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Abstract

In this paper we describe an improved formalisation of
slicing in WSL transformation theory and apply the result
to a particularly challenging slicing problem: the SCAM
mug [1]. We present both syntactic and semantic slices of
the mug program and give semantic slices for various gen-
eralisations of the program. Although there is no algorithm
for constructing a minimalsyntacticslice, we show that it is
possible, in the WSL language, to derive a minimalsemantic
slice for any program and any slicing criteria.

1. Introduction

Program slicing is a decomposition technique that ex-
tracts from a program those statements relevant to a partic-
ular computation. Informally, a slice provides the answer
to the question “What program statements potentially affect
the value of variablev at statements?” An observer cannot
distinguish between the execution of a program and execu-
tion of the slice, when attention is focused on the value ofv
in statements.

Slicing was first described by Mark Weiser [17] as a
debugging technique [18], and has since proved to have
applications in testing, parallelization, integration, software
safety, program understanding and software maintenance.
Survey articles by Binkley and Gallagher [2] and Tip [10]
include extensive bibliographies.

In [12] a formalisation of slicing in terms of program
transformations was proposed. In this paper we present
an improved formalisation and apply it to a particularly
challenging slicing problem: the SCAM mug [1]. The WSL
formulation of slicing immediately lends itself to several
extensions: simply by relaxing some of the constraints
in the definition and removing restrictions on the allowed
transformations.

Weiser defined a program sliceS as a reduced, exe-
cutable programobtained from a programP by removing
statements, such thatS replicates part of the behavior ofP.
A program transformationis any operation on a program
which generates a semantically equivalent program. A slice
is not generally a transformation of the original program
since a transformation has to preserve thewholebehaviour
of the program, while in the slice some statements which
affect the values of some output variables (those not in the
slice) may have been deleted.

Suppose we are slicing on theendof the program: then
the subset of the behaviour we want to preserve is simply
the final values of one or more variables (the variables in the
slicing criterion). If we modify both the original program
and the slice to delete the unwanted variables from the state
space, then the two modified programswill be semantically
equivalent. Consider this simple example:
x := y + 1;
y := y + 4;
x := x + z

where we are interested in the final value ofx. The assign-
ment toy can be sliced away:
x := y + 1;
x := x + z

These two programs are not equivalent, but if we modify
both programs by appending aremove (y) statement then
the resulting programsareequivalent.

To be precise, letS1 be the program:
x := y + 1;
y := y + 4;
x := x + z;
remove (y)

and letS2 be the program:
x := y + 1;
x := x + z;
remove (y)



The initial state space forS1 andS2 is {x, y, z} while the
final state space is{x} (theremove statement ensures that
y cannot appear in the final state space). Both programs set
x to the valuey+1+z, so the two programs are equivalent.

So much for slicing at the end of a program. Suppose we
want to slice on the value ofi at the top of thewhile loop
body in this program:
i := 0; s := 0;
while i < n do

s := s + i;
i := i + 1 od ;

i := 0

Slicing on i at the end of the program would givei := 0
as a valid slice: which is not what we wanted! So we need
some way to get the sequence of values taken on byi at the
top of the loop to be “carried” to the end of the program. A
simple way to do this is to add a new variable,slice, which
records this sequence of values:
i := 0; s := 0;
while i < n do

slice := slice ++ 〈i〉;
s := s + i;
i := i + 1 od ;

i := 0;

where the statementslice := slice ++ 〈i〉 appends the value
of i to the end of the sequence stored inslice. By the end
of the program,slice contains a list of all the values taken
on byi at each iteration of the loop.

Slicing onslice at the end of the program is therefore
equivalent to slicing oni at the top of the loop. If we add
the statementremove (i, s, n) to remove all the variables
other thanslice, then the result can be transformed into the
equivalent program:
i := 0;
while i < n do

slice := slice ++ 〈i〉;
i := i + 1 od ;

remove (i, s, n)

which yields the sliced program:
i := 0;
while i < n do

i := i + 1 od

This approach easily generalises to slicing on a set of
locations with the same or a different set of variables of
interest at each location.

