEN EQU *- RECSTART

should translate to code which defiRECLLEN symbolically in terms oRECSTART;

e Pointers: these are used extensively in many assemblergonsg|f the HLL is C then pointers
and pointer arithmetic is available: for COBOL it is still ggble to emulate the effect of pointer
arithmetic, but the code is less intuitive and less famtliamany COBOL programmers;

e Memory addressing: DSECT datain a 370 assembler prograceésaed through a base register
which contains the address of the start of the block of dathelbase register is modified, then
the same symbolic data name will now refer to a different mgrtaxration;

e Packed Decimal Data: 370 assembler (and COBOL also) haivesapport for packed decimal
data types. IBM’s mainframe C compiler also supports pademimal data, but if the migration
is to a different platform then either the data will need tottaamslated, or the packed decimal
operations will have to be emulated;

e Pointer lengths may be different in the source and targefuages;

e “Endianness”: when migrating to different hardware platis, the two systems might store
multi-byte integers in different orders (most significagtédofirst vs least significant byte first).
For example, the IBM 370 is a “big endian” machine with the tredgnificant byte of a number
stored first. The Intel PC architecture is “little endiant Suppose that the assembler program
loads the forth byte of a four byte field. If this field contaiams integer, then we want to load
the low order byte (which is théirst byte on a little endian machine). But if this field contains
a string, then we want the forth character, not the first. €igmothing to stop the assembler
programmer from using a four byte character field as an imfegel vice-versal!

Another major application for assembler code is in embedslesiems. Many embedded systems
were developed for processors with limited memory and msiog capability, and were therefore
implemented in tightly coded hand written assembler. Mogocessors are now available at a lower
cost which have much more processing and memory capacitwahefficient C compilers. To make

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

6 M. WARD ET AL

use of these new processors the embedded system needs tioipden@mented in a high level language
in order to reduce maintenance costs and enable implen@ntaft major enhancements. Many of
the challenges with 370 assembler (such as the EXecutaudtistn and self-modifying code) are
not relevant to embedded systems processors, but othéernpas become important (such as 16 bit
addresses and 8 or 16 bit registers). Se& for a description of a major migration project where over
half a million lines of 16 bit assembler, implementing theecof an embedded system, were migrated
to efficient and maintainable C code.

3. OUR APPROACH

Our approach to understanding and migrating assemblerioudives four stages:

1. Translate the assembler to WSL;

2. Translate and restructure data declarations;

3. Apply generic semantics-preserving WSL to WSL transfations;
4. Apply task-specific operations as follows:

(a) For migration: translate the high-level WSL to the talgaguage.
(b) For analysis: apply slicing or abstraction operatiamshte WSL to raise the abstraction
level even further.

In the following we will describe WSL and the transformatitveory and how program slicing can be
defined as a transformation within the theory. The matharabtipproach to program slicing lends
itself naturally to several generalisations, the most ingo@t and general of which is conditioned
semantic slicing.

4. WSL AND PROGRAM TRANSFORMATION THEORY

The way to get a rigourous proof of the correctness of a tansdtion is to first define precisely when
two programs are “equivalent”, and then show that the ti@mnsétion in question will turn any suitable
program into an equivalent program. To do this, we need toensakne simplifying assumptions: for
example, we usually ignore the execution time of the progrms is not because we don’t care about
efficiency but because we want to be able to use the theoryoeepghe correctness of optimising
transformations: where a program is transformed into a refireient version.

More generally, we ignore the internal sequence of stategdsthat a program carries out: we are
only interested in the initial and final states.

Our mathematical model is based denotational semantic¥Ve define the semantics of a program
as a function from states to sets of states. A state is simfplgction which gives a value to each of the
variables in a given set V of variables. The ¥eis called thestate spaceFor each initial stats, the
function f returns the set of statdgs) which contains all the possible final states of the progrararwh
it is started in stats. A special statel indicates nontermination or an error condition_llfis in the
set of final states, then the program might not terminatetfar initial state. If two programs are both
potentially nonterminating on a particular initial statieen we consider them to be equivalent on that

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

CONDITIONED SEMANTIC SLICING 7
&

Final program
- states

Initial program
states ..

~, Non-terminating
or error states

Figure 1: The semantics of a program

state. (A program which might not terminate is no more ustsfaih a program which never terminates:
we are just not interested in whatever else it might do). Sdefae our semantic functions to be such
that whenevel. is in the set of final states, theiis) must include every other state.

This restriction also simplifies the definition of semantguivalence and refinement. If two
programs have the same semantic function then they aresha&kguivalent

A transformationis an operation plus a set of conditions, called dipglicability conditions The
operation takes any program satisfying the applicabilityditions and returns an equivalent program.
In the literature, “program transformation” has a very lit@ad varied meaning: it can be used to refer
to just about any operation which takes a program, or prodgragment in some language and returns
another program or program fragment in the same or a difféamguage. In the context of this paper,
a “transformation” is alenotational semantics preserving WSL to WSL transfoonati

A generalisation of equivalence is the notionrefinementone program is a refinement of another
if it terminates on all the initial states for which the ongi program terminates, and for each such
state it is guaranteed to terminate in a possible final statéhe original program. In other words, a
refinement of a program imore define@ndmore deterministithan the original program. If program
S; has semantic functiofy andS, has semantic functiofy, then we say thas; is refined byS, (or
S, is a refinement 08;), and write:

S <S
if for all initial statesswe have:
fa(s) C fa(s)

If S; may not terminate for a particular initial stasethen by definitionf;(s) containsL and every
other state, sd(s) can be anything at all and the relation is trivially satisfigthie programabort
(which terminates on no initial state) can be refine@my other program. Insisting thét(s) include
every other state whenevé(s) contains ensures that refinement can be defined as a simple subset
relation.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

8 M. WARD ET AL

A transformationis any operation which takes a statem8&ptand transforms it into an equivalent
statemeng,. A transformation is defined in the context of a seapplicability conditionsdenoted\.
This is a (possibly empty) set of formulae which give the dbads under which the transformation is
valid. If S; is equivalent tdS, under applicability conditionA then we write:

AFS =~ S

An example of an applicability condition is a property of thenction or relation symbols which
a particular transformation depends on. For example, theestentsx := a@ b andx:=b@ a are
equivalent whemb is a commutative operation. We can write this transfornrasis:

{Vva,p.adb=bda}+x:=adb ~ x:=bda

An example of a transformation which is valid undary applicability conditions is reversing af
statement:
A ifBthen S else S, fi =~ if =B then S else S fi

More examples can be found ifj].
4.1. WSL

Over the last twenty years we have been developing the WShgukge, in parallel with the
development of a transformation theory and proof methadhis time the language has been extended
from a simple and tractable kernel language to a completepanctrful programming language. At
the “low-level” end of the language there exist automatmslators from IBM assembler, Intel x86
assembler, TPF assembler, a proprietory 16 bit assemhddé?la@ code into WSL, and from a subset of
WSL into C, COBOL and Jovial. At the “high-level” end it is mile to write abstract specifications,
similar to Z and VDM. WSL and the transformation theory hasrbdiscussed in other papers before
(see [L2, 14, 15]). A description of WSL can also be found i .

