
Using Formal Transformationsto Construct a Component RepositoryDr. Martin WardComputer Science DeptScience LabsSouth RdDurham DH1 3LEJuly 16, 1993AbstractThis paper discusses how theoretical results from the �eld of program transformations can beapplied to develop a new approach to software reuse. We describe a model for the semantics ofnondeterministic programs and speci�cations and use this model to show how re�nements andtransformations of programs and speci�cations can be proved correct by reference to their cor-responding Weakest Preconditions expressed as formulae in in�nitary �rst order logic. We thenshow how this theory of program re�nements and transformations (which is further developedin [7]) can be applied to the construction of a repository of reusable components consisting ofcode, speci�cations, documentation and development methods. These components are linkedtogether in such a way that speci�cations and their implementations can be extracted easily.1 IntroductionProduction of software is costly and error prone and the most important means of production(good programmers) are scarce. Therefore there exists a need to circumvent this costly manualproduction process. Analogies from classical engineering suggest that by building up a catalogueof standard components and construction techniques whose characteristics are well documentedcan greatly reduce the cost of new construction projects. The bridge builder knows under whatconditions a �suspension bridge� is the right approach and has a collection of standard girders,cables, nuts, bolts etc. which she can use in the design. This has lead to the notion of a componentrepository which will reduce the e�ort involved in constructing new software.1.1 Current Reuse TechnologyThe desire to avoid writing the same section of code more than once led to the invention of macrosand subroutines. These allow the reuse of common code sequences, but the the reuse is con�nedto a single author, or at most a single project. This is too restricted to bring relief to the industry.Standard subroutine libraries have proved a more powerful technique. Packages like SSP andSPSS have had high success because they not only relieve the programmer from the drudgery ofcoding but also (in their limited domain of application) relieve him from the need to develop analgorithm, or to understand in detail the theory behind it. Unfortunately, only limited progresshas been made in this area since the early days.We could conceive of a high-level language as an attempt at reusability: canonical structures1



which frequently occur in program, such as looping constructs and methods of procedure call, havebeen encapsulated into a single command. In addition, common programming techniques such asregister allocation, loop strength reduction and other optimisations are carried out automaticallyby the compiling system. In the case of the GNU C compiler [5] �function inlining� can be carriedout automatically: ie the distinction between macros and procedures has (for almost all practicalcases) been removed. The further extension of this idea is restricted by the perceived need for acompilation to be a totally automatic process.The module or package concept in languages such as Modula-2 or ADA appears to provide evengreater support for reuse. The programmer can de�ne data or procedural abstractions and link codeof a reasonably general nature into the code she is writing. However, the module implementationsat hand are ofter incompatible with each other since they have been developed independently.They will also be incompatible with the new product under construction. The di�culties involvedin re-writing and patching existing code, without introducing bugs are often greater then the costof starting from scratch.Certain operating system features, such as pipes, have been considered as a means of supportingreuse [3]. A new system is built by combining existing programs using these features.A problem with having a large library of modules or components is that for it to be reusede�ectively the programmer has to know what is available and what each piece of code does, andmust be able to combine them on the source code level without any further support from thesystem. This becomes extremely di�cult as the component library gets larger: but that is justwhen it is becoming useful. As a result these methods have found their greatest success when theyare limited to a narrow domain of programs. A 4GL1 can be seen as an example of a collectionof reusable modules for a narrow programming domain, together with the means to compose theminto new programs. A further problem is that only a minor part of the program development e�ortis spent on coding: therefore we want to re-use more than just the code. Development methods,designs and documentation should all be reusable.1.2 Traditional Development MethodsThe traditional development methods can be grouped into four main types:� The traditional �waterfall� lifecycle which starts with a �xed speci�cation and develops itinto a �nished product through a number of stages.� Incremental development: in which a small part of the product is implemented and thenenhanced as the speci�cation is developed.� Rapid prototyping: in which a prototype of the main part of the system is developed andanalysed and used as the bases for the next in a series of prototypes. The traditional waterfallmethod has been described as �slow prototyping�.� A combination of the above.All of these methods can be seen as applications of reuse: the initial work (a speci�cation, a partialimplementation or a prototype) is reused in the later stages. Software maintenance can be seenas the development of enhanced products involving a high degree of reuse of the existing product.However the reuse is almost invariably restricted to a single project, and is often restricted to codereuse.We want to extend reuse to cross project boundaries and to extend the base of componentswhich can be reused to include all the products of development work14th Generation Language 2



