Using Formal Transformations
to Construct a Component Repository

Dr. Martin Ward
Computer Science Dept

Science Labs
South Rd
Durham DH1 3LE

July 16, 1993

Abstract

This paper discusses how theoretical results from the field of program transformations can be
applied to develop a new approach to software reuse. We describe a model for the semantics of
nondeterministic programs and specifications and use this model to show how refinements and
transformations of programs and specifications can be proved correct by reference to their cor-
responding Weakest Preconditions expressed as formulae in infinitary first order logic. We then
show how this theory of program refinements and transformations (which is further developed
in [7]) can be applied to the construction of a repository of reusable components consisting of
code, specifications, documentation and development methods. These components are linked
together in such a way that specifications and their implementations can be extracted easily.

1 Introduction

Production of software is costly and error prone and the most important means of production
(good programmers) are scarce. Therefore there exists a need to circumvent this costly manual
production process. Analogies from classical engineering suggest that by building up a catalogue
of standard components and construction techniques whose characteristics are well documented
can greatly reduce the cost of new construction projects. The bridge builder knows under what
conditions a “suspension bridge” is the right approach and has a collection of standard girders,
cables, nuts, bolts etc. which she can use in the design. This has lead to the notion of a component
repository which will reduce the effort involved in constructing new software.

1.1 Current Reuse Technology

The desire to avoid writing the same section of code more than once led to the invention of macros
and subroutines. These allow the reuse of common code sequences, but the the reuse is confined
to a single author, or at most a single project. This is too restricted to bring relief to the industry.

Standard subroutine libraries have proved a more powerful technique. Packages like SSP and
SPSS have had high success because they not only relieve the programmer from the drudgery of
coding but also (in their limited domain of application) relieve him from the need to develop an
algorithm, or to understand in detail the theory behind it. Unfortunately, only limited progress
has been made in this area since the early days.

We could conceive of a high-level language as an attempt at reusability: canonical structures



which frequently occur in program, such as looping constructs and methods of procedure call, have
been encapsulated into a single command. In addition, common programming techniques such as
register allocation, loop strength reduction and other optimisations are carried out automatically
by the compiling system. In the case of the GNU C compiler [5] “function inlining” can be carried
out automatically: ie the distinction between macros and procedures has (for almost all practical
cases) been removed. The further extension of this idea is restricted by the perceived need for a
compilation to be a totally automatic process.

The module or package concept in languages such as Modula-2 or ADA appears to provide even
greater support for reuse. The programmer can define data or procedural abstractions and link code
of a reasonably general nature into the code she is writing. However, the module implementations
at hand are ofter incompatible with each other since they have been developed independently.
They will also be incompatible with the new product under construction. The difficulties involved
in re-writing and patching existing code, without introducing bugs are often greater then the cost
of starting from scratch.

Certain operating system features, such as pipes, have been considered as a means of supporting
reuse [3]. A new system is built by combining existing programs using these features.

A problem with having a large library of modules or components is that for it to be reused
effectively the programmer has to know what is available and what each piece of code does, and
must be able to combine them on the source code level without any further support from the
system. This becomes extremely difficult as the component library gets larger: but that is just
when it is becoming useful. As a result these methods have found their greatest success when they
are limited to a narrow domain of programs. A 4GL! can be seen as an example of a collection
of reusable modules for a narrow programming domain, together with the means to compose them
into new programs. A further problem is that only a minor part of the program development effort
is spent on coding: therefore we want to re-use more than just the code. Development methods,
designs and documentation should all be reusable.

1.2 Traditional Development Methods
The traditional development methods can be grouped into four main types:

e The traditional “waterfall” lifecycle which starts with a fixed specification and develops it
into a finished product through a number of stages.

e Incremental development: in which a small part of the product is implemented and then
enhanced as the specification is developed.

¢ Rapid prototyping: in which a prototype of the main part of the system is developed and
analysed and used as the bases for the next in a series of prototypes. The traditional waterfall
method has been described as “slow prototyping”.

e A combination of the above.