The main goals of the WSL language are:

Simple, regular and formally defined semantics

Simple, clear and unambiguous syntax

A wide range of transformations with simple, mechanicalheckable correctness conditions
The ability to express low-level programs and high-levedtedct specifications

The WSL language and the WSL transformation theory is baseidfmitary logic: an extension of
first order logic which allows infinitely long formulae. Thesnfinite formulae are very useful for
describing properties of programs: for example, termoratf a while loop can be defined as “Either
the loop terminates immediately, or it terminates after ib@@tion or it terminates after two iterations
or...". With no (finite) upper bound on the number of iteratipthe resulting description is an infinite
formula. (Note that the formula which defines the statem#re foop terminates afteriterations” is
a different formula for eacim. So it is not possible to combine these into a finitary firsteordgic
formula of the forndn. the loop terminates afteriterations).

The use of first order logic means that statements in WSL celude existential and universal
quantification over infinite sets, and similar (non-exebléh operations. The language includes
constructs for loops with multiple exits, action systemdgseffects etc., while the transformation

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

CONDITIONED SEMANTIC SLICING 9
&

theory includes a large catalogue of proven transformationmanipulating these constructs, most of
which are implemented in our transformation system, cdienaT. Seel[7] for a detailed description
of the WSL language and transformation theory.

The transformations can be used to derive a variety of effic@lgorithms from abstract
specifications or the reverse direction: using transfoiomatto derive a concise abstract representation
of the specification for several challenging programs.

A WSL statement is a syntactic object: a collection of symslsbfuctured according to the syntactic
rules of infinitary first order logic, and the definition of WSIhere may be infinite formulae as
components of the statement. The WSL language is built omplsiand tractable kernel language
which is extended into a powerful programming language bamseof definitional transformations.
These are transformations which define the meaning of negranoming constructs by expressing
them in terms of existing constructs.

The full WSL language includes low-level statements sudsagynmentst statementsyhile loops
and local variables. There are other, more unusual statetyyaes which include the following:

e An external procedure call is written:

IP foo(er,€,...en var vi,Va, ..., Vi)

The expressions; are value parameters and the Ivalugsare value-result parameters. An
external procedure is assumed to always return and to oielgtdiie values of thear parameters.

e Similarly, the conditionXc foo(ey, ..., en) is an external boolean function call.

e An assertion statemenftQ} whereQ is any formula, acts as a part&Mip statement. IfQ is true
then the statement has no effect, whil€iis false then the statement aborts. A transformation
which inserts an assertion into a program must thereforeeptioat the corresponding condition
is always true at that point in the program. Conversely, titedean assertion is always a valid
program refinement since the resulting program can only bre mell-defined. (It will be defined
on an identical or larger set of initial states, comparedh&odriginal program).

e A loop of the form:do S od is an unbounded loop which can only be terminated by exetutio
of a statemenéxit(n). This statement will immediately terminate thenclosing loops. Here
must be a simple integer, not a variable or an expressiomgatis immediately obvious which
statement is executed following tegit(n).

e An action systenis a collection of mutually-recursive parameterless pdoces:

actions A :
A1 =S end

An = S, end endactions

Here,A are the action names aigdare the corresponding action bodies. E&cls a statement
and the whole action system is also a statement: so it can loenaanent of an enclosing
statement. The action system is executed by executing tihedfdhe starting action/; in this
case). A statemeniall A; executes the corresponding bo8y A special callcall Z causes the
whole action system to terminate immediatelyefyular action is one in which every execution
of the action eventually leads to another action call. Amacsystem is regular if every action is
regular. Such an action system can only be terminateddayl 2. Since no action call can ever

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

10 M.WARDETAL

return, an action call in a regular action system is equivaie agoto. The assembler to WSL
translator generates a regular action system in which ea@macontains a complete translation
of a single assembler instruction, or macro.

4.2. Conditional Semantic Slicing in FermaT

Weiser [L8] (Pages: 352—-357) defined a program si&as areduced, executable prograabtained
from a programP by removing statements, such tiateplicates part of the behaviour & In the
context of this paper, program slicing is a useful tool tastssith understanding the behaviour of an
assembler module.

Slicing only a program without any additional assumpticnadwadays known as “static slicing”.
The term “dynamic program slice” was first introduced by Kamrd Laski P]. A dynamic slice of
a program P is a reduced executable program S which rediqzd of the behaviour of P on a
particular initial state. This initial state can be defingdrbeans of an assertion. Some researchers
allow furthermore a finite set of initial states, or a pariitial state which restricts a subset of the
initial variables to particular values (se®l]). Later researchers have generalised dynamic slicing and
combined static and dynamic slicing in various ways. Onedntitioned slicing” first presented id][
which is a generalisation of both static and dynamic slic@gr approach, which we call “conditioned
semantic slicing”, can be seen as a refinement of “conditiafieing”.

In previous publications (seel§]) we provided a unified mathematical framework for program
slicing which places all slicing work, for sequential pragrs, on a sound theoretical foundation.
The main advantage to a mathematical approach is that ittisiethto a particular representation.
In fact the mathematics provides a sound basisafoy particular representation. This mathematical
representation lends itself naturally to several gengatitins, of whicltonditioned semantic slicinig
the most general and most useful (st for further details).

A conditioned semantic slice produces a concise, abstegmesentation of the behaviour of a
program with respect to one or more outputs of interest, andet the assumption that certain
conditions hold: for example, that no error occurs. Such @regentation is very valuable to a
programmer who is unfamiliar with the program in questior avho needs to work out what the
program does under normal operation.

Many large commercial systems contain a lot of error hamgdtiade: in some cases much of the
code in a module is for error handling and this can obscuraltperithms computed by the module.
In addition, many modules produce more than one output. Bgrimg abort statements at all the
points where an error has been detected, and slicing on editfidual output it is possible to compute
a concise representation of the algorithm (the “busine&s)réor each output of the module under
normal (non error) conditions.

4.3. Automated Migration in Practice

The usual automated migration of assembler to C takes tlenfiolg steps:

1. Translate the assembler listing to “raw WSL". This tratisin aims to capture the full semantics
of the assembler program without concern for efficiency aduralancy. Typically, each

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

© 0 N o g A W N P

P e N <
© ® N o ¢ A W N P O

CONDITIONED SEMANTIC SLICING 11
&

assembler instruction is translated to a block of WSL codé&kwicaptures all the effects of
the instruction;

2. The data layout of the assembler program is analysed aneded to the equivalent structured
data using records, fields, and possibly unions if neces¢iligte that the data layout isot
changed)

3. Theraw WSL is restructured and simplified by applying géamumber of correctness preserving
WSL transformations. These restructure the control flonetioagate structuretistatementghile
loops and so on. They also remove redundant code and useodedaialysis to remove register
usage where possible. The most difficult part of analysirgparbler code is tracking return
addresses through subroutines to determine subroutinedaoies;

4. Finally, the restructured WSL is translated to the targeiguage. This is a fairly simple
transliteration process since the code is already stredtand simplified.

For semantic slicing analysis, the restructured WSL codediged to insert abort statements at the
points where error handling code appears, for example, aoracsubroutine call to display an error
message would be replaced by an abort. This allows the sanstioér to “slice away” all code related
to error handling: including code both before and after theraand any tests which branch to error
handing code. The result is a dramatically reduced progréciwincludes only the pure “business
logic”.