2. Slicing as a Program Transformation

The WSL language has been described elsewhere [11,
13,16], so will not be described in detail here. Key points

to note are that WSL is based oninfinitary logic: which
means that formulae in WSL programs can be infinitely
long. The weakest precondition of a WSL programS, for a
given postcondition,R, denoted WP(S, R), is the weakest
condition on the initial state such that ifS is started in
a state which satisfies WP(S, R) then it is guaranteed to
terminate and every possible final state will satisfyR. If
the postconditionR is defined as an infinitary logic formula,
then WP(S, R) can be defined as an infinitary logic formula.
Hence, the WP for one program can be used as an assertion
or condition in another program.

WSL includes loops of the formdo . . . od which can
only be terminated via anexit (n) statement. The statement
exit (n) (in which n is an integer, not a variable or ex-
pression) causes the immediate termination ofn enclosing
nesteddo . . . od loops. A statement in which eachexit (n)
is enclosed in at leastn nested loops is called aproper
sequence: such a statement cannot terminate an enclosing
loop.

2.1. Reduction

To give a formal definition of slicing in WSL we need to
define areductionof a program. Informally, this relates a
program with the result of replacing certain statements by
skip or exit statements. We define the relationS1 v S2,
read “S1 is a reduction ofS2”, on WSL programs as follows:

Sv S for any programS

skip v S for any proper sequenceS

If S is not a proper sequence andn > 0 is the largest
integer such that there is anexit (n+k) within k > 0 nested
do . . . od loops inS, then:

exit (n) v S

(In other words, if execution ofS could result in the termi-
nation of at mostn enclosing loops, thenS can be reduced
to exit (n)).

If S′1 v S1 andS′2 v S2 then:

if B then S′1 else S′2 fi v if B then S1 else S2 fi

If S′ v S then:

while B do S′ od v while B do S od

var 〈v := e〉 : S′ end v var 〈v := e〉 : S end

var 〈v := ⊥〉 : S′ end v var 〈v := e〉 : S end

This last case will be used when the variablev is used inS,
but the initial valuee is not used.



If S′i v Si for 1 6 i 6 n then:

S′1; S′2; . . . ; S′n v S1; S2; . . . ; Sn

The reduction relation does not allow deletion of askip
statement from a sequence of statements. This is so that the
position of each subcomponent of the reduced program is
the same as the corresponding subcomponent in the original
program. This relationship makes it easer to prove the cor-
rectness of slicing algorithms: deleting the extraneousskip
statements is a trivial additional step. In what follows we
will omit the extraskip statements when the relationship
between the original and sliced programs is clear.

Three important properties of the reduction relation are:

Lemma 2.1 Transitivity: If S1 v S2 and S2 v S3 then
S1 v S3.

Lemma 2.2 Antisymmetry: IfS1 v S2 andS2 v S1 then
S1 = S2.

Lemma 2.3 TheReplacement Property: If any component
of a program is replaced by a reduction, then the result is a
reduction of the whole program.

2.2. Syntactic Slicing

In [12] a syntactic slice was defined as any reduction of
the program which is also arefinementof the program. This
definition allows a program slicer to delete loops which do
not affect the variables in the slicing criteria without having
to prove termination of the loop (most slicing researchers
allow deletion of nonterminating code as a valid slice).
But such a definition of slicing is counter-intuitive in the
sense that slicing is intuitively anabstractionoperation (an
operation which throws away information) while refinement
is the opposite of abstraction. A more important consider-
ation is that we would like to be able to analyse the sliced
program and derive facts about the original program (with
the proviso that the original program might not terminate in
cases where the slice does). If the sliced program assigns
a particular value to a variable in the slice, then we would
like to deduce that the original program assigns thesame
value to the variable. But with the refinement definition of
a slice, the fact that the slice setsx to 1, say, tells us only
that 1 is one of thepossiblevalues given tox by the original
program.

Consider the following nondeterministic program which
we want to slice on the final value ofx:
x := 1;
while n > 1 do

if even?(n) then n := n/2
else n := 3 ∗ n + 1 fi od ;

if true → x := 1
ut true → x := 2 fi

Thewhile loop clearly does not affectx, so we would like
to delete it from the slice. But if we are insisting that the
slice beequivalentto the original program (onx), then we
have to prove that the loop terminates for alln before we
can delete it. The loop generates the Collatz sequence and
it is an open question as to whether the sequence always
reaches 1. (The problem was first posed by L. Collatz in
1937 [7,8]).

Allowing any refinement as a valid slice (as in [12])
would allow us to delete thewhile loop, but would also
allow us to delete theif statement, givingx := 1 as a valid
slice. If the slice is being determines as part of a program
analysis or comprehension task, then the programmer might
(incorrectly) conclude that the original program assigns the
value 1 tox whenever it terminates.