All of these methods can be seen as applications of reuse: the initial work (a specification, a partial
implementation or a prototype) is reused in the later stages. Software maintenance can be seen
as the development of enhanced products involving a high degree of reuse of the existing product.
However the reuse is almost invariably restricted to a single project, and is often restricted to code
reuse.

We want to extend reuse to cross project boundaries and to extend the base of components
which can be reused to include all the products of development work

14" Generation Language



2 The Software Repository

The idea of constructing new software by composition from a collection of reusable components is
not new and clearly has many attractions. However it has yet to receive widespread implementation.
There appear to be several technical reasons for this (in addition to the managerial issues such as
the “Not Invented Here” syndrome):

e The repository must be large enough to contain a useful collection of components, yet each
component must be readily accessable.

e The components must be highly reliable since they will (hopefully) be re-used in many ap-
plications.

e There must be some means for extracting components from existing code for addition to the
archive: writing a complete library of components from scratch would involve a great deal of
investment of effort before any return on the investment would be perceived.

e In order to be widely useful the components should be written to handle the most general
cases, this means that programs constructed from components can be much less efficient than
programs written from scratch which can exploit regularities in the data.

This paper describes how the theory of program refinements and transformations developed in
[7,9] can be applied to the construction of a repository of usable components from which new
software can be constructed. The repository contains code, specifications and techniques as the
components, connected by formal and informal links. The formal links record proven knowledge
about the components, for example an abstract specification will be connected via a refinement
link to its implementation, two algorithms for solving the same problem will be connected via a
transformation link and an implementation of an abstract data type in terms of concrete data types
will be recorded as a reification link. Informal links will enable keyword searches and will connect
informal text descriptions of components to other components.

3 Theoretical Foundation

In [6,7,9] a formal theory is developed in which it is possible to prove that one program or specific-
ation is a refinement or transformation of another (we define a transformation to be a refinement
which works in both directions). The language which is developed along with the theory includes
both general specifications (expressed in terms of set theory and first order logic) as well as stand-
ard programming constructs, hence in the following a “program” can be either a program, or a
specification, or a hybrid mixture of program and specification (such as a partially-implemented
program). A refinment of a program is another program which is more defined (ie is defined on a
larger initial set of states) and more deterministic (ie for each initial state it has a smaller set of
potential final states).

The semantics of a program is a mathematical object which captures the external behaviour of
the program while ignoring its internal details. In [9] we define the semantics of a program to be
a pair (d,r) where d is the set of initial states for which the program is defined and r is a relation
which maps defined initial states to potential final states (we define a state to be a finite non-empty
collection of variables with values assigned to them). If s and ¢ are states such that (s,t) € r, ie s
and t are related under r, then ¢ is a possible final state for the initial state s. In other words, if
we start the program in a state in s € d then it is guaranteed to terminate and the set of possible
final states is the set of all states related to s by r. We write r(s) for this set of states, ie:

r(s)={t] {s,t)er} (1)

If (dy,7,) and (ds,7;) define the semantics of two programs S; and S, then we say S, refines



S, iff
(d1 g dz) N VS € dl' (TQ(S) g 7‘1(8)) (2)
If S, refines S, and S, refines S; then we say S; and S, are equivalent. See [9] for the details.

3.1 Weakest Preconditions

We use first order logic to express conditions on states, for example the formula x > y expresses
the condition that the value of the variable z in the state is greater than or equal to that of y. So
a formula is either “true” or “false” for a given state: ie each formula defines a function from the
set of states on a given finite non-empty set of variables, to the set of truth values, {tt, ff} with the
obvious interpretation.