2 The Software RepositoryThe idea of constructing new software by composition from a collection of reusable components isnot new and clearly has many attractions. However it has yet to receive widespread implementation.There appear to be several technical reasons for this (in addition to the managerial issues such asthe �Not Invented Here� syndrome):� The repository must be large enough to contain a useful collection of components, yet eachcomponent must be readily accessable.� The components must be highly reliable since they will (hopefully) be re-used in many ap-plications.� There must be some means for extracting components from existing code for addition to thearchive: writing a complete library of components from scratch would involve a great deal ofinvestment of e�ort before any return on the investment would be perceived.� In order to be widely useful the components should be written to handle the most generalcases, this means that programs constructed from components can be much less e�cient thanprograms written from scratch which can exploit regularities in the data.This paper describes how the theory of program re�nements and transformations developed in[7,9] can be applied to the construction of a repository of usable components from which newsoftware can be constructed. The repository contains code, speci�cations and techniques as thecomponents, connected by formal and informal links. The formal links record proven knowledgeabout the components, for example an abstract speci�cation will be connected via a re�nementlink to its implementation, two algorithms for solving the same problem will be connected via atransformation link and an implementation of an abstract data type in terms of concrete data typeswill be recorded as a rei�cation link. Informal links will enable keyword searches and will connectinformal text descriptions of components to other components.3 Theoretical FoundationIn [6,7,9] a formal theory is developed in which it is possible to prove that one program or speci�c-ation is a re�nement or transformation of another (we de�ne a transformation to be a re�nementwhich works in both directions). The language which is developed along with the theory includesboth general speci�cations (expressed in terms of set theory and �rst order logic) as well as stand-ard programming constructs, hence in the following a �program� can be either a program, or aspeci�cation, or a hybrid mixture of program and speci�cation (such as a partially-implementedprogram). A re�nment of a program is another program which is more de�ned (ie is de�ned on alarger initial set of states) and more deterministic (ie for each initial state it has a smaller set ofpotential �nal states).The semantics of a program is a mathematical object which captures the external behaviour ofthe program while ignoring its internal details. In [9] we de�ne the semantics of a program to bea pair hd; ri where d is the set of initial states for which the program is de�ned and r is a relationwhich maps de�ned initial states to potential �nal states (we de�ne a state to be a �nite non-emptycollection of variables with values assigned to them). If s and t are states such that hs; ti 2 r, ie sand t are related under r, then t is a possible �nal state for the initial state s. In other words, ifwe start the program in a state in s 2 d then it is guaranteed to terminate and the set of possible�nal states is the set of all states related to s by r. We write r(s) for this set of states, ie:r(s) = f t j hs; ti 2 r g (1)If hd1; r1i and hd2; r2i de�ne the semantics of two programs S1 and S2 then we say S2 re�nes3



S1 i� (d1 � d2) ^ 8s 2 d1: (r2(s) � r1(s)) (2)If S1 re�nes S2 and S2 re�nes S1 then we say S1 and S2 are equivalent. See [9] for the details.3.1 Weakest PreconditionsWe use �rst order logic to express conditions on states, for example the formula x � y expressesthe condition that the value of the variable x in the state is greater than or equal to that of y. Soa formula is either �true� or �false� for a given state: ie each formula de�nes a function from theset of states on a given �nite non-empty set of variables, to the set of truth values, ftt;�g with theobvious interpretation.The weakest precondition was introduced by Dijkstra in [2]. For a given program S and conditionon the �nal state (expressed as a formula) R, the weakest precondition WPS;R is de�ned as theweakest condition on the initial state such that starting the program in a state satisfying thatcondition results in the program terminating in a �nal state satisfying the given postcondition.For example, the statement x := 5 will terminate in a state satisfying x > y i� it is started in astate satisfying 5 > y, hence: WPx := 5; x > y = 5 > y. In [7,9] we develop a Wide SpectrumLanguage (WSL) which includes general speci�cations expressed in �rst order logic, and imperativeprogramming constructs. We show that the weakest precondition of any program in WSL for anycondition on the �nal state can be expressed as a simple formula of in�nitary logic. The in�nitarylogic we use is a simple extension of standard �rst order logic which allows the conjunction ordisjunction of a countably in�nite sequence of formulae as a valid formula. We then