
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2000;00:1–7 Prepared usingspeauth.cls [Version: 2002/09/23 v2.2]

Conditioned Semantic Slicing
for Abstraction; Industrial
Experiment†

Martin Ward‡,∗, Hussein Zedan§, Matthias Ladkau¶ and Stefan Natelberg‖

De Montfort University, Gateway House, The Gateway, Leicester, LE1 9BH

SUMMARY

One of the most challenging tasks a programmer can face is attempting to analyse and understand a
legacy assembler system. Many features of assembler make analysis difficult, and these are the same
features which make migration from assembler to a high levellanguage difficult. In this paper we discuss
the application of program transformation technology to assist with analysing and understanding legacy
assembler systems. We briefly introduce the fundamentals ofour program transformation theory and
program slicing which generalises to conditional semanticslicing. These transformations are applied to
a large commercial assembler system to automatically generate high-level abstract descriptions of the
behaviour of each assembler module, with error handling code sliced away. The assembler system was
then migrated to C. The result is a dramatic improvement in the understandability of the programs: on
average a 6,000 line assembler listing is condensed down to a132 line high level language abstraction. A
second case study, involving over one million lines of source code from many different assembler systems
showed equally dramatic results.
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1. INTRODUCTION

Over 70% of all business critical software runs on mainframes. If we examine the global distribution
of language use, we find that over 10% of all code currently in operation is implemented in assembler.
This amounts to 140–220 billion lines of assembler code [1], much of which is running business critical
and safety critical systems. The percentage varies in different countries, for example, in Germany it
is estimated that about half of all data processing organizations uses information systems written in
assembler.

There is a large amount of IBM 370 assembler currently in operation, but there is a decreasing pool
of experienced assembler programmers. As a result, there isincreasing pressure to move away from
assembler, including pressure to move less critical systems away from the mainframe platform, so the
legacy assembler problem is likely to become increasingly severe.

Analysing assembler code is significantly more difficult than analysing high level language code.
With a typical well-written high level language program it is fairly easy to see the top level structure of
a section of code at a glance: conditional statements and loops are clearly indicated, and the conditions
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CONDITIONED SEMANTIC SLICING 3

are visible. A programmer can glance at a line of code and see at once that it is, say, within a double-
nested loop in the ELSE clause of a conditional statement. Assembler code, on the other hand, is simply
a list of instructions with labels and conditional or unconditional branches. A branch to a label does not
indicate whether it is a forwards or backwards branch, and a backwards branch does not necessarily
imply a loop.

If a large body of assembler code can be replaced by a smaller amount of high level language
code, without seriously affecting performance, then the potential savings (in the form of software and
hardware maintenance costs) are very large.

In this paper we discuss the application of program transformation technology to assist with
analysing and understanding legacy assembler systems. We will provide a brief introduction to our
program transformation theory and the wide spectrum language WSL. We show that transformation
theory provides a unified mathematical framework for program slicing and for transforming low level
programs into semantically equivalent higher level programs and illustrate the dramatic improvements
in understandability that can be achieved.

1.1. Contributions

In Section4.4we give an example which illustrates how a small, but fairly complex assembler module
is transformed into a simple, structured WSL program which is easily translated into C or COBOL.
The assembler code included a complex control flow structure, with many tests and branches, and two
examples of self-modifying code (modifying the end of data address stored in a Data Control Block,
and modifying a branch instruction). FermaT was able to generate efficient, structured and maintainable
C and COBOL with no human intervention required.

In Section 7 we present two case studies of migrating large-scale assembler systems. These
demonstrate that the program transformation technology used in the small example is able to scale
up to apply to large bodies of assembler code while still providing a dramatic reduction in complexity.
A programmer attempting to understand the function of an unfamiliar module has no option but to
examine the listing (the source files usually do not include enough information, since much of the
details are hidden in macros and copybooks). In our case studies, the average listing was over 6,000
lines long, while the average abstract WSL program was only 132 lines.

2. THE CHALLENGE FOR AUTOMATED ASSEMBLER ANALYSIS

The technical difficulty of generating a high-level abstract description of assembler code should not be
underestimated. Translating assembler instructions to the corresponding HLL (High Level Language)
code, and even unscrambling spaghetti code caused by the useof labels and branches, is only a very
small part of the analysis task. Other technical problems include:

• Register operations: registers are used extensively in assembler programs for intermediate data,
pointers, return addresses and so on. The high-level code should eliminate the use of registers
where possible;

• Condition codes: test instructions set a condition code or flags which can then be tested by
conditional branch instructions. These need to be combinedinto structured branching statements
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4 M. WARD ET AL

such asif statements orwhile loops: note that the condition code may be tested more than once,
perhaps at some distance from the instruction which sets it.So it is not sufficient simply to look
for a compare instruction followed by a conditional branch;

• Subroutine call and return: in IBM 370 assembler a subroutine call is implemented as a BAL
(Branch And Link) instruction which stores the return address in a register and branches to the
subroutine entry point (there is no hardware stack). To return from the subroutine the program
branches to the address in the register via a BR (Branch to Register) instruction. Return addresses
may be saved and restored in various places, loaded into a different register, overwritten, or
simply ignored. Also, a return address may be incremented (to branch over parameter data which
appears after the BAL instruction). Merely determining which instructions form the body of the
subroutine can be a major analysis task: there is nothing to stop the programmer from branching
from the middle of one subroutine to the middle of another routine, for example;

• The 370 instruction set includes an EX (EXecute) instruction which takes a register number
and the address of another instruction. The referenced instruction is loaded and then modified
by the value in the register, and then the modified instruction is executed. This can be used
to implement a “variable length move” instruction, by modifying the length field of a “move
characters” instruction, but any instruction can be EXecuted. EXecuting another EX instruction
causes an ABEND (Abnormal program termination, or “crash”). Some programmers will write
EX R0,* (which causes the instruction to execute itself) preciselyto achieve an ABEND: so the
translator has to take this into account also;

• Jump tables: these are typically a branch to a computed address which is followed by a table of
unconditional branch instructions. The effect is a multi-way branch, similar to the “computed
GOTO” in FORTRAN. There are many ways to implement a jump table in assembler: often the
branch into the table will be a “branch to register” instruction which must be distinguished from
a “branch to register” used as a subroutine return;

• Self-modifying code: a common idiom is to implement a “first time through switch” by
modifying a NOP instruction into an unconditional branch, or modifying an unconditional
branch into a NOP. A NOP is a “no operation” instruction. Thisis actually implemented as
a “branch never”. So by overwriting the part of the instruction which records the conditions
under which the branch is taken, a “branch never” can be converted into a “branch always” and
vice versa. Less commonly a conditional branch can be modified or created. Overwriting one
instruction with a different one is not uncommon, but more general self-modifying code (such
as dynamically creating a whole block of code and then executing it) is rare in 370 assembler
systems;

• System macros: the macro expansion for a system macro typically stores values in a few registers
and then either executes an SVC call (a software interrupt which invokes an operating system
routine) or branches to the operating system. It does not make sense to translate the macro
expansion to HLL, so the macros should be detected and translated separately. Some macros
may cause “unstructured” transfer of control: for example the system GET macro (which reads
a record from a file) will branch to a label on reaching the end of the file. The end of file label is
not listed in the macro, but in the DCB (Data Control Block) which itself may only be indirectly
indicated in the GET macro line. The DCB itself may refer to a DCBE macro which records the
label to branch to when an end of file condition is encountered;
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CONDITIONED SEMANTIC SLICING 5

• User macros: users typically write their own macros, and these may include customised versions
of system macros. The translation technology needs to be highly customisable to cope with
these and to decide in each case whether to translate the macro directly, or translate the macro
expansion;

• Structured macros: in the case of so-called “structured macros” (IF, WHILE etc.) it is best simply
to translate the macro expansion because there are no restrictions on using structured macros in
unstructured ways. The simplest solution is to translate the macro expansion and use standard
WSL to WSL transformations to restructure the resulting code.