The weakest precondition was introduced by Dijkstrain [2]. For a given program S and condition
on the final state (expressed as a formula) R, the weakest precondition WPS, R is defined as the
weakest condition on the initial state such that starting the program in a state satisfying that
condition results in the program terminating in a final state satisfying the given postcondition.
For example, the statement z := 5 will terminate in a state satisfying 2 > y iff it is started in a
state satisfying 5 > y, hence: WPz :=5,2 >y =5 > y. In [7,9] we develop a Wide Spectrum
Language (WSL) which includes general specifications expressed in first order logic, and imperative
programming constructs. We show that the weakest precondition of any program in WSL for any
condition on the final state can be expressed as a simple formula of infinitary logic. The infinitary
logic we use is a simple extension of standard first order logic which allows the conjunction or
disjunction of a countably infinite sequence of formulae as a valid formula. We then go on to
prove that the refinement relation between two programs is captured by the implication of their
corresponding weakest preconditions, ie if S; and S, are programs then:

S, <S, <= WPS,R= WPS,,R (3)

for an arbitrary formula R. This means that the problem of proving a refinement or equivalence
on two programs is reduced to proving an implication or equivalence of two formulae, for which all
the tools of mathematics are available to assist. This technique has proved highly successful, we
have developed a large catalogue of useful transformations and have been able to tackle a diverse
range of algorithms and specifications [6,7,9].

3.2 The Atomic Specification

We want the language we are modeling to include general specifications (expressed in terms of
mathematical logic) as well as programs. This will reduce the task of proving that a program is a
correct implementation of a specification to one of proving that one statement (the program) is a
refinement of another statement (the specification). Instead of having two languages (a specification
language and a programming language) all our proofs and carried out within a single wide spectrum
language. When implementing specifications as executable programs we will often need to assign
values to temporary variables which are not mentioned in the specification and whose final values
do not matter. To express this we need a notation for adding and removing variables from the
set of active variables (called the “state space”). Both of these concepts are combined in a new
primative statement, the atomic specification which specifies a program using logical formulae:

Definition 1 The Atomic Specification: written x/y.Q, where Q is a formula of first order logic
and x and y are sequences of variables, is a form of nondeterministic assignment statement. Its
effect is to add the variables in x to the state space, assign new values to them such that Q is
satisfied, remove the variables in y from the state and terminate. If there is no assignment to
the variables in x which satisfies Q then the Atomic Specification does not terminate (ie it is not
defined for those initial states).



This is based on the “atomic description” of Back [1].

Some examples of Atomic Specifications:

L (2)/()-(z > y)
This sets @ to any value greater then the value of y. If there is no such value then the
specification does not terminate.

2. (2)/()-(z=2+y) (}/(2).(x = 2)
This sequence implements the assignment statement x := & + y using a temporary variable
z.

3. x'/.Q; x/x/.(x =x')
Here x is a sequence of variables and x’ a sequence of temporary variables. These statements
implement the general assignment statement: x := x’.QQ which assigns new values x’ to x
where Q gives the relation between x and x'.

4. (n,z,y,2)/()(n,2,y,2 € NT A (n>2) A (2" =2a" +y"))
This example illustrates the fact that proving the termination of even a single primitive
statement of WSL can be quite a challenge!

3.3 The join Construct

Together with the atomic description and more familiar programming constructs the Wide Spec-
trum Language includes a new construct called join. The join of two programs is defined to be
the weakest (ie least defined) program which satisfies any specification satisfied by either of the
two programs. If one of the component programs does not terminate for a particular initial state
then it cannot satisfy any specification defined on that state, so the join of the two programs is
identical to the other program on that state. A property of the join construct is that any program
which refines both components will also refine their join. This property is very useful in searching
the repository: if we have a specification which we wish to implement we first want to search the
database for an equivalent (or at least similar) specification which has already been implemented.
For a large and complex specification this will give rise to a potentially highly complex matching
problem. If, however, the specification is expressed as the join of several simpler specifications then
the matching problem for each component will be much easier to solve. Once we have found all
the components, we can search through the refinement links to find a common ancestor to all of
the components. From the above property of join, this ancestor will be a correct implementation
of the full specification. We give an example of this search below.

We have used this theory to develop tools for the development of algorithms and programs
from specifications, and the derivation of specifications from code (we term this process “inverse
engineering”). A large catalogue of practical transformations and refinements has been developed
which are being applied to a wide variety of programs.