These considerations led to the development of the con-
cept of asemi-refinement:

Definition 2.4 A semi-refinementof S is any programS′

such that
∆ ` S ≈ {WP(S, true )}; S′

The semi-refinement relationship is denoted∆ ` S 4 S′.

For any statementSand formulaR theweakest precondition
WP(S, R) is a formula which is true on those initial states
for which S is guaranteed to terminate in a state which
satisfiesR (See [12] for the definition of WP on WSL).
So WP(S, true ) is true on precisely those initial states for
which S is guaranteed to terminate. Hence, the assertion
{WP(S, true )} is a skip when S terminates andabort
whenSmay not terminate.

If ∆ ` S 4 S′ thenS′ must be equivalent toS whenS
terminates, butS′ can do anything at all whenS does not
terminate. In particularS′ can be equivalent toskip when
S does not terminate.

We define a syntactic slice ofSonX to be any reduction
of S which is also a semi-refinement:

Definition 2.5 A Syntactic Sliceof S onX is any program
S′ such thatS′ v S and

∆ ` S; remove (W \X) 4 S′; remove (W \X)

whereW is the final state space forS andS′.

We can extend this definition to slicing at arbitrary points
in the program by adding assignments to a newslice vari-
able as discussed in Section 1.



2.3. Semantic Slicing

The definition of a syntactic slice immediately suggests
a generalisation: why restrict the semi-refinements to delet-
ing statements? Or, to put it another way, why not drop the
requirement thatS′ v S?

Harman and Danicic [4,5] coined the term “amorphous
program slicing” for a combination of slicing and transfor-
mation of executable programs. So far the transformations
have been restricted to restructuring snd simplifications, but
the definition of an amorphous slice allows any transforma-
tion (in any transformation theory) of executable programs.

We define a “semantic slice” to be any semi-refinement
in WSL, so the concepts of semantic slicing and amorphous
slicing are distinct but overlapping. A semantic slice is de-
fined in the context of WSL transformation theory, while an
amorphous slice is defined in terms of executable programs
(WSL allows nonexecutable statements including abstract
specification statements and guard statements). Also, amor-
phous slices are restricted to finite programs, while WSL
programs (and hence, semantic slices) can include infinitary
formulae. To summarise:

1. Amorphous slicing is restricted to finite, executable
programs. Semantic slicing applies to any WSL pro-
grams including non-executable specification state-
ments, non-executable guard statements, and programs
containing infinitary formulae;

2. Semantic slicing is defined in the particular context of
the WSL language and transformation theory: amor-
phous slicing applies to any transformation theory or
definition of program equivalence on executable pro-
grams.

The relation between a WSL program and its semantic
slice is a purely semantic one: compare this with a “syntac-
tic slice” where the relation is primarily a syntactic one with
a semantic restriction.

Definition 2.6 A semantic sliceof S on X is any program
S′ such that:

∆ ` S; remove (W \X) 4 S′; remove (W \X)

Note that while there are only a finite number of different
syntactic slices (ifS containsn statements then there are
at most2n different programsS′ such thatS′ v S) there
are infinitely many possible semantic slices for a program:
including slices which are actuallylarger than the original
program. Although one would normally expect a seman-
tic slice to be no larger than the original program, [14,
15] discuss cases where a high-level abstract specification
can be larger than the program while still being arguably
easier to understand and more useful for comprehension

and debugging. A program might use some very clever
coding to re-use the same data structure for more than one
purpose. An equivalent program which internally uses two
data structures might contain more statements and be less
efficient while still being easier to analyse and understand.
See [14] and [15] for a discussion of the issues.

3. The SCAM Mug

The following program was “published” on the side of
a mug distributed to delegates at the first SCAM (Source
Code Analysis and Manipulation) workshop in 2001 [1]. It
is based on an example in [3]:

while (p(i))
{ if (q(c))

{ x := f();
c := g(); }

i := h(i)
}

The problem is to determine which lines do not affect the
value ofx .

The mug “solves” the problem when filled with hot java
(or other hot liquid) and gives the answer that the assign-
mentc := g() does not affectx . This is because if at
any point the assignmentx := f() is executed, then from
that point on it does not matter whether theif statement is
taken or not. In other words, the value ofc from that point
on is irrelevant to the final value ofx (further assignments to
x will give it the same value). Note that the functionsf()
andg() are assumed not to have side-effects or reference
any of the variablesi , c or x , so they return the same value
on each call. The other functions (p, q and h) are also
assumed to be “pure functions” (with no side effects and
a returned value which only depends on the parameters).