• Data translation: all the assembler data declarations needto be translated to suitable HLL data
declarations. Assembler imposes no restrictions on data types: a four byte quantity can be used
interchangeably as an integer, a floating point number, a pointer, an array of four characters,
or 32 separate one-bit flags. Ideally, the HLL data should be laid out in memory in the same
way as the assembler data: so that accessing one data elementvia an offset from the address of
another data element will work correctly. Reorganising thedata layout (if required) is a separate
step that should be carried outafter migration, rather than attempting to combine two complex
operations (migration and data reorganisation) into a single process. Symbolic data names and
values should be preserved where possible, for example:

RECLEN EQU *-RECSTART

should translate to code which definesRECLLEN symbolically in terms ofRECSTART;
• Pointers: these are used extensively in many assembler programs. If the HLL is C then pointers

and pointer arithmetic is available: for COBOL it is still possible to emulate the effect of pointer
arithmetic, but the code is less intuitive and less familiarto many COBOL programmers;

• Memory addressing: DSECT data in a 370 assembler program is accessed through a base register
which contains the address of the start of the block of data. If the base register is modified, then
the same symbolic data name will now refer to a different memory location;

• Packed Decimal Data: 370 assembler (and COBOL also) have native support for packed decimal
data types. IBM’s mainframe C compiler also supports packeddecimal data, but if the migration
is to a different platform then either the data will need to betranslated, or the packed decimal
operations will have to be emulated;

• Pointer lengths may be different in the source and target languages;
• “Endianness”: when migrating to different hardware platforms, the two systems might store

multi-byte integers in different orders (most significant byte first vs least significant byte first).
For example, the IBM 370 is a “big endian” machine with the most significant byte of a number
stored first. The Intel PC architecture is “little endian”. So suppose that the assembler program
loads the forth byte of a four byte field. If this field containsan integer, then we want to load
the low order byte (which is thefirst byte on a little endian machine). But if this field contains
a string, then we want the forth character, not the first. There is nothing to stop the assembler
programmer from using a four byte character field as an integer, and vice-versa!

Another major application for assembler code is in embeddedsystems. Many embedded systems
were developed for processors with limited memory and processing capability, and were therefore
implemented in tightly coded hand written assembler. Modern processors are now available at a lower
cost which have much more processing and memory capacity andwith efficient C compilers. To make
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6 M. WARD ET AL

use of these new processors the embedded system needs to be re-implemented in a high level language
in order to reduce maintenance costs and enable implementation of major enhancements. Many of
the challenges with 370 assembler (such as the EXecute instruction and self-modifying code) are
not relevant to embedded systems processors, but other challenges become important (such as 16 bit
addresses and 8 or 16 bit registers). See [17] for a description of a major migration project where over
half a million lines of 16 bit assembler, implementing the core of an embedded system, were migrated
to efficient and maintainable C code.

3. OUR APPROACH

Our approach to understanding and migrating assembler codeinvolves four stages:

1. Translate the assembler to WSL;
2. Translate and restructure data declarations;
3. Apply generic semantics-preserving WSL to WSL transformations;
4. Apply task-specific operations as follows:

(a) For migration: translate the high-level WSL to the target language.
(b) For analysis: apply slicing or abstraction operations to the WSL to raise the abstraction

level even further.

In the following we will describe WSL and the transformationtheory and how program slicing can be
defined as a transformation within the theory. The mathematical approach to program slicing lends
itself naturally to several generalisations, the most important and general of which is conditioned
semantic slicing.

4. WSL AND PROGRAM TRANSFORMATION THEORY

The way to get a rigourous proof of the correctness of a transformation is to first define precisely when
two programs are “equivalent”, and then show that the transformation in question will turn any suitable
program into an equivalent program. To do this, we need to make some simplifying assumptions: for
example, we usually ignore the execution time of the program. This is not because we don’t care about
efficiency but because we want to be able to use the theory to prove the correctness of optimising
transformations: where a program is transformed into a moreefficient version.

More generally, we ignore the internal sequence of state changes that a program carries out: we are
only interested in the initial and final states.

Our mathematical model is based ondenotational semantics. We define the semantics of a program
as a function from states to sets of states. A state is simply afunction which gives a value to each of the
variables in a given set V of variables. The setV is called thestate space. For each initial states, the
function f returns the set of statesf (s) which contains all the possible final states of the program when
it is started in states. A special state⊥ indicates nontermination or an error condition. If⊥ is in the
set of final states, then the program might not terminate for that initial state. If two programs are both
potentially nonterminating on a particular initial state,then we consider them to be equivalent on that
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Final program
states

Initial program
states

Non-terminating
or error states

Figure 1: The semantics of a program

state. (A program which might not terminate is no more usefulthan a program which never terminates:
we are just not interested in whatever else it might do). So wedefine our semantic functions to be such
that whenever⊥ is in the set of final states, thenf (s) must include every other state.

This restriction also simplifies the definition of semantic equivalence and refinement. If two
programs have the same semantic function then they are said to beequivalent.

A transformationis an operation plus a set of conditions, called theapplicability conditions. The
operation takes any program satisfying the applicability conditions and returns an equivalent program.
In the literature, “program transformation” has a very broad and varied meaning: it can be used to refer
to just about any operation which takes a program, or programfragment in some language and returns
another program or program fragment in the same or a different language. In the context of this paper,
a “transformation” is adenotational semantics preserving WSL to WSL transformation.

A generalisation of equivalence is the notion ofrefinement: one program is a refinement of another
if it terminates on all the initial states for which the original program terminates, and for each such
state it is guaranteed to terminate in a possible final state for the original program. In other words, a
refinement of a program ismore definedandmore deterministicthan the original program. If program
S1 has semantic functionf1 andS2 has semantic functionf2, then we say thatS1 is refined byS2 (or
S2 is a refinement ofS1), and write:

S1 ≤ S2

if for all initial statesswe have:

f2(s) ⊆ f1(s)

If S1 may not terminate for a particular initial states, then by definitionf1(s) contains⊥ and every
other state, sof2(s) can be anything at all and the relation is trivially satisfied. The programabort
(which terminates on no initial state) can be refined toanyother program. Insisting thatf (s) include
every other state wheneverf (s) contains⊥ ensures that refinement can be defined as a simple subset
relation.
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8 M. WARD ET AL

A transformationis any operation which takes a statementS1 and transforms it into an equivalent
statementS2. A transformation is defined in the context of a set ofapplicability conditions, denoted∆.
This is a (possibly empty) set of formulae which give the conditions under which the transformation is
valid. If S1 is equivalent toS2 under applicability conditions∆ then we write:

∆ ⊢ S1 ≈ S2

An example of an applicability condition is a property of thefunction or relation symbols which
a particular transformation depends on. For example, the statementsx := a⊕ b and x := b⊕ a are
equivalent when⊕ is a commutative operation. We can write this transformation as:

{∀a,b.a⊕b= b⊕a} ⊢ x := a⊕b ≈ x := b⊕a

An example of a transformation which is valid underany applicability conditions is reversing anif
statement:

∆ ⊢ if B then S1 else S2 fi ≈ if ¬B then S2 else S1 fi

More examples can be found in [16].

4.1. WSL

Over the last twenty years we have been developing the WSL language, in parallel with the
development of a transformation theory and proof methods. In this time the language has been extended
from a simple and tractable kernel language to a complete andpowerful programming language. At
the “low-level” end of the language there exist automatic translators from IBM assembler, Intel x86
assembler, TPF assembler, a proprietory 16 bit assembler and PLC code into WSL, and from a subset of
WSL into C, COBOL and Jovial. At the “high-level” end it is possible to write abstract specifications,
similar to Z and VDM. WSL and the transformation theory has been discussed in other papers before
(see [12, 14, 15]). A description of WSL can also be found in [13].