4 Why Invent Another New Language?

There are several reasons why we have invented another language rather than using an existing
programming language such as C or ADA:

o Weneeded alanguage with a simple semantics and tractable reasoning methods. In particular,
our language has been designed from the start with ease of transformation and refinement as
a major objective. New constructs are added to the language only if we can show that they
will be easy to work with: in particular, we need a useful set of transformations which make
use of that construct before it becomes part of the language. This policy has proved very



successful and enabled us to avoid some of the problems which can occur when the language
definition is the starting point for research.

e We wanted to include the implementation of a (possibly non-executable) specification as an
allowable refinement step, we also wanted to be able to write programs using a mixture of
specification and programming constructs. This facilitates the stepwise refinement of specific-
ations into programs and the iterative analysis of programs into specifications. No existing
implementable programming language includes general specifications in its syntax (for obvious
reasons!).

e By expressing our results in a general language we get results which are independent of
any particular programming language. Programs in existing programming language can be
transcribed into WSL, manipulated as WSL programs, and then re-transcribed, perhaps into
a different programming language.

o All existing programming languages have limitations (in particular, the limitation to ex-
ecutable constructs which is intolerable in a specification language). Also many popular
languages have a number of quirks and foibles which would greatly complicate the semantics
while adding little expressive power.

5 Components

The components in out repository will consist of pieces of Wide Spectrum Language (WSL) code
[7,9]: this code could be either a program module, or the specification of a module, or a mixture
of programming constructs and specifications. We have extended the WSL language to express
meta-programming constructs (ie program editing operations, transformations and refinements).
This means that as well as recording the specification and implementation of a module as two
components, the sequence of transformations used to derive the implementation from the specific-
ation can also be recorded as a third component. These derivation histories can be generalised into
derivation strategies which can also be transformed by applying meta-transformations written in a
meta-meta-programming language. In fact, the meta-meta-programming language is identical with
the meta-programming language since this is simply an extension of WSL.

Documentation and informal requirements in the form of text are also included as components
of the repository.

6 Component Links

The components are connected together using links to form the repository, there are two different
types of link:

e Formal links which record proven facts about the components and which are therefore
transitive. These are of four different types:

1. Change in data representation: —+ This links two programs which are equivalent
in effect but which use different representations of the data.

2. Refinement: —— This links a “less defined” program to a refinement of it.

3. Transformation: =— This links two programs which are equivalent, but which may
use different internal data or algorithms for example.

4. Reification: — This is similar to transformation in that it links equivalent programs,
but the program to the right uses a less abstract internal data representation and less
abstract algorithms and is therefore closer to an implementation.

¢ Informal links: - » These connect documentation, informal requirements and keywords
to the other components.



7 An Example

In this section we present a small example of a fragment of a repository concerning sorting programs.
For the moment we will restrict attention to a subset of the repository components and the formal
links which connect them. The components are as follows (here A[l..n] is an array of elements to
be sorted in place):

e abort: this is the totally undefined program, any program is therefore a refinement of abort.

o random_perm = A := A'.(Ir € Perms(n).V1 < ¢ < n. A[n(¢)] = A'[i]): here Perms(n) is
the set of all permutations of the elements {1,...,n}. This program nondeterministically
permutes the elements of array A.

o random_inc_seq = (A)/().Sorted(A): here Sorted(A) =, V1 < i< j < n. Ali] < A[j])ieit
is true iff array A is sorted. This program assigns arbitrary values to the array such that it
is sorted.

e SORT = join random_inc_seq Ul random_perm nioj: This is a specification of a program to
sort A. Note that it gives no indication of the algorithm to use (testing all possible assignments
of increasing sequences to see which are permutations of the original array is not a practical
sorting algorithm!). Note the use of join to split up the specification into two simpler sub-
specifications. (Sort is probably a simple enough concept by itself—this is just an example
to illustrate the technique).

e merge_sort_array: this is the implementation of a merge sorting algorithm.

e merge_sort_file: this is obtained from merge_sort_array by changing the data representation:
we use an array to represent a file.

e recursive_quicksort: this is obtained from SORT by “algorithm derivation” (see below).
o iterative_quicksort: a reified algorithm obtained from recursive_quicksort.

o ADA _quicksort: obtained from iterative_quicksort by transforming into a form which can be
automatically translated into an efficient ADA module.

o (_quicksort: see ADA_quicksort.