A WSL translation of the program (calledMUG0) is:
while p?(i) do

if q?(c)
then x := f ;

c := g fi ;
i := h(i) od

where we have used the constantsf andg for the values
returned byf() andg() .

The traditional dataflow-based slicing algorithms (such
as [6]) will observe that there is a data dependency between
the final value ofx and the assignmentx := f . There
is a control dependency between the testq?(c) and the
assignmentx := f and there is a data dependency between
c := g andq?(c). Similarly, there is a control dependency
betweenx := f andp?(i) and a data dependency between
i := h(i) andp?(i). Table 1 summarises the dependencies.



x := f
ctrl−→ q?(c)

q?(c) data−→ c := g

x := f
ctrl−→ p?(i)

p?(i) data−→ i := h(i)

Table 1. Control and data dependencies in
MUG0

If the algorithm simply follows all dependencies in order
to determine what statements to include in the slice, then it
will conclude thatall the statements appear to affectx. For
example, the FermaT syntactic slicer will return the whole
program when asked to slice on the final value ofx since it
uses just such a dataflow-based algorithm.

It should not be surprising that the dataflow algorithm
sometimes produces a less than minimal slice, since the
task of determining a minimal slice is noncomputable in the
general case: so there can beno algorithm whichalways
returns a minimal slice.

Our aim in this section is to illustrate the power of
FermaT transformations by showing how a few simple
transformations can firstly give a very simplesemanticslice,
and then using this result to derive a minimalsyntactic
slice. We then discuss various generalisations of the mug
program.

3.1. Transformation and Slicing

First, we note that ifq?(c) is initially true, then the first
iteration of the loop will setx to f , and this will be the final
value ofx (the only thing that is assigned tox is the constant
valuef ). So the first thing we want to do is to unroll the first
iteration of the loop:
if p?(i)

then if q?(c)
then x := f ; c := g fi ;

i := h(i);
while p?(i) do

if q?(c)
then x := f ; c := g fi ;

i := h(i) od fi

Expand theif q?(c) . . . statement forwards over the next
two statements:
if p?(i)

then if q?(c)
then x := f ; c := g;

i := h(i);
while p?(i) do

if q?(c)
then x := f ; c := g fi ;

i := h(i) od
else i := h(i);

while p?(i) do
if q?(c)

then x := f ; c := g fi ;
i := h(i) od fi fi

In the secondwhile loop,¬q?(c) is invariant over the loop
(¬q?(c) is true initially, so the assignment toc will never be
executed). So we can simplify the loop body:
if p?(i)

then if q?(c)
then x := f ; c := g;

i := h(i);
while p?(i) do

if q?(c)
then x := f ; c := g fi ;

i := h(i) od
else i := h(i);

while p?(i) do
i := h(i) od fi fi

Now we can apply syntactic slicing to the final value ofx:
if p?(i)

then if q?(c)
then x := f ;

c := g;
i := h(i);
while p?(i) do

if q?(c)
then x := f ; c := g fi ;

i := h(i) od fi fi

TheConstant Propagation transformation will determine
that the second assignment tox is redundant:
if p?(i)

then if q?(c)
then x := f ;

c := g;
i := h(i);
while p?(i) do i := h(i) od fi fi

Another syntactic slice will delete all the code after the first
assignment tox:
if p?(i) then if q?(c) then x := f fi fi

Align Nested Statements will simplify this to the pro-
gramMUG1:
if p?(i) ∧ q?(c) then x := f fi

The result is a nice, compact semantic slice. An equivalent
semantic slice (in fact, aminimal semantic slice, if we are
counting statements) can be achieved by transforming to a
single specification statement:



x := x′.((p?(i) ∧ q?(c) ⇒ x′ = f)
∧ (¬(p?(i) ∧ q?(c)) ⇒ x′ = x))

A different minimal semantic slice uses a conditional ex-
pression:
x := if p?(i) ∧ q?(c) then f else x fi