The main goals of the WSL language are:

• Simple, regular and formally defined semantics
• Simple, clear and unambiguous syntax
• A wide range of transformations with simple, mechanically-checkable correctness conditions
• The ability to express low-level programs and high-level abstract specifications

The WSL language and the WSL transformation theory is based on infinitary logic: an extension of
first order logic which allows infinitely long formulae. These infinite formulae are very useful for
describing properties of programs: for example, termination of a while loop can be defined as “Either
the loop terminates immediately, or it terminates after oneiteration or it terminates after two iterations
or ...”. With no (finite) upper bound on the number of iterations, the resulting description is an infinite
formula. (Note that the formula which defines the statement “the loop terminates aftern iterations” is
a different formula for eachn. So it is not possible to combine these into a finitary first order logic
formula of the form∃n. the loop terminates aftern iterations).

The use of first order logic means that statements in WSL can include existential and universal
quantification over infinite sets, and similar (non-executable) operations. The language includes
constructs for loops with multiple exits, action systems, side-effects etc., while the transformation
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CONDITIONED SEMANTIC SLICING 9

theory includes a large catalogue of proven transformations for manipulating these constructs, most of
which are implemented in our transformation system, calledFermaT. See [17] for a detailed description
of the WSL language and transformation theory.

The transformations can be used to derive a variety of efficient algorithms from abstract
specifications or the reverse direction: using transformations to derive a concise abstract representation
of the specification for several challenging programs.

A WSL statement is a syntactic object: a collection of symbols structured according to the syntactic
rules of infinitary first order logic, and the definition of WSL. There may be infinite formulae as
components of the statement. The WSL language is built on a simple and tractable kernel language
which is extended into a powerful programming language by means of definitional transformations.
These are transformations which define the meaning of new programming constructs by expressing
them in terms of existing constructs.

The full WSL language includes low-level statements such asassignments,if statements,while loops
and local variables. There are other, more unusual statement types which include the following:

• An external procedure call is written:

!P foo(e1,e2, . . .en var v1,v2, . . . ,vm)

The expressionsei are value parameters and the lvaluesv j are value-result parameters. An
external procedure is assumed to always return and to only affect the values of thevar parameters.

• Similarly, the condition!XC foo(e1, . . . ,en) is an external boolean function call.
• An assertion statement:{Q} whereQ is any formula, acts as a partialskip statement. IfQ is true

then the statement has no effect, while ifQ is false then the statement aborts. A transformation
which inserts an assertion into a program must therefore prove that the corresponding condition
is always true at that point in the program. Conversely, deleting an assertion is always a valid
program refinement since the resulting program can only be more well-defined. (It will be defined
on an identical or larger set of initial states, compared to the original program).

• A loop of the form:do S od is an unbounded loop which can only be terminated by execution
of a statementexit(n). This statement will immediately terminate then enclosing loops. Heren
must be a simple integer, not a variable or an expression, so that it is immediately obvious which
statement is executed following theexit(n).

• An action systemis a collection of mutually-recursive parameterless procedures:

actions A1 :
A1 ≡ S1 end
. . .

An ≡ Sn end endactions

Here,Ai are the action names andSi are the corresponding action bodies. EachSi is a statement
and the whole action system is also a statement: so it can be a component of an enclosing
statement. The action system is executed by executing the body of the starting action (A1 in this
case). A statementcall Ai executes the corresponding bodySi . A special callcall Z causes the
whole action system to terminate immediately. Aregularaction is one in which every execution
of the action eventually leads to another action call. An action system is regular if every action is
regular. Such an action system can only be terminated by acall Z. Since no action call can ever
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10 M. WARD ET AL

return, an action call in a regular action system is equivalent to agoto. The assembler to WSL
translator generates a regular action system in which each action contains a complete translation
of a single assembler instruction, or macro.

4.2. Conditional Semantic Slicing in FermaT

Weiser [18] (Pages: 352–357) defined a program sliceS as areduced, executable programobtained
from a programP by removing statements, such thatS replicates part of the behaviour ofP. In the
context of this paper, program slicing is a useful tool to assist with understanding the behaviour of an
assembler module.

Slicing only a program without any additional assumptions is nowadays known as “static slicing”.
The term “dynamic program slice” was first introduced by Korel and Laski [9]. A dynamic slice of
a program P is a reduced executable program S which replicates part of the behaviour of P on a
particular initial state. This initial state can be defined by means of an assertion. Some researchers
allow furthermore a finite set of initial states, or a partialinitial state which restricts a subset of the
initial variables to particular values (see [11]). Later researchers have generalised dynamic slicing and
combined static and dynamic slicing in various ways. One is “conditioned slicing” first presented in [4]
which is a generalisation of both static and dynamic slicing. Our approach, which we call “conditioned
semantic slicing”, can be seen as a refinement of “conditioned slicing”.

In previous publications (see [16]) we provided a unified mathematical framework for program
slicing which places all slicing work, for sequential programs, on a sound theoretical foundation.
The main advantage to a mathematical approach is that it is not tied to a particular representation.
In fact the mathematics provides a sound basis forany particular representation. This mathematical
representation lends itself naturally to several generalisations, of whichconditioned semantic slicingis
the most general and most useful (see [16] for further details).

A conditioned semantic slice produces a concise, abstract representation of the behaviour of a
program with respect to one or more outputs of interest, and under the assumption that certain
conditions hold: for example, that no error occurs. Such a representation is very valuable to a
programmer who is unfamiliar with the program in question and who needs to work out what the
program does under normal operation.

Many large commercial systems contain a lot of error handling code: in some cases much of the
code in a module is for error handling and this can obscure thealgorithms computed by the module.
In addition, many modules produce more than one output. By inserting abort statements at all the
points where an error has been detected, and slicing on each individual output it is possible to compute
a concise representation of the algorithm (the “business rule”) for each output of the module under
normal (non error) conditions.

4.3. Automated Migration in Practice

The usual automated migration of assembler to C takes the following steps:

1. Translate the assembler listing to “raw WSL”. This translation aims to capture the full semantics
of the assembler program without concern for efficiency or redundancy. Typically, each
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CONDITIONED SEMANTIC SLICING 11

assembler instruction is translated to a block of WSL code which captures all the effects of
the instruction;

2. The data layout of the assembler program is analysed and converted to the equivalent structured
data using records, fields, and possibly unions if necessary; (Note that the data layout isnot
changed)

3. The raw WSL is restructured and simplified by applying a large number of correctness preserving
WSL transformations. These restructure the control flow to generate structuredif statementswhile
loops and so on. They also remove redundant code and use dataflow analysis to remove register
usage where possible. The most difficult part of analysing assembler code is tracking return
addresses through subroutines to determine subroutine boundaries;

4. Finally, the restructured WSL is translated to the targetlanguage. This is a fairly simple
transliteration process since the code is already structured and simplified.

For semantic slicing analysis, the restructured WSL code isedited to insert abort statements at the
points where error handling code appears, for example, a macro or subroutine call to display an error
message would be replaced by an abort. This allows the semantic slicer to “slice away” all code related
to error handling: including code both before and after the abort and any tests which branch to error
handing code. The result is a dramatically reduced program which includes only the pure “business
logic”.

4.4. Example of an Automated Migration of Assembler to C

In this section we give an example of how assembler code is transformed into small and easy-to-
understand C code. FermaT’s semantic slicer is then appliedto transform the high-level WSL code into
a more compact abstract representation.