4.4. Example of an Automated Migration of Assembler to C

In this section we give an example of how assembler code msfwaned into small and easy-to-
understand C code. FermaTl’s semantic slicer is then apjgizensform the high-level WSL code into
a more compact abstract representation.

khkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhkhkhkhhhhhhhhhhhrrrhhhhhhhhhkkhkhkkkkkhkhhhhhhhxk

* REPORT PROGRAM *
IR RS S SRS S SRR S SRS S S S SRR SEREEEEREEEEEEEEEEEEEEEEEREEEEEEEEEEEEREEEEEEEEE S
*
* PRI NT NOGEN

REGEQU

CSECT

DCBD
START CSECT

STM R14,R12, 12(R13) SAVE ALL REQ STERS

LR R3, R15 COPY R15 TO R3

USI NG START, R3 SET UP ADDRESSABI LI TY

ST R13, WSAVE+4 SAVE R13

LA R14, WSAVE SET UP REGQ STER SAVE AREA

ST R14,8(RL3) SAVE RETURN ADDRESS (R14)

LA R13, WSAVE LOAD R13

OPEN (DDI N, (1 NPUT)) OPEN | NPUT FI LE

OPEN (RDSOUT, (QUTPUT)) OPEN OQUTPUT FILE

NI LAB140+1, X OF CLEAR THE BRANCH
Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7

Prepared usingpeauth.cls

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

12 M. WARD ET AL

LAB100

LAB170
LAB140

LAB120
LAB160

LAB130

LAB999

LABECF

PUTREC

WBAVE

VREC

NUM

WPRT

GET
LA
STCM

GET
CLC
BE

BAL

WC
PACK
ZAP

PACK
AP

wWC

CLCSE
CLCSE

LM
SLR
BR

™ O

Q88R8B38 3

DDI N, VIREC
R15, LABECF

R15, B 0111’ , DDl N+33
LAB140

DDI N, VIREC
WLAST, WORD
LABL60

R10, PUTREC
LAB999

PVORD, WORD
WORKP, NUM
TOTAL, WORKP
LABL30

WORKP, NUM
TOTAL, WORKP
LABL00

WLAST, WORD
LABL00

DDI N

RDSOUT

R13, WBAVE+4
R14, R12, 12(R13)
RL5, RL5

R14

LAB140+1, X FO’
LAB170

READ FI RST RECCRD

GET THE ADDRESS OF THE CODE
MODI FY DCB FCR NEW ECDAD
PROCESS FI RST RECORD

READ A RECORD

COVPARE TWO STRI NGS

BRANCH ON EQUAL TO LAB160

CALL SUBROUTI NE

MODI FI ED BRANCH | NSTRUCTI ON
STORE | NDEX WORD I N PRINT LI NE
CONVERT STRING TO PACKED DECI MAL
COPY WORKP TO TOTAL

CONVERT STRING TO PACKED DECI MAL
ADD NUMBER

STORE LAST WORD

RETURN FROM MODULE

SET THE BRANCH
CONTI NUE

PNUM =X 402020202020202020202120’

PNUM TOTAL
RDSCUT, WPRT
WPRT, C
WPRT+1(79) , WPRT
RLO

18F
CcL80" -
VREC
CcL20
c
CL11
CL48
cLso
WPRT

CONVERT TOTAL TO STRING IN PNUM
VRI TE QUTPUT RECORD

CLEAR PRINT LI NE

CLEAR PRINT LI NE

RETURN TO CALLER

REG STER SAVE AREA
I NPUT RECCRD AREA

Copyright(© 2000 John Wiley & Sons, Ltd.
Prepared usingpeauth.cls

Softw. Pract. ExpeR000;00:1-7

64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79

CONDITIONED SEMANTIC SLICING 13
&

PWCRD DS CL20
PNUMM DS CLI12
DS CL48

WAST DC Q20 °

TOTAL DC PL6' O’

WRKP DC PL6' O’

DDIN DCB DDNAVE=DDIN, *
DSORG=PS,)
ECDAD=LAB999, *
MACRF=GM RECFM=FT, LRECL=80

RDSOUT DCB DDNAVE=RDSOUT, *
DSCRG=PS, R
NACRF=PM RECFM:FT, LRECL=80

LTORG

*

END

When translating assembler to WSL every instruction or maeitranslated into a separate action in
a WSL action system. The name of the action is the label ofrikilction or a generated name of
the formA_xxxxxx wherexxxxxx is the hex value of the offset of that instruction from thetstd the
module.

The compare instructiorC(C) for example, translates to code which tests the conditimh sets
variablecc, representing the “condition code” in the CPU, to 0, 1 or 2@srapriate. The conditional
branch instruction expands to WSL code which testand branches to the appropriate next action.

Unlike modern microprocessors, the IBM 370 does not havenation call stack. Instead, when a
module is called it is the caller’s responsibility to progid register save area. Lines 10-16 save the
registers in the caller's save area and set up a new saveaat@ayfcalled modules (as it happens, there
are no called modules). The FermaTl migration process hasteztthis register chaining code since
the migrated code will save and restore registers autoaibtion the stack, and therefore R13 will not
necessarily point to a valid memory location. These lings akt up R3 to be the base register for the
module.

Lines 17-18 open the input and output files. Line 19 modifiestifanch instruction dtAB140 to
turn it into aNOP (branch never). Line 20 reads a record from the inpuiileN into the data are@REC.
The DCB (Data Control Block) on lines 71-74 tells the system aboaeitfile. In particular, thécODAD
parameter tells the system where to branch to on end of filth&e is a “hidden” transfer of control
from the GET macro to the labelAB999. Lines 21-22 load the address of lab&BECF into R15 and
store it 33 bytes into thBDI N data control block. This overwrites the end of data addrats amnew
label. The migrated code will not have data control blockdabels, so FermaT has to detect that the
STCMinstruction is actually changing the end of file address agtkegate an appropriate translation.
Fermal creates a new integer variaBleDAD_DDIN which records the offset from the start of the
module of the current address to branch to on an end of fileitondThe translation of th€ET macro
includes a test for end of file. If the test succeeds, thenudhent value oEODAD_DDIN is copied to a
special variable calledestination and thedispatch action is called. This action tesdsstination against
each possible branch target offset and branches to thespomding action. The same mechanism is

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

14 M.WARDETAL

used to translate subroutine calls: B (Branch And Link) instruction is translated to WSL code
which stores the offset of the return point in the given regignd calls the action with the given
label. ABR (Branch to Register) instruction is translates to code Witigpies the register value into
destination and callsdispatch.

The program reads an input file consisting of a sequence ofds@ach consisting of a string and a
number. A sample input file looks like this:

aardvark 1
aardvark 10
aardvark 17
aardvark 123
bat 2
bat 3
cow 99

Each contiguous set of records with the same string is suisathinto a single output record consisting
of the same string plus the sum of all the numbers. In this,c@sehould get:

aar dvar k 151
bat 5
cow 99

The following program is part of the raw WSL translation okethssembler module, after the
Data_Translation transformation has been applied:

var (cc:=0,

destination := 0,

EODAD_DDIN := 144,

EODAD_UNKNOWN := 144> :

actions _enter_:

enter =C: <ENTRY POINT> ;
IP init_NOP_flag(0 var F_LAB140);
call START_O end

LAB100 = C: READ A RECORD;
IP GET_FIXED(DDIN var WREC, result_code, 0s);
rl5 ;= DDIN_STATUS;
if IXC end_of_file(DDIN)
then destination := EODAD_DDIN; call dispatch fi;
call A_OOOO04E end
A _00004E = C: COMPARE TWO STRINGS;
if WLAST = WREC.WORD
thencc:=0
elsif WLAST < WREC.WORD
thencc:=1
else cc := 2 fi;

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

CONDITIONED SEMANTIC SLICING 15
&

call A_000054 end
A 000054 = C: BRANCH ON EQUAL TO LAB160;
if cc = 0 then call LAB160 fi;
call LAB170 end
LAB170 = C: CALL SUBROUTINE;
rl0:=92;
call PUTREC end

A _0000D0 =C: RETURN TO CALLER;
destination :=r10;
call dispatch end
dispatch = if destination =0
then call Z
elsif destination = 92
then call LAB140
elsif destination = 144
then call LAB999
elsif destination = 168
then call LABEOF
else C: Unknown destination ¢all Z fi end
endactions end

A sequence of WSL transformations are applied to this “ranl\Wighich restructure and simplify
the action system into procedures and loops. The transt@nsaalso automatically remove tlee
variable. Removing thec references significantly reduces the cyclometric compjefithe resulting
code. For example, actioms 00004E andA_000054 above will simplify to a single action:

A _00004E = C: COMPARE TWO STRINGS;
if WLAST = WREC.WORD
then call LAB160
else call LAB170 fi end

reducing the complexity from 5 to 2. Other transformatiorsn cdramatically improve the
comprehensibility of the code while having no effect on oyaktric complexity: for example,
eliminating an unconditional branch (by replacingadl statement by the action body for an action
which is only called once) does not change the cyclometrioexity, but “spaghetti code” with
many branch statements can be very difficult to understand.