3.2. A Minimal Syntactic Slice

To get a minimal syntactic slice of the mug problem we
start as before by unfolding thewhile loop and expanding
the if statement inMUG0 to give:
if p?(i)

then if q?(c)
then x := f ; c := g;

i := h(i);
while p?(i) do

if q?(c)
then x := f ; c := g fi ;

i := h(i) od
else i := h(i);

while p?(i) do
if q?(c)

then x := f ; c := g fi ;
i := h(i) od fi fi

Within the secondwhile loop,¬q?(c) is invariant as before,
so we can make any changes we like to the body of the
statementif q?(c) then . . . fi . We choose to delete the
assignmentc := g. Apply constant propagation to the first
assignmentc := g (outside the first loop) to remove all
references toc. The first assignment can then be deleted
(since we are not interested in the final value ofc):
if p?(i)

then if q?(c)
then x := f ;

i := h(i);
while p?(i) do

if q?(g)
then x := f fi ;

i := h(i) od
else i := h(i);

while p?(i) do
if q?(c)

then x := f fi ;
i := h(i) od fi fi

The statementif q?(g) then x := f fi is redundant since
at this point,x already has the valuef . So we can replace
it by the equally redundant statementif q?(c) then x :=
f fi . The twowhile loops are identical and can be taken
out of the enclosingif statement, along with the statement
i := h(i):
if p?(i)

then if q?(c)
then x := f fi ;

i := h(i);
while p?(i) do

if q?(c)
then x := f fi ;

i := h(i) od fi

Finally, we can roll up the loop to getMUG2:
while p?(i) do

if q?(c)
then x := f fi ;

i := h(i) od

This is a valid syntactic slice ofMUG0 onx.

One way to prove that a syntactic slice is minimal is to
prove that every smaller reduction of the program isnot a
semi-refinement of the program. To prove that a program is
not a semi-refinement it is sufficient to give an instantiation
of the function and predicate symbols, and an initial state,
such that the original program terminates in one state but
the proposed slice either does not terminate or terminates in
a different state.

For MUG0 there are two cases to consider: deleting the
assignmentx := f and/or deleting the assignmenti := h(i)
(deleting any other statement will also delete one or both of
these).

Let p?(i) be the conditioni > 0, let q?(c) be the con-
dition true , let h(i) be i − 1 and letf = 1. Under this
instantiation,MUG0 is:
while i > 0 do

if true
then x := 1 fi ;

i := i− 1 od

Supposei = 1 and x = 0 initially, then MUG0 will
terminate and setx to 1.

For the first case, any proposed slice which omits the
assignmentx := f cannot changex at all, so cannot be
valid.

For the second case (omittingi := h(i)), the proposed
slice:
while p?(i) do

if q?(c)
then x := f fi od

does not terminate on the given initial state, so also cannot
be valid. These two cases cover all the possible reductions
of the original program, so our syntactic slice is indeed the
minimal slice.

Note that there are several plausible definitions of a min-
imal syntactic slice:



1. Deleting any statement from the slice does not result
in a valid slice;

2. Deleting anyset of statementsfrom the slice does not
result in a valid slice;

3. Any other valid slice has at least as many statements
as this one.

A minimal slice is not necessarily unique (for any of the
definitions). Consider the program:

x := 1; x := x + 2; x := 2; x := x + 1

This has two different minimal slices, both of which have
two statements, namely:

x := 1; x := x + 2 and x := 2; x := x + 1

(These slices are minimal according to all three suggested
definitions of minimality).

Although of theoretical interest, demanding that the
slices be minimal is too restrictive a requirement to place on
a slicing algorithm. This is because an algorithm for finding
minimal slices can be converted into an algorithm for solv-
ing the halting problem (see [17]). The halting problem is
non-computable, hence the minimal slicing problem is also
non-computable.

Weiser’s proof, with slight modifications, can be applied
to syntactic slicing in WSL to show that there is no algo-
rithm for computing minimal syntactic slices in WSL. This
proof only applies tosyntacticslices: as we will show in
Section 5 for WSL it is always possible to construct a mini-
malsemanticslice (the construction is not an “algorithm” in
the usual sense because the output may be infinitely large:
even though the output is a single statement, the statement
may contain infinitary formulae).

4. The Generalised Mug Problem

A generalisation of the mug problem is the following:
while p(i) do

if q?(c, i)
then x := f ; x := g(i) fi ;

i := h(i) od

If at some point in the course of executionq?(c, i) becomes
true, then the assignmentx := f will occur. All subsequent
iterations are redundant since the only way the can affectx
is by assigning the value it already has. So in this case,
our first step is to split thewhile loop on the condition
¬q?(c, i).