1 *********************************************************************
2 * REPORT PROGRAM *
3 *********************************************************************
4 *
5 * PRINT NOGEN
6 REGEQU
7 CSECT
8 DCBD
9 START CSECT

10 STM R14,R12,12(R13) SAVE ALL REGISTERS
11 LR R3,R15 COPY R15 TO R3
12 USING START,R3 SET UP ADDRESSABILITY
13 ST R13,WSAVE+4 SAVE R13
14 LA R14,WSAVE SET UP REGISTER SAVE AREA
15 ST R14,8(R13) SAVE RETURN ADDRESS (R14)
16 LA R13,WSAVE LOAD R13
17 OPEN (DDIN,(INPUT)) OPEN INPUT FILE
18 OPEN (RDSOUT,(OUTPUT)) OPEN OUTPUT FILE
19 NI LAB140+1,X’0F’ CLEAR THE BRANCH
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20 GET DDIN,WREC READ FIRST RECORD
21 LA R15,LABEOF GET THE ADDRESS OF THE CODE
22 STCM R15,B’0111’,DDIN+33 MODIFY DCB FOR NEW EODAD
23 B LAB140 PROCESS FIRST RECORD
24 LAB100 GET DDIN,WREC READ A RECORD
25 CLC WLAST,WORD COMPARE TWO STRINGS
26 BE LAB160 BRANCH ON EQUAL TO LAB160
27 LAB170 BAL R10,PUTREC CALL SUBROUTINE
28 LAB140 NOP LAB999 MODIFIED BRANCH INSTRUCTION
29 MVC PWORD,WORD STORE INDEX WORD IN PRINT LINE
30 PACK WORKP,NUM CONVERT STRING TO PACKED DECIMAL
31 ZAP TOTAL,WORKP COPY WORKP TO TOTAL
32 LAB120 B LAB130
33 LAB160 PACK WORKP,NUM CONVERT STRING TO PACKED DECIMAL
34 AP TOTAL,WORKP ADD NUMBER
35 B LAB100
36 LAB130 MVC WLAST,WORD STORE LAST WORD
37 B LAB100
38 LAB999 CLOSE DDIN
39 CLOSE RDSOUT
40 L R13,WSAVE+4
41 LM R14,R12,12(R13)
42 SLR R15,R15
43 BR R14 RETURN FROM MODULE
44 *
45 LABEOF OI LAB140+1,X’F0’ SET THE BRANCH
46 B LAB170 CONTINUE
47 *
48 PUTREC MVC PNUM,=X’402020202020202020202120’
49 ED PNUM,TOTAL CONVERT TOTAL TO STRING IN PNUM
50 PUT RDSOUT,WPRT WRITE OUTPUT RECORD
51 MVI WPRT,C’ ’ CLEAR PRINT LINE
52 MVC WPRT+1(79),WPRT CLEAR PRINT LINE
53 BR R10 RETURN TO CALLER
54 *
55 WSAVE DS 18F REGISTER SAVE AREA
56 WREC DC CL80’ ’ INPUT RECORD AREA
57 ORG WREC
58 WORD DS CL20
59 DS C’ ’
60 NUM DS CL11
61 DS CL48
62 WPRT DC CL80’ ’
63 ORG WPRT
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64 PWORD DS CL20
65 PNUM DS CL12
66 DS CL48
67 WLAST DC CL20’ ’
68 TOTAL DC PL6’0’
69 WORKP DC PL6’0’
70 DDIN DCB DDNAME=DDIN, *
71 DSORG=PS, *
72 EODAD=LAB999, *
73 MACRF=GM,RECFM=FT,LRECL=80
74 RDSOUT DCB DDNAME=RDSOUT, *
75 DSORG=PS, *
76 MACRF=PM,RECFM=FT,LRECL=80
77 LTORG
78 *
79 END

When translating assembler to WSL every instruction or macro is translated into a separate action in
a WSL action system. The name of the action is the label of the instruction or a generated name of
the formA_xxxxxx wherexxxxxx is the hex value of the offset of that instruction from the start of the
module.

The compare instruction (CLC) for example, translates to code which tests the condition and sets
variablecc, representing the “condition code” in the CPU, to 0, 1 or 2 as appropriate. The conditional
branch instruction expands to WSL code which testscc and branches to the appropriate next action.

Unlike modern microprocessors, the IBM 370 does not have a function call stack. Instead, when a
module is called it is the caller’s responsibility to provide a register save area. Lines 10–16 save the
registers in the caller’s save area and set up a new save area for any called modules (as it happens, there
are no called modules). The FermaT migration process has to detect this register chaining code since
the migrated code will save and restore registers automatically on the stack, and therefore R13 will not
necessarily point to a valid memory location. These lines also set up R3 to be the base register for the
module.

Lines 17–18 open the input and output files. Line 19 modifies the branch instruction atLAB140 to
turn it into aNOP (branch never). Line 20 reads a record from the input fileDDIN into the data areaWREC.
TheDCB (Data Control Block) on lines 71–74 tells the system about the file. In particular, theEODAD
parameter tells the system where to branch to on end of file. Sothere is a “hidden” transfer of control
from theGET macro to the labelLAB999. Lines 21–22 load the address of labelLABEOF into R15 and
store it 33 bytes into theDDIN data control block. This overwrites the end of data address with a new
label. The migrated code will not have data control blocks, or labels, so FermaT has to detect that the
STCM instruction is actually changing the end of file address and generate an appropriate translation.
FermaT creates a new integer variableEODAD_DDIN which records the offset from the start of the
module of the current address to branch to on an end of file condition. The translation of theGET macro
includes a test for end of file. If the test succeeds, then the current value ofEODAD_DDIN is copied to a
special variable calleddestination and thedispatch action is called. This action testsdestination against
each possible branch target offset and branches to the corresponding action. The same mechanism is
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14 M. WARD ET AL

used to translate subroutine calls: theBAL (Branch And Link) instruction is translated to WSL code
which stores the offset of the return point in the given register and calls the action with the given
label. A BR (Branch to Register) instruction is translates to code which copies the register value into
destination and callsdispatch.

The program reads an input file consisting of a sequence of records each consisting of a string and a
number. A sample input file looks like this:

aardvark 1
aardvark 10
aardvark 17
aardvark 123

bat 2
bat 3
cow 99

Each contiguous set of records with the same string is summarised into a single output record consisting
of the same string plus the sum of all the numbers. In this case, we should get:

aardvark 151
bat 5
cow 99

The following program is part of the raw WSL translation of the assembler module, after the
Data_Translation transformation has been applied:

var 〈cc := 0,

destination := 0,

EODAD_DDIN := 144,
EODAD_UNKNOWN := 144〉 :
actions _enter_ :
_enter_ ≡ C : <ENTRY POINT> ;

!P init_NOP_flag(0 var F_LAB140);
call START_0 end

. . .

LAB100 ≡ C : READ A RECORD;
!P GET_FIXED(DDIN var WREC, result_code,os);
r15 := DDIN_STATUS;
if !XC end_of_file(DDIN)

then destination := EODAD_DDIN; call dispatch fi;
call A_00004E end

A_00004E ≡ C : COMPARE TWO STRINGS;
if WLAST = WREC.WORD

then cc := 0
elsif WLAST < WREC.WORD

then cc := 1
else cc := 2 fi;
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call A_000054 end
A_000054 ≡ C : BRANCH ON EQUAL TO LAB160;

if cc = 0 then call LAB160 fi;
call LAB170 end

LAB170 ≡ C : CALL SUBROUTINE;
r10 := 92;
call PUTREC end

. . .

A_0000D0 ≡ C : RETURN TO CALLER;
destination := r10;
call dispatch end

dispatch ≡ if destination = 0
then call Z

elsif destination = 92
then call LAB140

elsif destination = 144
then call LAB999

elsif destination = 168
then call LABEOF
else C : Unknown destination ;call Z fi end

endactions end

A sequence of WSL transformations are applied to this “raw WSL” which restructure and simplify
the action system into procedures and loops. The transformations also automatically remove thecc
variable. Removing thecc references significantly reduces the cyclometric complexity of the resulting
code. For example, actionsA_00004E andA_000054 above will simplify to a single action:

A_00004E ≡ C : COMPARE TWO STRINGS;
if WLAST = WREC.WORD

then call LAB160
else call LAB170 fi end

reducing the complexity from 5 to 2. Other transformations can dramatically improve the
comprehensibility of the code while having no effect on cyclometric complexity: for example,
eliminating an unconditional branch (by replacing acall statement by the action body for an action
which is only called once) does not change the cyclometric complexity, but “spaghetti code” with
many branch statements can be very difficult to understand.