go on toprove that the re�nement relation between two programs is captured by the implication of theircorresponding weakest preconditions, ie if S1 and S2 are programs then:S1 � S2 () WPS1;R) WPS2;R (3)for an arbitrary formula R. This means that the problem of proving a re�nement or equivalenceon two programs is reduced to proving an implication or equivalence of two formulae, for which allthe tools of mathematics are available to assist. This technique has proved highly successful, wehave developed a large catalogue of useful transformations and have been able to tackle a diverserange of algorithms and speci�cations [6,7,9].3.2 The Atomic Speci�cationWe want the language we are modeling to include general speci�cations (expressed in terms ofmathematical logic) as well as programs. This will reduce the task of proving that a program is acorrect implementation of a speci�cation to one of proving that one statement (the program) is are�nement of another statement (the speci�cation). Instead of having two languages (a speci�cationlanguage and a programming language) all our proofs and carried out within a single wide spectrumlanguage. When implementing speci�cations as executable programs we will often need to assignvalues to temporary variables which are not mentioned in the speci�cation and whose �nal valuesdo not matter. To express this we need a notation for adding and removing variables from theset of active variables (called the �state space�). Both of these concepts are combined in a newprimative statement, the atomic speci�cation which speci�es a program using logical formulae:De�nition 1 The Atomic Speci�cation: written x=y:Q, where Q is a formula of �rst order logicand x and y are sequences of variables, is a form of nondeterministic assignment statement. Itse�ect is to add the variables in x to the state space, assign new values to them such that Q issatis�ed, remove the variables in y from the state and terminate. If there is no assignment tothe variables in x which satis�es Q then the Atomic Speci�cation does not terminate (ie it is notde�ned for those initial states). 4



This is based on the �atomic description� of Back [1].Some examples of Atomic Speci�cations:1. hxi=hi:(x > y)This sets x to any value greater then the value of y. If there is no such value then thespeci�cation does not terminate.2. hzi=hi:(z = x+ y); hi=hzi:(x = z)This sequence implements the assignment statement x := x+ y using a temporary variablez.3. x0=:Q; x=x0:(x = x0)Here x is a sequence of variables and x0 a sequence of temporary variables. These statementsimplement the general assignment statement: x := x0:Q which assigns new values x0 to xwhere Q gives the relation between x and x0.4. hn; x; y; zi=hi:(n; x; y; z 2 N+ ^ (n > 2) ^ (zn = xn + yn))This example illustrates the fact that proving the termination of even a single primitivestatement of WSL can be quite a challenge!3.3 The join ConstructTogether with the atomic description and more familiar programming constructs the Wide Spec-trum Language includes a new construct called join. The join of two programs is de�ned to bethe weakest (ie least de�ned) program which satis�es any speci�cation satis�ed by either of thetwo programs. If one of the component programs does not terminate for a particular initial statethen it cannot satisfy any speci�cation de�ned on that state, so the join of the two programs isidentical to the other program on that state. A property of the join construct is that any programwhich re�nes both components will also re�ne their join. This property is very useful in searchingthe repository: if we have a speci�cation which we wish to implement we �rst want to search thedatabase for an equivalent (or at least similar) speci�cation which has already been implemented.For a large and complex speci�cation this will give rise to a potentially highly complex matchingproblem. If, however, the speci�cation is expressed as the join of several simpler speci�cations thenthe matching problem for each component will be much easier to solve. Once we have found allthe components, we can search through the re�nement links to �nd a common ancestor to all ofthe components. From the above property of join, this ancestor will be a correct implementationof the full speci�cation. We give an example of this search below.We have used this theory to develop tools for the development of algorithms and programsfrom speci�cations, and the derivation of speci�cations from code (we term this process �inverseengineering�). A large catalogue of practical transformations and re�nements has been developedwhich are being applied to a wide variety of programs.4 Why Invent Another New Language?There are several reasons why we have invented another language rather than using an existingprogramming language such as C or ADA:� We needed a language with a simple semantics and tractable reasoning methods. In particular,our language has been designed from the start with ease of transformation and re�nement asa major objective. New constructs are added to the language only if we can show that theywill be easy to work with: in particular, we need a useful set of transformations which makeuse of that construct before it becomes part of the language. This policy has proved very5