The restructured WSL code looks like this:

IP init_NOP_flag(0 var F_LAB140);

C: SAVE ALL REGISTERS;

IP push_regs(r0,r1,r2,...,rl4 var reg_stack);
IP chain_reg(var r13,0s);

C: COPY R15TORS;

C: SAVE R13;

C: SET UP REGISTER SAVE AREA;

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

16 M. WARD ET AL

C: SAVE RETURN ADDRESS (R14);
C: LOAD R13;
C: OPEN INPUT FILE;
P OPEN(DDIN,“I NPUT” var result_code, 0s);
C: OPEN OUTPUT FILE;
IP OPEN(RDSOUT, “QUTPUT” var result_code, 0s);
C: CLEAR THE BRANCH;
F_LAB140 :=0;
C: READ FIRST RECORD;
P GET_FIXED(DDIN var WREC, result_code, 0s);
if =(!XC end_of_file(DDIN))
then C: GET THE ADDRESS OF THE CODE;
C: MODIFY DCB FOR NEW EODAD;
C: PROCESS FIRST RECORD;
do C: MODIFIED BRANCH INSTRUCTION;
if F_LAB140=1
then exit(1)
else C: STORE INDEX WORD IN PRINT LINE;
WPRT.PWORD := WREC.WORD;
C: CONVERT STRING TO PACKED DECIMAL,;
IP pack(WREC.NUM var WORKP);
C: COPY WORKP TO TOTAL,;
IP zap(WORKP var TOTAL);
C: STORE LAST WORD;
WLAST := WREC.WORD;
do C: READ A RECORD;
P GET_FIXED(DDIN var WREC, result_code, 0s);
r15 ;= DDIN_STATUS;
if WLAST # WREC.WORD V !XC end_of_file(DDIN)
then exit(1)
else C: CONVERT STRING TO PACKED DECIMAL;
IP pack(WREC.NUM var WORKP);
C: ADD NUMBER;
IP ap(WORKP var TOTAL) fi od;
if IXC end_of_file(DDIN)
thenC: *
C: SET THE BRANCH,;
F_LAB140:=1,;
C: CONTINUE;
C: COMPARE TWO STRINGS;
C: BRANCH ON EQUAL TO LAB160fi;
C: CALL SUBROUTINE;
Cc: %
C: CONVERT TOTAL TO STRING IN PNUM,;

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract

Prepared usingpeauth.cls

. ExpeR000;00:1-7

CONDITIONED SEMANTIC SLICING 17
&

IP ed(TOTAL, “hex 0x402020202020202020202120"
var WPRT.PNUM, cc1, wedit_addr);

C: WRITE OUTPUT RECORD;

P PUT_FIXED(RDSOUT,WPRT var result_code, 0s);
C: CLEAR PRINT LINE;

C: CLEAR PRINT LINE;

IPill(IXF mvi(* ") var WPRT);

C: RETURN TO CALLER;

exit_flag := O fi od fi;

IP CLOSE(DDIN var result_code, 0s);
P CLOSE(RDSOUT var result_code, 0s);

IP pop_regs(
varr0,rl,r2,...,rl4 reg_stack);
ri5:=0;

C: RETURN FROM MODULE

Points to note in the WSL code:

e The code to save registers and set up the register chain lemsrbeognised and translated
to external procedure callsush_regs andchain_regs. Similarly, the code to restore registers
has been translated mp_regs. These calls are purely for documentation and are ignored in
translations from WSL to C or COBOL.

e Thedestination variable dispatch action and related code have all been eliminated autontigtica
by the restructuring transformations. Dataflow analysis éaabled FermaT to determine the
target of each end of file branch, which is then convertedrtecgired code. Also, theUTREC
subroutine has been inlined since it is only called oncénérgieneral case, assembler subroutines
will be translated into WSL single-entry, single-exit pealtires.

e The modified branch instruction has been translated to aittonal branch using a new flag
variableF_LAB140. Code which sets and clears the branch has been converteddadaset and
clear the flag.

Now it is possible to translate everything to a higher leaelJuage such as C:

#i ncl ude "fnt006. h"
FILE * ddin;

FILE *
rdsout ;

static FWORD
f lab140 = 0;

/* End of declarations */
#include "fnm 006 _init.h"

int
start _0O(regs_t * p_regs)

Copyright(© 2000 John Wiley & Sons, Ltd.

Prepared usingpeauth.cls

Softw. Pract. ExpeR000;00:1-7

18 M. WARD ET AL

{
regs = *p_regs;
exit flag = 0;
[* SAVE ALL REG STERS */
/* COPY R15 TO R3 */
[* SAVE R13 */
[* SET UP REG STER SAVE AREA */
[* SAVE RETURN ADDRESS (R14) */
/* LOAD R13 */
/* OPEN I NPUT FILE */
OPEN(ddin, "INPUT", é&result_code);
[* OPEN QUTPUT FILE */
OPEN(rdsout, "QUTPUT", &result_code);
/* CLEAR THE BRANCH */
f_labl40 = 0;
/* READ FI RST RECCRD */
GET_FI XED(ddi n,
if (!(end_of _file(ddin))) {

for (;;) {

if (f_labl40 == 1) {
br eak;
} else {

menmmove(wprt. pword, wec.word, 20);
/*

pack(workp, 6, wec.num 11);
zap(total, 6, workp, 6);

menmove(w ast, wec.word, 20);

for (;;) {

GET_FI XED(ddi n,
if ((end_of file(ddin)

(BYTE *) & wec, &esult_code);

/* GET THE ADDRESS OF THE CCDE */
/* MODIFY DCB FOR NEW ECDAD */
/* PROCESS FI RST RECORD */

/* DO loop 1 */

/* MODI FI ED BRANCH | NSTRUCTI ON */

STORE | NDEX WORD I N PRINT LINE */

CONVERT STRING TO PACKED DECI MAL */

[* COPY WORKP TO TOTAL */

[* STORE LAST WORD */

/* DO loop 2 */

/* READ A RECORD */

(BYTE *) & wec, &esult _code);

|| menmcnp(w ast, wec.word, 20))) {

br eak;
} else {

/* CONVERT STRING TO PACKED DECI MAL */

pack(workp, 6, wec.num 11);