The Loop Merging transformation states that for any
conditionB′:

∆ ` while B do S od

≈ while B ∧ B′ do S od ; while B do S od

If we split the loop on the condition¬q?(c, i), then the first
iteration of the second loop will assign tox andc. So split
the loop and then unroll the first step of the second loop:
while p(i) ∧ ¬q(c, i) do

if q?(c, i)
then x := f ; x := g(i) fi ;

i := h(i) od ;
{p(i) ⇒ q(c, i)};
if p(i)

then {q(c, i)};
if q(c, i)

then x := f ; c := g(i) fi ;
i := h(i);
while p(i) do

if q(c, i)
then x := f ; c := g(i) fi ;

i := h(i) od fi

The assertions come from the fact that on termination of
the first loop we must have¬(p(i) ∧ ¬q(c, i)) which is
equivalent top(i) ⇒ q(c, i). We can use the assertions to
simplify the program:
while p(i) ∧ ¬q(c, i) do

i := h(i) od ;
if p(i)

then x := f ; c := g(i);
i := h(i);
while p(i) do

if q(c, i)
then x := f ; c := g(i) fi ;

i := h(i) od fi

Now apply Constant Propagation to delete the second
assignment tox and thenSyntactic Slice onx will give:
while p(i) ∧ ¬q(c, i) do

i := h(i) od ;
if p(i) then x := f fi

As before, this can be transformed into a single specification
statement. First we need to know the value ofi after the first
loop.

Define the formulaH(i, j, c) as:

∃n. (j = hn(i) ∧ ∀m < n. (p(hm(i)) ∧ ¬q(hm(i)))
∧ (¬p(hn(i)) ∨ q(hn(i))))

HereH(i, j, c) is true precisely whenj is the final value
given toi when the loop terminates. So thewhile loop is



equivalent to the specification statementi := i′.H(i, i′, c).
This gives the following semantic slice:
i := i′.H(i, i′, c);
if p(i) then x := f fi

which simplifies to the single specification statement:
x := x′.((∀i′. (H(i, i′, c) ⇒ p(i′)) ⇒ x′ = f)

∧ (¬∀i′. (H(i, i′, c) ⇒ p(i′)) ⇒ x′ = x))

Using a conditional expression, we have this equivalent
statement:
x := if ∀i′. (H(i, i′, c) ⇒ p(i′)) then f else x fi

5. Further Generalisations

The generalised mug problem has the following features:

• The program is deterministic;

• The variablex is assigned a constant value in one or
more places.

By transforming the program we were able to determine the
condition under whichx is assigned, and therefore trans-
form the whole program into a conditional assignment.

SupposeS is a deterministic program which contains one
or more assignments of constant values tox, of the form
x := ei, wheree1, . . . ,en are constants.. The precondition
such thatx is assigned the valueei is simply WP(S, x = ei).
So a valid semantic slice for the whole program is:
x := if WP(S, x = e1) then e1

elsif . . .
elsif WP(S, x = en) then en

else x fi

Note that if all the weakest preconditions are false for a
given initial state, then either none of the assignments to
x is executed whenS is started in that state (in which casex
has its initial value) orSdoes not terminate when started in
that state (in which case,x := x is a valid semantic slice).

Finally, for an arbitraryS (deterministic or nondetermin-
istic) we can use theRepresentation Theoremto derive a
general semantic slice.

Theorem 5.1 The Representation Theorem
Let S: V → V , be any statement and letx be a list of all
the variables inV . ThenS is equivalent to:
[¬WP(S, false )];
x := x′.(¬WP(S, x 6= x′) ∧ WP(S, true ))

If S is null-free (which is guaranteed for all WSL
statements in language levels above the kernel level) then
WP(S, false ) is false, and the initial guard is redundant.
For such statements we can transform the specification
statement to show thatS is equivalent to:

{WP(S, true )}; x := x′.(¬WP(S, x 6= x′))

Then, by the definition of semi-refinement:

S 4 x := x′.(¬WP(S, x 6= x′))

This is clearly aminimal semantic slice (counting state-
ments) since it only contains a single statement, and by
definition no WSL program can be smaller than a single
statement. (It is not necessarily minimal if we are counting
the total number of symbols: if statementS contains loops
or recursion then the formula WP(S, R) is infinitely long!)
So we have:

Theorem 5.2 The Minimal Semantic Slice Theorem
Let S: V → V , be any null-free statement and letx be a
list of any subset of the variables inV . Then the statement
x := x′.(¬WP(S, x 6= x′)) is a valid semantic slice ofS on
the setvars(x).