The restructured WSL code looks like this:

!P init_NOP_flag(0 var F_LAB140);
C : SAVE ALL REGISTERS;
!P push_regs(r0, r1, r2, . . . , r14 var reg_stack);
!P chain_reg( var r13,os);
C : COPY R15 TO R3;
C : SAVE R13;
C : SET UP REGISTER SAVE AREA;
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16 M. WARD ET AL

C : SAVE RETURN ADDRESS (R14);
C : LOAD R13;
C : OPEN INPUT FILE;
!P OPEN(DDIN, “INPUT” var result_code,os);
C : OPEN OUTPUT FILE;
!P OPEN(RDSOUT, “OUTPUT” var result_code,os);
C : CLEAR THE BRANCH;
F_LAB140 := 0;
C : READ FIRST RECORD;
!P GET_FIXED(DDIN var WREC, result_code,os);
if ¬(!XC end_of_file(DDIN))

then C : GET THE ADDRESS OF THE CODE;
C : MODIFY DCB FOR NEW EODAD;
C : PROCESS FIRST RECORD;
do C : MODIFIED BRANCH INSTRUCTION;

if F_LAB140 = 1
then exit(1)
else C : STORE INDEX WORD IN PRINT LINE;

WPRT.PWORD := WREC.WORD;
C : CONVERT STRING TO PACKED DECIMAL;
!P pack(WREC.NUM var WORKP);
C : COPY WORKP TO TOTAL;
!P zap(WORKP var TOTAL);
C : STORE LAST WORD;
WLAST := WREC.WORD;
do C : READ A RECORD;

!P GET_FIXED(DDIN var WREC, result_code,os);
r15 := DDIN_STATUS;
if WLAST 6= WREC.WORD ∨ !XC end_of_file(DDIN)

then exit(1)
else C : CONVERT STRING TO PACKED DECIMAL;

!P pack(WREC.NUM var WORKP);
C : ADD NUMBER;
!P ap(WORKP var TOTAL) fi od;

if !XC end_of_file(DDIN)
then C : *;

C : SET THE BRANCH;
F_LAB140 := 1;
C : CONTINUE;
C : COMPARE TWO STRINGS;
C : BRANCH ON EQUAL TO LAB160fi;

C : CALL SUBROUTINE;
C : *;
C : CONVERT TOTAL TO STRING IN PNUM;
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!P ed(TOTAL, “hex 0x402020202020202020202120”
var WPRT.PNUM,cc1,wedit_addr);

C : WRITE OUTPUT RECORD;
!P PUT_FIXED(RDSOUT,WPRT var result_code,os);
C : CLEAR PRINT LINE;
C : CLEAR PRINT LINE;
!P fill(!XF mvi(“ ” ) var WPRT);
C : RETURN TO CALLER;
exit_flag := 0 fi od fi;

!P CLOSE(DDIN var result_code,os);
!P CLOSE(RDSOUT var result_code,os);
!P pop_regs(
var r0, r1, r2, . . . , r14, reg_stack);

r15 := 0;
C : RETURN FROM MODULE

Points to note in the WSL code:

• The code to save registers and set up the register chain has been recognised and translated
to external procedure callspush_regs andchain_regs. Similarly, the code to restore registers
has been translated topop_regs. These calls are purely for documentation and are ignored in
translations from WSL to C or COBOL.

• Thedestination variable,dispatch action and related code have all been eliminated automatically
by the restructuring transformations. Dataflow analysis has enabled FermaT to determine the
target of each end of file branch, which is then converted to structured code. Also, thePUTREC
subroutine has been inlined since it is only called once. In the general case, assembler subroutines
will be translated into WSL single-entry, single-exit procedures.

• The modified branch instruction has been translated to a conditional branch using a new flag
variableF_LAB140. Code which sets and clears the branch has been converted to code to set and
clear the flag.

Now it is possible to translate everything to a higher level language such as C:

#include "fmt006.h"
FILE * ddin;

FILE *
rdsout;

static FWORD
f_lab140 = 0;

/* End of declarations */

#include "fmt006_init.h"

int
start_0(regs_t * p_regs)
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18 M. WARD ET AL

{
regs = *p_regs;
exit_flag = 0;

/* SAVE ALL REGISTERS */
/* COPY R15 TO R3 */
/* SAVE R13 */
/* SET UP REGISTER SAVE AREA */
/* SAVE RETURN ADDRESS (R14) */
/* LOAD R13 */
/* OPEN INPUT FILE */

OPEN(ddin, "INPUT", &result_code);
/* OPEN OUTPUT FILE */

OPEN(rdsout, "OUTPUT", &result_code);
/* CLEAR THE BRANCH */

f_lab140 = 0;
/* READ FIRST RECORD */

GET_FIXED(ddin, (BYTE *) & wrec, &result_code);
if (!(end_of_file(ddin))) {

/* GET THE ADDRESS OF THE CODE */
/* MODIFY DCB FOR NEW EODAD */

/* PROCESS FIRST RECORD */
for (;;) { /* DO loop 1 */

/* MODIFIED BRANCH INSTRUCTION */
if (f_lab140 == 1) {

break;
} else {

/* STORE INDEX WORD IN PRINT LINE */
memmove(wprt.pword, wrec.word, 20);

/* CONVERT STRING TO PACKED DECIMAL */
pack(workp, 6, wrec.num, 11);

/* COPY WORKP TO TOTAL */
zap(total, 6, workp, 6);

/* STORE LAST WORD */
memmove(wlast, wrec.word, 20);
for (;;) { /* DO loop 2 */

/* READ A RECORD */
GET_FIXED(ddin, (BYTE *) & wrec, &result_code);
if ((end_of_file(ddin)

|| memcmp(wlast, wrec.word, 20))) {
break;

} else {
/* CONVERT STRING TO PACKED DECIMAL */

pack(workp, 6, wrec.num, 11);
/* ADD NUMBER */
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ap(total, 6, workp, 6);
}

} /* OD */
if (end_of_file(ddin)) {

/* */
/* SET THE BRANCH */

f_lab140 = 1;
/* CONTINUE */

/* COMPARE TWO STRINGS */
/* BRANCH ON EQUAL TO LAB160 */

}
/* CALL SUBROUTINE */

/* */
/* CONVERT TOTAL TO STRING IN PNUM */

ed(wprt.pnum, 12, &cc1, &wedit_addr, total, 6,
"\x40\x20\x20\x20\x20\x20\x20\x20\x20\x20\x21\x20",
12);

/* WRITE OUTPUT RECORD */
PUT_FIXED(rdsout, (BYTE *) & wprt, &result_code);

/* CLEAR PRINT LINE */
/* CLEAR PRINT LINE */

memset((BYTE *) & wprt, ’ ’, 80);
/* RETURN TO CALLER */

exit_flag = 0;
}

} /* OD */
}
CLOSE(ddin, &result_code);
CLOSE(rdsout, &result_code);
regs.r15 = 0;

/* RETURN FROM MODULE */
exit_flag = 0;
return (regs.r15);

}

This C code generates identical results to the original assembler.

4.5. Raising the Abstraction Level

In this section we will apply transformations to raise the abstraction level of the restructured WSL
program. TheRaise_Abstraction transformation carries out the following steps:

1. abort processing: this will apply simplification transformations aroundabort statements: for
example, any code after anabort can be deleted, and anif statement where one branch consists
of anabort can be converted to an assertion. In this example, there are no aborts.
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20 M. WARD ET AL

2. Delete dead code: normally in a migration, blocks of dead code are converted to procedures in
case they are needed for debugging. For raising the abstraction level we want to delete this code.