[* ADD NUMBER */

Copyright(© 2000 John Wiley & Sons, Ltd.
Prepared usingpeauth.cls

Softw. Pract. ExpeR000;00:1-7

CONDITIONED SEMANTIC SLICING 19
&

ap(total, 6, workp, 6);
}

} [* OD */
if (end_of _file(ddin)) {
[* */
/* SET THE BRANCH */
f labl40 = 1,
/* CONTINUE */
[* COVPARE TWO STRINGS */
/* BRANCH ON EQUAL TO LAB160 */
}
/* CALL SUBROUTINE */
[* */
[* CONVERT TOTAL TO STRING I N PNUM */
ed(wprt.pnum 12, &ccl, &wedit _addr, total, 6,
"\ x40\ x20\ x20\ x20\ x20\ x20\ x20\ x20\ x20\ x20\ x21\ x20",
12);
[* WRITE QUTPUT RECORD */
PUT_FI XED(rdsout, (BYTE *) & wprt, &result _code);
/* CLEAR PRINT LINE */
/* CLEAR PRINT LINE */
menset ((BYTE *) & wprt, ' ', 80);
/* RETURN TO CALLER */
exit flag = 0;
}
} [* OD */
}

CLOSE(ddin, é&result _code);
CLOSE(rdsout, &result_code);
regs.rl5 = 0;

/* RETURN FROM MODULE */
exit_flag = 0;
return (regs.r15);

}

This C code generates identical results to the originalrabtes.
4.5. Raising the Abstraction Level

In this section we will apply transformations to raise thestediction level of the restructured WSL
program. TheRaise_Abstraction transformation carries out the following steps:

1. abort processing: this will apply simplification transformat@aroundabort statements: for
example, any code after aibort can be deleted, and afnstatement where one branch consists
of anabort can be converted to an assertion. In this example, therecaabants.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

20 M.WARDETAL

2. Delete dead code: normally in a migration, blocks of deadkcare converted to procedures in

case they are needed for debugging. For raising the alistrdevel we want to delete this code.

3. Delete all comments.

4. Convert NOP flags to local variables: this will allow tAlag_Removal transformation to have

an opportunity to remove the flags.

5. Delete calls to support functions which are only left im dfmcumentation purposes (these are
ignored in a C of COBOL migration anyway). These functiondude push_regs, pop_regs,
chain_reg andspm. The first three are concerned with register saving, rasgjoand savearea
chaining.spm represents the instruction to Set the Program Mask (ther®nodylask contains
various flags which control interrupt handling, exponerdexflow processing and so on).

. Unfold procedures which are only called once (there mas liieeen other calls in dead code).

. Delete redundant statements and simplify all statensamdexpressions.

. Apply Flag_Removal (see below).

. Convertdo ... od loops towhile loops.

© 0o ~NO®

TheFlag_Removal transformation attempts to remove flag variables from a ooy moving code
which tests the flag value closer to code which sets the flafidrcontext, a “flag” is a variable which
is only ever set to one of two distinct constant valugdag_Removal checks for candidate flags and
carries out the following transformations:

1. Flag tests are converted to test for equality against érleeotwo known possible values. For
example, if the values are 0 and 1 then a fiagt> 0 is converted to the equivalent télsy = 1.

2. Statement sequences are searched for a statement wisdhesélag, followed by a statement
(later in the same sequence) which tests the flag. If thers&atewhich sets the flag is a loop,
then the first iteration of the loop is unrolled. If the staterhis anf statement, then subsequent
statements are absorbed into it until the flag test is readf@dexample, the program:

if X > O then flag := O else flag := 1 fi;
Si;

S;

if flag = O then S fi

becomes:

if x>0
then flag := 0; S1; Sp; if flag = O then S3 fi
else flag :=1; S1; S; if flag = 0 then Sz fi fi

3. Dataflow analysis is used to determine if flag referencasearemoved. In the above example
(assuming tha$; andS, do not modify the flag) we get:

if x>0
thenflag:=0; S1; S; S3
else flag:=1; S1; S fi

4. Opportunities for “entire loop unrolling” are searched fThis makes use of the transformation:

while B; do S; od ~ while By A Bz do S; od; while By do S od

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

CONDITIONED SEMANTIC SLICING 21
&

At the end of the first while loop;(B1 A By) is true, therefore iB; is true therB; is false. So
if the second loop is entereB, must be false on the first iteration. The aim is to split theploo
into two and unroll the first iteration of the second loop iderto isolate the code which sets
the flag.

5. Potential “first time through” flags are searched for: thig’here a flag is tested in a loop body,
and subsequently set. If this is found, then “speculativelsoll” to see if the loop body can be
simplified.

As a result of these transformations, FermaT is able to ahiei the variablée_LAB140 from the
program and restructure it as follows:

P OPEN(DDIN,“I NPUT” var result_code, 0s);
IP OPEN(RDSOUT, “QUTPUT” var result_code, 0s);
P GET_FIXED(DDIN var WREC, 10,1, result_code, 0s);
while —(!XC end_of_file(DDIN)) do
WPRT.PWORD := WREC.WORD;
IP pack(WREC.NUM var WORKP);
TOTAL := WORKP;
WLAST := WREC.WORD;
IP GET_FIXED(DDIN var WREC, r0,r1, result_code, 0s);
while WLAST = WREC.WORD A —(!XC end_of_file(DDIN)) do
IP pack(WREC.NUM var WORKP);
IP ap(WORKP var TOTAL);
P GET_FIXED(DDIN var WREC, 10,1, result_code, 0s)
od;
IP ed(TOTAL,“hex 0x402020202020202020202120"
var WPRT.PNUM, cc1, wedit_addr);
IP PUT_FIXED(RDSOUT,WPRT var result_code, 0s);
IPfill(* " var WPRT) od;
P CLOSE(DDIN var result_code, 0s);
P CLOSE(RDSOUT var result_code, 0s);

This translates to the following C code:
#include "fnt006. h"

FILE * ddin;
FILE *

rdsout;
/* End of declarations */

#include "fnt 006 _init.h"

i nt

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

22 M.WARDETAL

start_0(regs_t * p_regs)
{
regs = *p_regs;
[* <NAME=START_0> */
OPEN(ddin, "INPUT", é&result code);
OPEN(rdsout, "QUTPUT", &result _code);
CGET_FI XED(ddin, (BYTE *) & wrec, &result_code);
while (!'(end_of _file(ddin))) {
memove(wprt. pword, wec.word, 20);
pack(workp, 6, wec.num 11);
menmove(total, workp, 6);
menmove(w ast, wec.word, 20);
CGET_FI XED(ddin, (BYTE *) & wec, &esult_code);
while ((!(end_of _file(ddin))
&& ! (menmcnp(w ast, wec.word, 20)))) {
pack(workp, 6, wec.num 11);
ap(total, 6, workp, 6);
CGET_FI XED(ddin, (BYTE *) & wrec, &esult_code);
} [* QD */
ed(wprt.pnum 12, &ccl, &wedit _addr, total, 6,
"\ x40\ x20\ x20\ x20\ x20\ x20\ x20\ x20\ x20\ x20\ x21\ x20", 12);
PUT_FI XED(rdsout, (BYTE *) & wprt, &result_code);
menset ((BYTE *) & wprt, ' ', 80);
} [* QD */
CLOSE(ddin, é&result _code);
CLOSE(rdsout, &result _code);
return (0);

}

This C code also produces identical results to the origiss¢mbler.

The C code contains several function calls for handling pdakecimal operationgack, ap and
ed. The C compiler for the IBM mainframe includes native paclledimal data types, so tipack and
ap calls are implemented as macros which use native packethdkeoperations on this platform. On
other platforms the calls are implemented as function ¢allsmulation functions.