This may appear to contradict Weiser’s theorem on the
non-computability of minimal slices, but Weiser’s theorem
only applies to algorithms for computing minimalsyntactic
slices. The construction ofx := x′.(¬WP(S, x 6= x′)) from
S, while being well defined, is not an algorithm in the usual
sense because the formula WP(S, x 6= x′) may be infinitely
long. (In fact, itwill be infinite wheneverS contains any
loops or recursion). An infinite specification statement is
not directly executable, so this result is only practical for
statements which contain no loops or recursion, but it does
show thatno semantic slice need be larger than a single
statement.

For WSL programs with no loops or recursion (and
where all the formulae are finite). Theorem 5.2doesgive
an algorithm for computing a minimal semantic slice on any
given slicing criterion.

5.1. Minimal Semantic Slicing Example

Tip [9] suggested the computation of slices using a mix-
ture of slicing and transformation in which a program is
translated to an intermediate representation (IR), the IR is
transformed and optimised (while maintaining a mapping
back to the source text), and slices are extracted from
the source text. Tip gave the following example program
(which we have translated into WSL):
if p = q

then x := 18
else x := 17 fi ;

if p 6= q
then y := x
else y := 2 fi

where we are interested in slicing on the final value of
y. Tip suggests that a slicing algorithm which is capable



of merging the two conditionals to produce the following
optimised program:
if p = q

then x := 18; y := 2
else x := 17; y := x fi

ought to be capable of producing the following slice:
if p = q

then skip
else x := 17 fi ;

if p 6= q
then y := x
else y := 2 fi

With semantic slicing we can, of course, produce a
smaller slice. Theorem 5.2 gives the following slice:
y := y′.(¬WP(if p = q then x := 18

else x := 17 fi ;
if p 6= q then y := x

else y := 2 fi , y 6= y′))

This simplifies to:
y := y′.(¬WP(if p = q then x := 18

else x := 17 fi ,
(p 6= q ⇒ x 6= x′)
∧ (p = q ⇒ 2 6= y′)))

which in turn simplifies to:
y := y′.(¬((p = q ⇒ 2 6= y′)

∧ (p 6= q ⇒ 17 6= y′)))

pwhich is equivalent to:
y := y′.((p = q ⇒ 2 = y′) ∧ (p 6= q ⇒ 17 = y′))

This can be expressed as a simple assignment on a condi-
tional expression:
y := if p = q then 2 else 17 fi

6. Slicing in FermaT

The FermaT transformation system implements most of
the transformations described in this paper, including syn-
tactic slicing and constant propagation. Semantic slices can
be constructed by applying a sequence of syntactic slicing
and transformation steps: research is currently underway
to develop a general set of heuristics (in the form of a
METAWSL program) which will automatically apply an
appropriate sequence of transformation and slicing steps
to generate a semantic slice which is suitable for program
analysis and reverse engineering.

FermaT is available under the GNU GPL (General Public
Licence) from the following web sites:

http://www.dur.ac.uk/∼dcs6mpw/fermat.html
http://www.cse.dmu.ac.uk/∼mward/fermat.html

FermaT, together with an extended transformation cata-
logue, forms the core of the commercial FERMAT Migra-
tion and Comprehension Workbench produced by Software
Migrations Ltd. The Workbench includes a number of
tools for assembler analysis, comprehension and migration
including dataflow analysers and program slicing. The tools
have been used in several migration projects from assembler
to C and COBOL, contact sales@smltd.com for informa-
tion.

7. Conclusion

In this paper we have described an improved formalisa-
tion of program slicing in terms of WSL program transfor-
mation theory. We have applied the result to a particularly
challenging slicing problem and found that by applying Fer-
maT transformations and syntactic slicing we can produce
minimal semantic and syntactic slices for the mug program.
We describe various generalisations for the mug program,
culminating in a construction for a minimal semantic slice
for anyWSL program which consists of exactly one state-
ment. In the case of WSL programs with finite formulae
and no iteration or recursion, this construct is finite, so the
theorem provides analgorithmfor a minimal semantic slice.
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