3. Delete all comments.
4. Convert NOP flags to local variables: this will allow theFlag_Removal transformation to have

an opportunity to remove the flags.
5. Delete calls to support functions which are only left in for documentation purposes (these are

ignored in a C of COBOL migration anyway). These functions includepush_regs, pop_regs,
chain_reg andspm. The first three are concerned with register saving, restoring and savearea
chaining.spm represents the instruction to Set the Program Mask (the Program Mask contains
various flags which control interrupt handling, exponent underflow processing and so on).

6. Unfold procedures which are only called once (there may have been other calls in dead code).
7. Delete redundant statements and simplify all statementsand expressions.
8. Apply Flag_Removal (see below).
9. Convertdo . . . od loops towhile loops.

TheFlag_Removal transformation attempts to remove flag variables from a program by moving code
which tests the flag value closer to code which sets the flag. Inthis context, a “flag” is a variable which
is only ever set to one of two distinct constant values.Flag_Removal checks for candidate flags and
carries out the following transformations:

1. Flag tests are converted to test for equality against one of the two known possible values. For
example, if the values are 0 and 1 then a testflag > 0 is converted to the equivalent testflag = 1.

2. Statement sequences are searched for a statement which sets the flag, followed by a statement
(later in the same sequence) which tests the flag. If the statement which sets the flag is a loop,
then the first iteration of the loop is unrolled. If the statement is anif statement, then subsequent
statements are absorbed into it until the flag test is reached. For example, the program:

if x > 0 then flag := 0 else flag := 1 fi;
S1;
S2;
if flag = 0 then S3 fi

becomes:

if x > 0
then flag := 0; S1; S2; if flag = 0 then S3 fi
else flag := 1; S1; S2; if flag = 0 then S3 fi fi

3. Dataflow analysis is used to determine if flag references can be removed. In the above example
(assuming thatS1 andS2 do not modify the flag) we get:

if x > 0
then flag := 0; S1; S2; S3

else flag := 1; S1; S2 fi

4. Opportunities for “entire loop unrolling” are searched for. This makes use of the transformation:

while B1 do S1 od ≈ while B1 ∧ B2 do S1 od; while B1 do S1 od
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At the end of the first while loop,¬(B1 ∧ B2) is true, therefore ifB1 is true thenB2 is false. So
if the second loop is entered,B2 must be false on the first iteration. The aim is to split the loop
into two and unroll the first iteration of the second loop in order to isolate the code which sets
the flag.

5. Potential “first time through” flags are searched for: thisis where a flag is tested in a loop body,
and subsequently set. If this is found, then “speculativelyunroll” to see if the loop body can be
simplified.

As a result of these transformations, FermaT is able to eliminate the variableF_LAB140 from the
program and restructure it as follows:

!P OPEN(DDIN, “INPUT” var result_code,os);
!P OPEN(RDSOUT, “OUTPUT” var result_code,os);
!P GET_FIXED(DDIN var WREC, r0, r1, result_code,os);
while ¬(!XC end_of_file(DDIN)) do

WPRT.PWORD := WREC.WORD;
!P pack(WREC.NUM var WORKP);
TOTAL := WORKP;
WLAST := WREC.WORD;
!P GET_FIXED(DDIN var WREC, r0, r1, result_code,os);
while WLAST = WREC.WORD ∧ ¬(!XC end_of_file(DDIN)) do

!P pack(WREC.NUM var WORKP);
!P ap(WORKP var TOTAL);
!P GET_FIXED(DDIN var WREC, r0, r1, result_code,os)

od;
!P ed(TOTAL, “hex 0x402020202020202020202120”
var WPRT.PNUM,cc1,wedit_addr);
!P PUT_FIXED(RDSOUT,WPRT var result_code,os);
!P fill(“ ” var WPRT) od;

!P CLOSE(DDIN var result_code,os);
!P CLOSE(RDSOUT var result_code,os);

This translates to the following C code:

#include "fmt006.h"
FILE * ddin;

FILE *
rdsout;

/* End of declarations */

#include "fmt006_init.h"

int

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–7
Prepared usingspeauth.cls



22 M. WARD ET AL

start_0(regs_t * p_regs)
{

regs = *p_regs;
/* <NAME=START_0> */

OPEN(ddin, "INPUT", &result_code);
OPEN(rdsout, "OUTPUT", &result_code);
GET_FIXED(ddin, (BYTE *) & wrec, &result_code);
while (!(end_of_file(ddin))) {
memmove(wprt.pword, wrec.word, 20);
pack(workp, 6, wrec.num, 11);
memmove(total, workp, 6);
memmove(wlast, wrec.word, 20);
GET_FIXED(ddin, (BYTE *) & wrec, &result_code);
while ((!(end_of_file(ddin))

&& !(memcmp(wlast, wrec.word, 20)))) {
pack(workp, 6, wrec.num, 11);
ap(total, 6, workp, 6);
GET_FIXED(ddin, (BYTE *) & wrec, &result_code);

} /* OD */
ed(wprt.pnum, 12, &cc1, &wedit_addr, total, 6,

"\x40\x20\x20\x20\x20\x20\x20\x20\x20\x20\x21\x20", 12);
PUT_FIXED(rdsout, (BYTE *) & wprt, &result_code);
memset((BYTE *) & wprt, ’ ’, 80);

} /* OD */
CLOSE(ddin, &result_code);
CLOSE(rdsout, &result_code);
return (0);

}

This C code also produces identical results to the original assembler.
The C code contains several function calls for handling packed decimal operations:pack, ap and

ed. The C compiler for the IBM mainframe includes native packeddecimal data types, so thepack and
ap calls are implemented as macros which use native packed decimal operations on this platform. On
other platforms the calls are implemented as function callsto emulation functions.

The COBOL language includes native packed decimal data types, and converting a string to a packed
decimal is implemented as a simpleMOVE statement with appropriately declared source and target
data elements. Similarly, the edit operation (which converts a packed decimal number to a string with
leading zeros suppressed) can be implemented as a simpleMOVE to a data element declared with the
appropriate PICTURE clause. So the COBOL migration of the abstract WSL program is as follows:

PROCEDURE DIVISION.

*================================================================
MAIN SECTION.
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*====

OPEN INPUT DDIN
OPEN OUTPUT RDSOUT
SET NOT-END-OF-FILE TO TRUE
READ DDIN INTO WREC
AT END SET END-OF-FILE TO TRUE

END-READ
PERFORM UNTIL END-OF-FILE
MOVE WORD TO PWORD
MOVE NUM TO WORKP
MOVE WORKP TO TOTAL
MOVE WORD TO WLAST
SET NOT-END-OF-FILE TO TRUE
READ DDIN INTO WREC

AT END SET END-OF-FILE TO TRUE
END-READ
PERFORM UNTIL (WLAST NOT = WORD

OR END-OF-FILE)
MOVE NUM TO WORKP
ADD WORKP TO TOTAL
SET NOT-END-OF-FILE TO TRUE
READ DDIN INTO WREC

AT END SET END-OF-FILE TO TRUE
END-READ

END-PERFORM

* #SMLED# EDMSK-BZZZZZZZZZZ9
MOVE TOTAL TO EDMSK-BZZZZZZZZZZ9
MOVE EDMSK-BZZZZZZZZZZ9 TO PNUM
WRITE RDSOUT-RECORD FROM WPRT
MOVE SPACES TO WPRT

END-PERFORM

CLOSE DDIN
CLOSE RDSOUT
.

MAIN-EXIT.
*==========

PERFORM QUIT-PROGRAM
.

The special comment “#SMLED# EDMSK-BZZZZZZZZZZ9” tells the COBOL data generator to declare a
data item of the given name with the appropriate PICTURE.
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5. RELATED WORK

This section will compare our slicing approach to the work ofother slicing researchers. For a deeper
discussion the interested reader is referred to [16].

5.1. Amorphous Program Slicing

Harman and Danicic [5, 8] coined the term “amorphous program slicing” for a combination of
slicing and transformation of executable programs. To date, the transformations have been restricted
to restructuring snd simplifications, but the definition of an amorphous slice allows any transformation
(in any transformation theory) of executable programs.