The COBOL language includes native packed decimal data el converting a string to a packed
decimal is implemented as a sim@WeVE statement with appropriately declared source and target
data elements. Similarly, the edit operation (which cots/ampacked decimal number to a string with
leading zeros suppressed) can be implemented as a sifiNfeto a data element declared with the
appropriate PICTURE clause. So the COBOL migration of thetralot WSL program is as follows:

PROCEDURE DI VI SI ON.

MAI'N SECTI ON.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

CONDITIONED SEMANTIC SLICING 23
&

OPEN | NPUT DDI N
OPEN OUTPUT RDSOUT
SET NOT- END- OF- FI LE TO TRUE
READ DDI N | NTO WREC
AT END SET END- OF- FI LE TO TRUE
END- READ
PERFORM UNTI L END- OF- FI LE
MOVE WORD TO PWORD
MOVE NUM TO WWORKP
MOVE WORKP TO TOTAL
MOVE WORD TO WLAST
SET NOT- END- OF- FI LE TO TRUE
READ DDI N | NTO WREC
AT END SET END- OF- FI LE TO TRUE
END- READ
PERFORM UNTI L (WL.AST NOT = WORD
OR END- OF- FI LE)
MOVE NUM TO VIORKP
ADD WORKP TO TOTAL
SET NOT- END- OF- FI LE TO TRUE
READ DDI N | NTO WREC
AT END SET END- OF- FI LE TO TRUE
END- READ
END- PERFORM

* #SMLED# EDVSK- BZZ777777779
MOVE TOTAL TO EDVBK- BZZ777777779
MOVE EDNVBK- BZZZ77777779 TO PNUM
VR TE RDSOUT- RECORD FROM WPRT
MOVE SPACES TO WPRT
END- PERFORM

CLOSE DDIN
CLOSE RDSCQUT

MAI N- EXI T.

PERFORM QUI T- PROGRAM

The special commen#SM.ED# EDVBK- BZZZ77777779" tells the COBOL data generator to declare a
data item of the given name with the appropriate PICTURE.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

24 M.WARDETAL

5. RELATED WORK

This section will compare our slicing approach to the worlotifer slicing researchers. For a deeper
discussion the interested reader is referred.@).

5.1. Amorphous Program Slicing

Harman and DanicicH, 8] coined the term “amorphous program slicing” for a combioatof
slicing and transformation of executable programs. To date transformations have been restricted
to restructuring snd simplifications, but the definition ofamorphous slice allows any transformation
(in any transformation theory) of executable programs.

We define a “semantic slice” to be any semi-refinement in W8Ithe concepts of semantic slicing
and amorphous slicing are distinct but overlapping. A saroatice is defined in the context of WSL
transformation theory, while an amorphous slice is defimeterms of executable programs (WSL
allows nonexecutable statements including abstract Bpatdn statements and guard statements).
Also, amorphous slices are restricted to finite programsleMvSL programs (and hence, semantic
slices) can include infinitary formulae. To summarise:

1. Amorphous slicing is restricted to finite, executablegureoms. Semantic slicing applies to
any WSL programs including non-executable specificati@testents, non-executable guard
statements, and programs containing infinitary formulae;

2. Semantic slicing is defined in the particular context & YWSL language and transformation
theory: amorphous slicing applies to any transformatioeotls or definition of program
equivalence on executable programs.

5.2. Slicing and Program Transformation

Tip [10] suggested the computation of slices using a mixture oiingliand transformation in which a
program s translated to an intermediate representati®dn {fhe IR is transformed and optimised (while
maintaining a mapping back to the source text), and sliceg@racted from the source text.

As an example, consider the following program, where we kg on the final value of y:

ifp=q
then x:=18
else x:= 17fi;
if p#q
theny =X
else y ;= 2fi

Tip’s slicer ought to be capable of producing the followitiges

ifp=q
then skip
else x:= 17fi;

ifp7#q

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

CONDITIONED SEMANTIC SLICING 25
&

ctrl

ctrl

Q?c) 28 ci=g

x:=f p?(i)
ci=g L p?(i)
i=h % pi)
a?c) = pAi)
p2(i) =2 ji:=h()

Table I. Control and data dependencies in the example progra

theny =X
else y := 2fi

The FermaT toolset with its semantic slicer produces a sagmitly smaller slice:

y:=if p=qthen 2 else 17fi
5.3. Semantic Slicing Versus Dataflow-Based Slicing

To give a good example of the progressiveness of the sensiciing consider the example where we
are slicing on the final value of

while p?(i) do
if g?(c)
then x:= f; c:= gfi;
i:=h(i)od

Any dataflow-based slicing algorithms (such &3) [will observe that there is a data dependency
between the final value ofand the assignmert= f. There is a control dependency between the test
g?(c) and the assignment:= f and there is a data dependency between g andqg?(c). Similarly,
there is a control dependency betweer- f andp?(i) and a data dependency betwees h(i) and
p?(i). Tablel summarises the dependencies. If the algorithm simply vi@lall dependencies in
order to determine what statements to include in the sl it will conclude that all the statements
affectx. FermaT includes implementations for several differeitirsl) algorithms, one of these (the
Syntactic Sliceruses just such a dependency tracking algorithm. The syntdicer divides the WSL
program into “basic blocks” and determines control and daj@endencies between the blocks. These
dependencies are tracked to compute a slice. So this séitens the whole program when asked to
slice on the final value of.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

26 M.WARDETAL

It should not be surprising that the dataflow algorithm sames produces a less than minimal slice,
since the task of determining a minimal slice is noncompletabthe general case: so there can be no
algorithm which always returns a minimal syntactic slice.

For semantic slicing, speculative unrolling can be appligtke transformation system unrolls the
first step of the loop to give:

if p2(i)
then if g?(c)
then (c:=g,x:= f) fi;

i :=h(i);

while p?(i) do
if 9?(C)

then (c:=g,x:= f) fi;

i :=h(i) od fi

(Here, the statemerit := g,x:= f) is a parallel assignment statement).
It then appliestully_Absorb_Right to the inneiif statement:

if p?(i)
then if g?(c)
then {g?(c)};
(c:=g,x:=f);
i :=h(i);
while p?(i) do
if g?(c)
then (c:=g,x:= f) fi;
i:=h(i) od
else {—q?(c)};
i :=h(i);
while p?(i) do
if g?(c)
then (c:=g,x:= f) fi;
i :=h(i) od fi fi

The statemen{—qg?(c)} is an assertion. The asserti¢@} acts as akip statement (which has no
effect) when the conditioQ is true, and aborts when the condition is false. A transfaéionavhich
introduces an assertion at a point in the program corresptm@roving that the given condition is
always true at that point in the program.

Assertions are used to simplify the innetile loops:

if p?(i)
then if g?(c)
then {g?(c)};
(c:=g,x:=f);
i :=h(i);
while p?(i) do

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

CONDITIONED SEMANTIC SLICING 27
&

if g?(c)
then (c:=g,x:= f) fi;
i:=h(i) od
else {—g?(c)};
i :=h(i);
while p?(i) do
i :=h(i) od fi fi

The semantic slicing function produces this result:

if p?(i)
then if g?(c)
then {g?(c)};
(c:=g,x:=f);
i :=h(i);
while p?(i) do
if g?(c)
then (c:=g,x:= f) fi;
i:=h(i) od
else {—q?(c)}; fi
Constant_Propagation simplifies this to:
if p?(i)
then if g?(c)
then {g?(c)};
(c:=g,x:=f);
i :=h(i);
while p?(i) do
i:=h(i)od
else {—q?(c)}; fi
Another call to the semantic slicing function produces:

if p2(i)
then if g?(c)
then {g?(c)};
x:=f
else {—q?(c)}; fi
And finally, abstraction and refinement gives this result:
if p?(i) A g?(c) then x:= f fi

This is smaller than the original program, so it is returnedtee result of the transformation. The
above analysis and transformation steps were all carrieduwtomatically by FermaT’s semantic slicer
to produce the given result.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

[

28 M.WARDETAL

5.4. CodeSurfer

CodeSurfer (see: http://www.grammatech.com/produsti&surfer/overview.html) is a C and C++

code browser which includes pointer analysis, call graplassdicing. It is based on the interprocedural
slicing algorithm using dependence graphs published]itogether with the improvements published
in [3]. The product therefore has the limitations comon to albélatv based slicers (see the previous
subsection) and is aimed at syntactic, rather then semslitiicg.