The links which connect these components are shown diagrammatically in Figure 1. Let us
suppose that the user of the repository wishes to implement a sorting algorithm. He writes his
specification in the form of a join of smaller specifications which he then searches the repository
to see if implementations already exist. The initial stages of the search could make use of informal
links: for instance an analysis of the specifications would suggest that “Array” would be a suitable
keyword to restrict the search to specifications of array manipulation programs. Theorem-proving
techniques can be applied to prove, for instance, that random_perm is a refinement of one com-
ponent of the specification, and that random_inc_seq is a refinement of the other component. Once
refinements of all components have been found then the refinement and reification links can be
searched automatically to find a common descendant of all the refinements. In this case SORT will
be found immediately.

Note that the process of finding a common ancestor could fail: for example the system might
notice that skip is a refinement of random_perm, but the join of skip and random_inc_seq is not
fully defined (in fact it is the guard [Sorted(A)|. If a guard or other partially-domained statement
(or “miracle” as some auther’s refer to it, for example [4]) is reached in the search for a common
descendant then the search has failed since such a specification cannot be implemented.

Once SORT has been found, the various implementations of the specification can be extracted by
following the reification links. For example the “quicksort” implementation could be selected. This
has previously been transformed into an efficient iterative algorithm which has been massaged into



abort

/

random_perm random_inc_seq

sort_file < SORT

AN

R
R

merge_sort_{ile +—— merge_sort_array recursive_quicksort

(1

iterative_quicksort

(1
R

ADA _quicksort C_quicksort

Figure 1: A Fragment of a Repository



two forms, one appropriate for translation to C and the other for ADA. See [8] for the derivation of
the programs from the SORT specification. Alternatively a file sorting algorithm could be extracted
by following the “change data representation” links.

This process is analogous to the process we go through when selecting a purchase from the set
of manufacturer’s offerings. We have a rough idea of what we want, which is still precise enough
for us to check it against the given supply. Our requirements are frequently expressed as a set
of objectives which we require to be simultaneously achieved. (This is analogous to writing a
specification as the join of a set of incomplete specifications. A suitable implementation has to
satisfy all the component specifications). As we narrow down the set of possibilities we add more
details to our specification and make more precise discriminations. If no ready-built product is
suitable then we may choose to get one specially manufactured, the manufacturing process will
throw up requirements for components which will have to be searched for in turn.

8 Adding Existing Code

One problem with current research on reuse is that several people have produced prototype com-
ponent repositories but nobody wants to start using them because of the enormous effort involved
in developing a large enough set of components for the repository to be useful. With the system
presented here this problem is much less acute: existing code can be placed in the repository, ini-
tially with informal links only. Later, as the code is analysed using code analysis and specification
tools such as the Maintainer’s Assistant [6,10]. This process can be carried out in conjunction with
normal maintenance, as the specifications of code are extracted they can be placed in the repository.
In addition the transformational development of new code from specifications and components will
provide new components and links for the repository.

9 Problems and Benefits

9.1 Problems

e Specification Matching: Any repository or component library is only as good as the
technique for matching specifications and extracting components. This is a difficult problem
in general: the problem gets more difficult as the library gets larger, but this is just when
it is becoming more useful. We believe that the technique of including a large collection
of “partial” or “generic” specifications which can be composed using the join operator will
greatly assist in finding the required component and eliminating unsuitable matches. With a
large set of generics there will be a number of paths through the repository, from the results
of an initial informal keyword browse to the desired component. Thus the large size of the
library actually assists in the search rather than hindering it. Developing a “standard style”
for writing specifications and a standard set of generics for composing larger specifications
will greatly assist the theorem proving specification matcher and improve the ease with which
specifications and other components can be extracted.