We define a “semantic slice” to be any semi-refinement in WSL, so the concepts of semantic slicing
and amorphous slicing are distinct but overlapping. A semantic slice is defined in the context of WSL
transformation theory, while an amorphous slice is defined in terms of executable programs (WSL
allows nonexecutable statements including abstract specification statements and guard statements).
Also, amorphous slices are restricted to finite programs, while WSL programs (and hence, semantic
slices) can include infinitary formulae. To summarise:

1. Amorphous slicing is restricted to finite, executable programs. Semantic slicing applies to
any WSL programs including non-executable specification statements, non-executable guard
statements, and programs containing infinitary formulae;

2. Semantic slicing is defined in the particular context of the WSL language and transformation
theory: amorphous slicing applies to any transformation theory or definition of program
equivalence on executable programs.

5.2. Slicing and Program Transformation

Tip [10] suggested the computation of slices using a mixture of slicing and transformation in which a
program is translated to an intermediate representation (IR), the IR is transformed and optimised (while
maintaining a mapping back to the source text), and slices are extracted from the source text.

As an example, consider the following program, where we are slicing on the final value of y:

if p = q
then x := 18
else x := 17 fi;

if p 6= q
then y := x
else y := 2 fi

Tip’s slicer ought to be capable of producing the following slice:

if p = q
then skip
else x := 17 fi;

if p 6= q
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x := f
ctrl
−→ q?(c)

c := g
ctrl
−→ q?(c)

q?(c)
data
−→ c := g

x := f
ctrl
−→ p?(i)

c := g
ctrl
−→ p?(i)

i := h
ctrl
−→ p?(i)

q?(c)
ctrl
−→ p?(i)

p?(i)
data
−→ i := h(i)

Table I. Control and data dependencies in the example program

then y := x
else y := 2 fi

The FermaT toolset with its semantic slicer produces a significantly smaller slice:

y := if p = q then 2 else 17 fi

5.3. Semantic Slicing Versus Dataflow-Based Slicing

To give a good example of the progressiveness of the semanticslicing consider the example where we
are slicing on the final value ofx:

while p?(i) do
if q?(c)

then x := f ; c := g fi;
i := h(i) od

Any dataflow-based slicing algorithms (such as [2]) will observe that there is a data dependency
between the final value ofx and the assignmentx := f . There is a control dependency between the test
q?(c) and the assignmentx := f and there is a data dependency betweenc := g andq?(c). Similarly,
there is a control dependency betweenx := f andp?(i) and a data dependency betweeni := h(i) and
p?(i). Table I summarises the dependencies. If the algorithm simply follows all dependencies in
order to determine what statements to include in the slice, then it will conclude that all the statements
affect x. FermaT includes implementations for several different slicing algorithms, one of these (the
Syntactic Slicer) uses just such a dependency tracking algorithm. The syntactic slicer divides the WSL
program into “basic blocks” and determines control and datadependencies between the blocks. These
dependencies are tracked to compute a slice. So this slicer returns the whole program when asked to
slice on the final value ofx.
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It should not be surprising that the dataflow algorithm sometimes produces a less than minimal slice,
since the task of determining a minimal slice is noncomputable in the general case: so there can be no
algorithm which always returns a minimal syntactic slice.

For semantic slicing, speculative unrolling can be applied. The transformation system unrolls the
first step of the loop to give:

if p?(i)
then if q?(c)

then 〈c := g,x := f 〉 fi;
i := h(i);
while p?(i) do

if q?(c)
then 〈c := g,x := f 〉 fi;

i := h(i) od fi

(Here, the statement〈c := g,x := f 〉 is a parallel assignment statement).
It then appliesFully_Absorb_Right to the innerif statement:

if p?(i)
then if q?(c)

then {q?(c)};
〈c := g,x := f 〉;
i := h(i);
while p?(i) do

if q?(c)
then 〈c := g,x := f 〉 fi;

i := h(i) od
else {¬q?(c)};

i := h(i);
while p?(i) do

if q?(c)
then 〈c := g,x := f 〉 fi;

i := h(i) od fi fi

The statement{¬q?(c)} is an assertion. The assertion{Q} acts as askip statement (which has no
effect) when the conditionQ is true, and aborts when the condition is false. A transformation which
introduces an assertion at a point in the program corresponds to proving that the given condition is
always true at that point in the program.

Assertions are used to simplify the innerwhile loops:

if p?(i)
then if q?(c)

then {q?(c)};
〈c := g,x := f 〉;
i := h(i);
while p?(i) do
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if q?(c)
then 〈c := g,x := f 〉 fi;

i := h(i) od
else {¬q?(c)};

i := h(i);
while p?(i) do

i := h(i) od fi fi

The semantic slicing function produces this result:

if p?(i)
then if q?(c)

then {q?(c)};
〈c := g,x := f 〉;
i := h(i);
while p?(i) do

if q?(c)
then 〈c := g,x := f 〉 fi;

i := h(i) od
else {¬q?(c)}; fi

Constant_Propagation simplifies this to:

if p?(i)
then if q?(c)

then {q?(c)};
〈c := g,x := f 〉;
i := h(i);
while p?(i) do

i := h(i) od
else {¬q?(c)}; fi

Another call to the semantic slicing function produces:

if p?(i)
then if q?(c)

then {q?(c)};
x := f

else {¬q?(c)}; fi

And finally, abstraction and refinement gives this result:

if p?(i) ∧ q?(c) then x := f fi

This is smaller than the original program, so it is returned as the result of the transformation. The
above analysis and transformation steps were all carried out automatically by FermaT’s semantic slicer
to produce the given result.
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5.4. CodeSurfer

CodeSurfer (see: http://www.grammatech.com/products/codesurfer/overview.html) is a C and C++
code browser which includes pointer analysis, call graphs and slicing. It is based on the interprocedural
slicing algorithm using dependence graphs published in [2] together with the improvements published
in [3]. The product therefore has the limitations comon to all dataflow based slicers (see the previous
subsection) and is aimed at syntactic, rather then semanticslicing.

5.5. Slicing Nondeterministic Programs

Binkley and Gallagher’s definition of a slice [7] is as follows:

Definition 5.1. For statements and variablev, the sliceS of programP with respect to the slicing
criterion〈s; v〉 is any executable program with the following properties:

1. S can be obtained by deleting zero or more statements fromP.
2. If P halts on inputI , then the value ofv at statementseach times is executed inP is the same inP and

S. If P fails to terminate normallys may execute more times inS that inP, butP andS compute the
same values each times is executed byP.

This definition does not work with nondeterministic programs. Consider the programP:

if true → x := 1
⊓⊔ true → x := 2 fi;
y := x

where we are slicing on the value ofx at the assignment toy. The if statement in this example is a
Dijkstra “guarded command”

According to Binkley and Gallagher’s definition, there arenovalid slices ofP! EvenP itself is not a
valid slice: since the value ofx aty := x may be different each timey := x is executed. Our definition of
slicing avoids this flaw and is capable of handling nondeterministic statements. This might appear to be
unimportant in practice (since most executable programs are also deterministic), but in the context of
program analysis and reverse engineering it is quite commonto “abstract away” some implementation
details and end up with a nondeterministic abstraction of the original program. If one wishes to carry
out further abstraction on this program via slicing, then itis essential that the definition of slicing, and
the algorithms implementing the definition, are able to copewith nondeterminism.

6. THE FermaT TECHNOLOGY

6.1. The Transformation Engine

The FermaT Transformation Engine implements the transformation theory described in this paper.
The basic version of the FermaT Engine (called fermat3) is free software (available under the GNU
General Public Licence). It includes a wide range of transformations operating on the WSL language
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Figure 2: The intention of WSL

but without source and target language translators (e.g. the IBM 360 assembler to WSL translator) and
some other extensions and migration-specific transformations.