5.5. Slicing Nondeterministic Programs

Binkley and Gallagher’s definition of a slicé&][is as follows:

Definition 5.1. For statemens and variablev, the sliceS of programP with respect to the slicing
criterion (s; v) is any executable program with the following properties:

. Scan be obtained by deleting zero or more statements Rom
. If P halts on input, then the value of at statemens each timesis executed irP is the same if° and

S. If P fails to terminate normallg may execute more times Bthat inP, butP andS compute the
same values each tinsgs executed byp.

This definition does not work with nondeterministic progsar@onsider the prograf

if true — xX:=1
O true — X = 2fi;

y =X

where we are slicing on the value »fat the assignment tp. Theif statement in this example is a
Dijkstra “guarded command”

According to Binkley and Gallagher’s definition, there acevalid slices ofP! EvenP itself is not a
valid slice: since the value ofaty := x may be different each timg:= x is executed. Our definition of
slicing avoids this flaw and is capable of handling nondeteistic statements. This might appear to be
unimportant in practice (since most executable programskso deterministic), but in the context of
program analysis and reverse engineering it is quite comimtabstract away” some implementation
details and end up with a nondeterministic abstraction efatiginal program. If one wishes to carry
out further abstraction on this program via slicing, theis #ssential that the definition of slicing, and
the algorithms implementing the definition, are able to cafib nondeterminism.

6. THE Fermal TECHNOLOGY
6.1. The Transformation Engine
The FermaTl Transformation Engine implements the transdtion theory described in this paper.

The basic version of the FermaT Engine (called fermat3)as Boftware (available under the GNU
General Public Licence). It includes a wide range of tramaftions operating on the WSL language

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

CONDITIONED SEMANTIC SLICING 29
&

Export to modern

Assembler language
(C, Cobol,...)
Cobol
WSL
PL/A "
e o
HEEE |]
Pascal Structural Information
Legacy System Wide Spectrum Language Specification &
source code (Procedure Oriented Language) Refined Code

Figure 2: The intention of WSL

but without source and target language translators (eegBN 360 assembler to WSL translator) and
some other extensions and migration-specific transfoonati

The WSL language can express many common constructs of quoeeoriented imperative
languages like Cobol or C as well as assembler languagethBd&M 360 assembler. Once a program
has been transferred to WSL the included transformation®eaised for restructuring and to raise the
abstraction level. If the process is successful the progiambe translated into a language which is on
a higher level that the source language. For analysis paguofka given program the engine includes
also special tools for control flow and data flow analysis @ittiernal structure of a legacy system
can be presented in diagrams.

Once the source of a legacy system can be transferred intoM8k language the FermaTl
Transformation Engine can use all its power to raise therattbn level of the code. The only
part of the process where assumptions have to be made is trati@ation process from and to the
WSL language. All the WSL to WSL transformations on the othend are mathematically proven
to be correct. The advantage of this system is that the modt iwdeing done automatically by the
transformation rules. Further details are givenif][

7. CASE STUDIES

In this section we describe an application for semantiérgjito a full commercial assembler system
and a random example of modules from twelve different orggtions. Both studies consist of hundred
thousands of lines of IBM assembler in over thousand modélesommercial company, Software
Migrations Ltd., have used the FermaT transformation sygte migrate an entire assembler system
to structured and maintainable C code running on Intel hardwinder both Windows and Linux
operating systems. The C code was also required to work uthdeariginal mainframe environment.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

30 M.WARDETAL

Table Il. Case Study 1: Lines of Code and complexity metiicsvigration to C

Total LOC Per module McCabe

Original Listings 11,959,084 6,149 —
Raw WSL 2,109,906 1,085 135
Transformed WSL 1,205,766 620 27
WSL without comments 528,440 272 27
C Code including comments 1,120,449 576 —

Our aim for this paper is to describe how FermaT was used tmaatically analyse the assembler and
generate high-level WSL abstractions for each module, aliterror handling code removed.

7.1. Case Study 1: A Full Assembler System

The first case study consisted of a complete assembler sgst@prising a total of 2,296 modules. The
purpose of this case study was to examine FermaT’s abilitgstyucture executable code and remove
error handling code. 351 of the modules consisted entiretiata declarations, so these were excluded
from the study. The remaining 1,945 modules each contaimaiiaire of code and data declarations,
these totalled 11,959,084 lines of listing (average 6,1t module).

For the first test we carried out a complete migration to C fot #45 modules. This took 7 hours
38 minutes CPU time, averaging just over 14 seconds per rapduining FermaT on a 2.6GHz PC.
FermaT applied a total of 4,167,286 transformations, ayiagp2,143 transformations per module and
152 transformations per second.

Tablell records the lines of code and McCabe complexity metricsHerraw WSL (as translated
from the assembler), the transformed WSL and the generatedtl€. The McCabe complexity for the
C code was not measured directly but should be identicalabftir the transformed WSL since the
WSL to C translation is a simple translation of “C like” WSL @code. Over 43% of the modules
(846 modules) containatb loops.

Note that in assembler code, the majority of comments arehensame line as an executable
instruction. In WSL, each comment is on a separate line. Smting these comments inflates the
number of lines of WSL, without affecting the number of liridassembler. As can be seen in Talble
well over half the lines of transformed WSL are comment lines

For the second test we made some changes to the assemblet twa'Sation table which inserted
ABORT statements at the points where the program ABENDs s eamacro to print an error
message, or where the program returns with an error codefifilestep was to apply a number of
abstraction transformations to the transformed WSL codgeteerate a high-level abstract equivalent.

Complete analysis of the entire system (all 1,945 code nexjliicluding removal of error handling
code and abstraction to high level WSL took 5 hours 10 minGfYd time on a 2.6GHz P4 processor.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

CONDITIONED SEMANTIC SLICING 31
&

Table IlIl. Lines of Code and complexity metrics for raisingstraction level

Total LOC Per module McCabe

Original Listings 11,959,084 6,149 —
Raw WSL 2,109,704 1,085 135
Transformed WSL 513,616 264 25
Abstract WSL 256,853 132 23

This is an average of under 10 seconds CPU time per modulmateapplied a total of 3,876,378
transformations, averaging 1,993 transformations perutednd 208 transformations per second.

Tablelll records the lines of code and McCabe complexity metricsferraw WSL (as translated
from the assembler), the transformed WSL (which in this cate has comments deleted) and the
abstract WSL code. A total of 410 modules contained errodhiag code that was detected and
removed. This code amounted to 16% of all the code in the nesdéor 40 of the modules, error
handling code amounted to over half the executable codeemtbdule. Over the entire system,
removing error handling code produced about a 10% reduaticomplexity.

For a programmer who needs to understand the main functibasrmdule, and the algorithms it
implements, reading a 132 line abstract WSL program shoelchbch simpler than trying to make
sense of a 6,000 line assembler listing!