¢ Size of Repository: The more components and links (especially formal links) there are
in the repository, the more useful it will be in the construction of new software. Many of
the components will be substantial pieces of code or documentation, including perhaps many
different versions of the same piece of code tailored for different purposes. Thus the overall
size of the repository is likely to be very large. This can be alleviated with the use of optical
WORM? storage since most of the operations will consist of reading from and adding to the
repository with only very occasional deletions.

2Write Once Read Many



o Efficiency: Constructing a program from a set of general-purpose reusable components can
often generate a highly inefficient result. There may be extra layers of procedure calls plus
the general-purpose modules are not able to make use of regularities in the data for the
current program to carry out their actions more efficiently. This problem can be avoided by
the application of efficiency improving transformations to the generated code. Optimising
compilers carry this out at a very low level: they construct the program from standard
code blocks which implement the high-level constructs and then optimise the result to try
and remove the inefficiencies introduced. The transformations we have developed work at
a higher level than any optimising compiler, they include removing unnecessary procedure
calls, migrating code between modules, adding data structures to store intermediate results
rather than re-calculating, changing the representation of data structures, etc. Because the
transformations have been proven to preserve the effect of the program, and because they
can be applied and the correctness conditions checked automatically, there is no chance of
introducing clerical or logical errors in a long series of transformations. Hence they can be
used freely wherever appropriate to improve the efficiency of the final product to a sufficient
degree. The resulting modules can in turn be added to the repository and reused, as can any
new efliciency improving techniques which are developed.

9.2 Benefits

¢ Recording formal as well as informal links in the repository means that the work involved in
proving that a module correctly implements its specification is not lost but is repaid many
times over.

e The repository records specifications and development methods as well as code, so these can
be reused in the same way.

¢ Maintenance work carried out using tools such as the “Maintainer’s Assistant” [10] generates
new components with validated high-level specifications as a by-product. These can be in-
corporated in the repository so that the existing development and maintenance investment
can be made greater use of.

e The creation of formal links means that there is a high degree of confidence that the compon-
ents in the repository meet their specifications, hence new programs constructed from these
components will be correspondingly reliable.

o The efficiency improving transformations make it possible to construct efficient programs out
of general purpose components.

o The derivation of specifications from old code undergoing maintenance means that such code
can be brought into a CASE strategy.

10 Conclusion

We have described a theory for program transformation and refinement which has proved very
powerful for the derivation of programs from specifications and the analysis of existing programs in
software maintenance [10]. This, together with the join concept for composing specifications and
programs, and the “meta-programming” language for describing program developments, forms the
foundation for the construction of a repository of reusable components which can be used in the
construction of new software with greater reliability at greatly reduced cost.

Bibliography

10



[1] R.J. R. Back, Correctness Preserving Program Refinements, Mathematical Centre Tracts #131,
Mathematisch Centrum, Amsterdam, 1980.

[2] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1976.

[3] B. W. Kernighan, “The UNIX system and Software Reusability",” IEEE Trans. Software Eng.
SE-10 (Sept., 1984), 513-528.

[4] C. C. Morgan, “The Specification Statement,” Trans. Programming Lang. and Syst. 10 (1988),
403-419.

[5] R. M. Stallman, Using and Porting GNU CC, Free Software Foundation, Inc., Sept., 1989.

[6] M. Ward, “Transforming a Program into a Specification,” Durham University, Technical Report
88/1, 1988.

[7] M. Ward, “Proving Program Refinements and Transformations,” Oxford University, DPhil
Thesis, 1989.

[8] M. Ward, “Derivation of a Sorting Algorithm,” Durham University, Technical Report, 1990.

[9] M. Ward, “Specifications and Programs in a Wide Spectrum Language,” Submitted to J. Assoc.
Comput. Mach., Apr., 1991.

[10] M. Ward, F. W. Calliss & M. Munro, “The Maintainer’s Assistant,” Conference on Software
Maintenance 16th—19th October 1989, Miami Florida(Oct., 1989).

11