The WSL language can express many common constructs of procedure oriented imperative
languages like Cobol or C as well as assembler languages likethe IBM 360 assembler. Once a program
has been transferred to WSL the included transformations can be used for restructuring and to raise the
abstraction level. If the process is successful the programcan be translated into a language which is on
a higher level that the source language. For analysis purposes of a given program the engine includes
also special tools for control flow and data flow analysis so the internal structure of a legacy system
can be presented in diagrams.

Once the source of a legacy system can be transferred into theWSL language the FermaT
Transformation Engine can use all its power to raise the abstraction level of the code. The only
part of the process where assumptions have to be made is in thetranslation process from and to the
WSL language. All the WSL to WSL transformations on the otherhand are mathematically proven
to be correct. The advantage of this system is that the most work is being done automatically by the
transformation rules. Further details are given in [13].

7. CASE STUDIES

In this section we describe an application for semantic slicing to a full commercial assembler system
and a random example of modules from twelve different organisations. Both studies consist of hundred
thousands of lines of IBM assembler in over thousand modules. A commercial company, Software
Migrations Ltd., have used the FermaT transformation system to migrate an entire assembler system
to structured and maintainable C code running on Intel hardware under both Windows and Linux
operating systems. The C code was also required to work underthe original mainframe environment.
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Table II. Case Study 1: Lines of Code and complexity metrics for migration to C

Total LOC Per module McCabe

Original Listings 11,959,084 6,149 —
Raw WSL 2,109,906 1,085 135
Transformed WSL 1,205,766 620 27
WSL without comments 528,440 272 27
C Code including comments 1,120,449 576 —

Our aim for this paper is to describe how FermaT was used to automatically analyse the assembler and
generate high-level WSL abstractions for each module, withall error handling code removed.

7.1. Case Study 1: A Full Assembler System

The first case study consisted of a complete assembler systemcomprising a total of 2,296 modules. The
purpose of this case study was to examine FermaT’s ability torestructure executable code and remove
error handling code. 351 of the modules consisted entirely of data declarations, so these were excluded
from the study. The remaining 1,945 modules each contained amixture of code and data declarations,
these totalled 11,959,084 lines of listing (average 6,149 per module).

For the first test we carried out a complete migration to C for all 1,945 modules. This took 7 hours
38 minutes CPU time, averaging just over 14 seconds per module, running FermaT on a 2.6GHz PC.
FermaT applied a total of 4,167,286 transformations, averaging 2,143 transformations per module and
152 transformations per second.

TableII records the lines of code and McCabe complexity metrics for the raw WSL (as translated
from the assembler), the transformed WSL and the generated Ccode. The McCabe complexity for the
C code was not measured directly but should be identical to that for the transformed WSL since the
WSL to C translation is a simple translation of “C like” WSL toC code. Over 43% of the modules
(846 modules) containedno loops.

Note that in assembler code, the majority of comments are on the same line as an executable
instruction. In WSL, each comment is on a separate line. So counting these comments inflates the
number of lines of WSL, without affecting the number of linesof assembler. As can be seen in TableII ,
well over half the lines of transformed WSL are comment lines.

For the second test we made some changes to the assembler to WSL translation table which inserted
ABORT statements at the points where the program ABENDs or calls a macro to print an error
message, or where the program returns with an error code. Thefinal step was to apply a number of
abstraction transformations to the transformed WSL code togenerate a high-level abstract equivalent.

Complete analysis of the entire system (all 1,945 code modules) including removal of error handling
code and abstraction to high level WSL took 5 hours 10 minutesCPU time on a 2.6GHz P4 processor.
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Table III. Lines of Code and complexity metrics for raising abstraction level

Total LOC Per module McCabe

Original Listings 11,959,084 6,149 —
Raw WSL 2,109,704 1,085 135
Transformed WSL 513,616 264 25
Abstract WSL 256,853 132 23

This is an average of under 10 seconds CPU time per module. FermaT applied a total of 3,876,378
transformations, averaging 1,993 transformations per module and 208 transformations per second.

TableIII records the lines of code and McCabe complexity metrics for the raw WSL (as translated
from the assembler), the transformed WSL (which in this case, also has comments deleted) and the
abstract WSL code. A total of 410 modules contained error handling code that was detected and
removed. This code amounted to 16% of all the code in the modules. For 40 of the modules, error
handling code amounted to over half the executable code in the module. Over the entire system,
removing error handling code produced about a 10% reductionin complexity.

For a programmer who needs to understand the main functions of a module, and the algorithms it
implements, reading a 132 line abstract WSL program should be much simpler than trying to make
sense of a 6,000 line assembler listing!

7.2. Case Study 2: A Random Sample of Assembler Modules

The second case study consists of a (fairly) random sample of1,905 assembler modules taken from
twelve different organisations, and representing approximately one million lines of source code. Of
these, 203 consisted entirely of data declarations, so these were ignored for the code analysis tests. The
remaining 1,702 modules totalled 5,377,163 lines of listing (average 3,159 per module).

A complete migration to C for all modules took 9 hours 21 minutes CPU time (19.1 seconds per
module) on the same PC as the first case study. FermaT applied atotal of 10,376,842 transformations,
averaging 6,097 transformations per module and 308 transformations per second.

TableIV records the lines of code and McCabe complexity metrics for the raw WSL (as translated
from the assembler), the transformed WSL and the generated Ccode. Note that these listings were
shorter on average than those in the first case study, but eachlisting expanded into more lines of WSL
code. This was mainly because the modules in the first case study were taken from an actual migration
project. The macros had been analysed and 53 additional macros were added to the translation table:
these macros were translated directly to WSL rather than having their macro expansions translated.
These were macros which expanded into a significant block of code and which were called throughout
the system. Directly translating the macro to the corresponding WSL code, rather than translating
the macro expansion, resulted in a significant reduction in the total amount of WSL code generated.
For case study 2, all macros other than standard system macros were fully expanded and the macro
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Table IV. Case Study 2: Lines of Code and complexity metrics for migration to C

Total LOC Per module McCabe

Original Listings 5,377,163 3,159 —
Raw WSL 4,047,261 2,378 372
Transformed WSL 1,890,376 1,111 65
WSL without comments 1,315,920 773 65
C Code with comments 1,658,236 974 —

Table V. Lines of Code and complexity metrics for raising abstraction level

Total LOC Per module McCabe

Original Listings 5,377,163 3,159 —
Raw WSL 4,047,258 2,378 373
Transformed WSL 736,816 433 62
Abstract WSL 442,764 260 50

expansion was translated to WSL. In addition, the selectionof modules used in case study 2 was
partly biased towards larger code modules since much of the code was from pilot projects to test the
capabilities of the migration engine.

Over 40.5% of the code modules (690 modules) containedno loops.
For the second test we made some changes to the assembler to WSL translation table which inserted

ABORT statements at the points where the program is definitely known to ABEND. These points were:

• ABEND and PDUMP macros;
• EXEC CICS ABEND calls;
• SVC 13 instructions; and
• SERRC calls which have parameter C (indicating a catastrophic error).

Then we applied a number of abstraction transformations to the WSL code to generate a high-level
abstract equivalent for each module. This took a total of 12 hours 58 minutes CPU time.

FermaT applied a total of 10,318,338 transformations, averaging 6,062 transformations per module
and 221 transformations per second.

TableV records the lines of code and McCabe complexity metrics for the raw WSL (as translated
from the assembler), the transformed WSL and the abstract WSL code.
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8. CONCLUSION

In this paper we presented the abilities of the conditional semantic slicing technique and its use for
abstraction. Our approach has been demonstrated on industrial case studies and has shown the increase
of abstraction levels. The approach has been fully implemented in an industrial strength system known
as FermaT, which is currently in use in several organisations.

The FermaT engine can be found on:
http://www.cse.dmu.ac.uk/∼mward/

The F-UML and F-DOC can be found on:
The University Technology Centre in Software Evolution (UTC) of the STRL
http://www.cse.dmu.ac.uk/STRL/research/utc/index.html
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