7.2. Case Study 2: A Random Sample of Assembler Modules

The second case study consists of a (fairly) random sample98b6 assembler modules taken from
twelve different organisations, and representing appnaxely one million lines of source code. Of
these, 203 consisted entirely of data declarations, se thiege ignored for the code analysis tests. The
remaining 1,702 modules totalled 5,377,163 lines of Igstiaverage 3,159 per module).

A complete migration to C for all modules took 9 hours 21 m@w€PU time (19.1 seconds per
module) on the same PC as the first case study. FermaT appbi¢al af 10,376,842 transformations,
averaging 6,097 transformations per module and 308 tramsfiions per second.

TablelV records the lines of code and McCabe complexity metricstferraw WSL (as translated
from the assembler), the transformed WSL and the generatead€. Note that these listings were
shorter on average than those in the first case study, butistio expanded into more lines of WSL
code. This was mainly because the modules in the first cadg stere taken from an actual migration
project. The macros had been analysed and 53 additionabsya@re added to the translation table:
these macros were translated directly to WSL rather thaingabheir macro expansions translated.
These were macros which expanded into a significant blockd$ @and which were called throughout
the system. Directly translating the macro to the corredpanWSL code, rather than translating
the macro expansion, resulted in a significant reductiométbtal amount of WSL code generated.
For case study 2, all macros other than standard system mae@ fully expanded and the macro

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

32 M.WARDETAL

Table IV. Case Study 2: Lines of Code and complexity metricsrigration to C

Total LOC Per module McCabe

Original Listings 5,377,163 3,159 —
Raw WSL 4,047,261 2,378 372
Transformed WSL 1,890,376 1,111 65
WSL without comments 1,315,920 773 65
C Code with comments 1,658,236 974 —

Table V. Lines of Code and complexity metrics for raisingtedostion level

Total LOC Per module McCabe

Original Listings 5,377,163 3,159 —
Raw WSL 4,047,258 2,378 373
Transformed WSL 736,816 433 62
Abstract WSL 442,764 260 50

expansion was translated to WSL. In addition, the seleatfornodules used in case study 2 was
partly biased towards larger code modules since much ofdlde gvas from pilot projects to test the
capabilities of the migration engine.

Over 40.5% of the code modules (690 modules) contaimddops.

For the second test we made some changes to the assemblet twa'Sation table which inserted
ABORT statements at the points where the program is defjrktedwn to ABEND. These points were:

ABEND and PDUMP macros;

EXEC CICS ABEND calls;

SVC 13 instructions; and

SERRC calls which have parameter C (indicating a catasitagstor).

Then we applied a number of abstraction transformationbédWWSL code to generate a high-level
abstract equivalent for each module. This took a total ofd2r& 58 minutes CPU time.

FermaT applied a total of 10,318,338 transformations,ayiag 6,062 transformations per module
and 221 transformations per second.

TableV records the lines of code and McCabe complexity metricsHerraw WSL (as translated
from the assembler), the transformed WSL and the abstradt t@8e.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

CONDITIONED SEMANTIC SLICING 33
&

8. CONCLUSION

In this paper we presented the abilities of the conditioeah@ntic slicing technique and its use for
abstraction. Our approach has been demonstrated on iradesise studies and has shown the increase
of abstraction levels. The approach has been fully impleatkim an industrial strength system known
as FermaT, which is currently in use in several organisation
The FermaT engine can be found on:
http://www.cse.dmu.ac.ukimward/
The F-UML and F-DOC can be found on:
The University Technology Centre in Software Evolution @©)Tof the STRL
http://www.cse.dmu.ac.uk/STRL/research/utc/indexlht

REFERENCES

1. Capers Jones. The Year 2000 Software Problem — Quargifhia Costs and Assessing Addison Wesley, 1998.

2. Susan Horwitz Thomas Reps David Binkley. Interprocedliging using dependence graphEans. Programming Lang.
and Syst.12:26-60, 1990.

3. Susan Horwitz Thomas Reps M. Sagiv G. Rosay SpeedingaipgsProceedings of the Third ACM SIGSOFT Symposium
on the Foundations of Software Engineeriid—20, 1994.

4. G. Canfora, A. Cimitile, and A. De Lucia. Conditioned prag slicing. Information and Software Technology Special
Issue on Program Slicingt0:595-607, 1998.

5. Mark Harman & Sebastian Danicic. Amorphous program rgjici In 5th IEEE International Workshop on Program
Comprehesion (IWPC'97Pearborn, Michigan, May 1997.

6. E. W. Dijkstra. A Discipline of Programming Prentice-Hall, Englewood Cliffs, NJ, 1976.

7. David W. Binkley & Keith Gallagher. A survey of programaitig. Advances in Computer$996.

8. Mark Harman, Lin Hu, Malcolm Munro, and Xingyuan Zhang. sBuAn amorphous slicing system which combines
slicing and transformation. IRroceedings of the Eighth Working Conference on Reversségring (WCRE'01)Los
Alamitos, California, 2001.

9. Bogdan Korel and Janusz Laski. Dynamic program slicimormation Processing Letter29:155-163, 1998.

10. F. Tip. Generation of Program Analysis Tool®hD thesis, Cantrum voor Wiskunde en Informatica, Amsterd1995.

11. G. A. Venkatesh. The semantic approach to program gliceiGPLAN Notices26(6):107-119, June 1991.

12. H. A. Priestley & M. Ward. A multipurpose backtrackingyatithm. J. Symb. Comput. 1®ages 1-40, 1994.

13. Hongji Yang & Martin Ward.Successful evolution of software systergech house, INC., 2003.

14. M. Ward. Proving Program Refinements and TransformatioBghil thesis, Oxford University, 1989.

15. M. Ward. Derivation of data intensive algorithms by fairtransformation|EEE Trans. Software Eng. 2Rages 665686,
Sept. 1996.

16. M. P. Ward and H. Zedan. .Slicing as a Program TransfeomafCM Transactions On Programming Languages and
Systems29(2), April 2007.

17. Martin Ward. Pigs from sausages? reengineering froranalster to c via fermat transformations$Science of Computer
Programming, Special Issue on Program Transformationgs@es 213-255, 2004.

18. M. Weiser. Program slicinglEEE Trans. Software Eng. 10uly 1984.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. ExpeR000;00:1-7
Prepared usingpeauth.cls

http://www.cse.dmu.ac.uk/~mward/
http://www.cse.dmu.ac.uk/STRL/research/utc/index.html

	1 INTRODUCTION
	1.1 Contributions

	2 THE CHALLENGE FOR AUTOMATED ASSEMBLER ANALYSIS
	3 OUR APPROACH
	4 WSL AND PROGRAM TRANSFORMATION THEORY
	4.1 WSL
	4.2 Conditional Semantic Slicing in FermaT
	4.3 Automated Migration in Practice
	4.4 Example of an Automated Migration of Assembler to C
	4.5 Raising the Abstraction Level

	5 RELATED WORK
	5.1 Amorphous Program Slicing
	5.2 Slicing and Program Transformation
	5.3 Semantic Slicing Versus Dataflow-Based Slicing
	5.4 CodeSurfer
	5.5 Slicing Nondeterministic Programs

	6 THE FermaT TECHNOLOGY
	6.1 The Transformation Engine

	7 CASE STUDIES
	7.1 Case Study 1: A Full Assembler System
	7.2 Case Study 2: A Random Sample of Assembler Modules

	8 CONCLUSION
	Bibliography