successful and enabled us to avoid some of the problems which can occur when the languagede�nition is the starting point for research.� We wanted to include the implementation of a (possibly non-executable) speci�cation as anallowable re�nement step, we also wanted to be able to write programs using a mixture ofspeci�cation and programming constructs. This facilitates the stepwise re�nement of speci�c-ations into programs and the iterative analysis of programs into speci�cations. No existingimplementable programming language includes general speci�cations in its syntax (for obviousreasons!).� By expressing our results in a general language we get results which are independent ofany particular programming language. Programs in existing programming language can betranscribed into WSL, manipulated as WSL programs, and then re-transcribed, perhaps intoa di�erent programming language.� All existing programming languages have limitations (in particular, the limitation to ex-ecutable constructs which is intolerable in a speci�cation language). Also many popularlanguages have a number of quirks and foibles which would greatly complicate the semanticswhile adding little expressive power.5 ComponentsThe components in out repository will consist of pieces of Wide Spectrum Language (WSL) code[7,9]: this code could be either a program module, or the speci�cation of a module, or a mixtureof programming constructs and speci�cations. We have extended the WSL language to expressmeta-programming constructs (ie program editing operations, transformations and re�nements).This means that as well as recording the speci�cation and implementation of a module as twocomponents, the sequence of transformations used to derive the implementation from the speci�c-ation can also be recorded as a third component. These derivation histories can be generalised intoderivation strategies which can also be transformed by applying meta-transformations written in ameta-meta-programming language. In fact, the meta-meta-programming language is identical withthe meta-programming language since this is simply an extension of WSL.Documentation and informal requirements in the form of text are also included as componentsof the repository.6 Component LinksThe components are connected together using links to form the repository, there are two di�erenttypes of link:� Formal links which record proven facts about the components and which are thereforetransitive. These are of four di�erent types:1. Change in data representation: - This links two programs which are equivalentin e�ect but which use di�erent representations of the data.2. Re�nement: - This links a �less de�ned� program to a re�nement of it.3. Transformation: -� This links two programs which are equivalent, but which mayuse di�erent internal data or algorithms for example.4. Rei�cation: �=- This is similar to transformation in that it links equivalent programs,but the program to the right uses a less abstract internal data representation and lessabstract algorithms and is therefore closer to an implementation.� Informal links: p p p p p p- These connect documentation, informal requirements and keywordsto the other components. 6



7 An ExampleIn this section we present a small example of a fragment of a repository concerning sorting programs.For the moment we will restrict attention to a subset of the repository components and the formallinks which connect them. The components are as follows (here A[1::n] is an array of elements tobe sorted in place):� abort: this is the totally unde�ned program, any program is therefore a re�nement of abort.� random perm = A := A0:(9� 2 Perms(n): 81 � i � n:A[�(i)] = A0[i]): here Perms(n) isthe set of all permutations of the elements f1; : : : ; ng. This program nondeterministicallypermutes the elements of array A.� random inc seq = hAi=hi:Sorted(A): here Sorted(A) =DF 81 � i < j � n:A[i] � A[j]) ie itis true i� array A is sorted. This program assigns arbitrary values to the array such that itis sorted.� SORT = join random inc seq t random perm nioj: This is a speci�cation of a program tosortA. Note that it gives no indication of the algorithm to use (testing all possible assignmentsof increasing sequences to see which are permutations of the original array is not a practicalsorting algorithm!). Note the use of join to split up the speci�cation into two simpler sub-speci�cations. (Sort is probably a simple enough concept by itself�this is just an exampleto illustrate the technique).� merge sort array: this is the implementation of a merge sorting algorithm.� merge sort �le : this is obtained from merge sort array by changing the data representation:we use an array to represent a �le.� recursive quicksort: this is obtained from SORT by �algorithm derivation� (see below).� iterative quicksort: a rei�ed algorithm obtained from recursive quicksort.� ADA quicksort: obtained from iterative quicksort by transforming into a form which can beautomatically translated into an e�cient ADA module.� C quicksort: see ADA quicksort.The links which connect these components are shown diagrammatically in Figure 1. Let ussuppose that the user of the repository wishes to implement a sorting algorithm. He writes hisspeci�cation in the form of a join of smaller speci�cations which he then searches the repositoryto see if implementations already exist. The initial stages of the search could make use of informallinks: for instance an analysis of the speci�cations would suggest that �Array� would be a suitablekeyword to restrict the search to speci�cations of array manipulation programs. Theorem-provingtechniques can be applied to prove, for instance, that random perm is a re�nement of one com-ponent of the speci�cation, and that random inc seq is a re�nement of the other component. Oncere�nements of all components have been found then the re�nement and rei�cation links can besearched automatically to �nd a common descendant of all the re�nements. In this case SORT willbe found immediately.Note that the process of �nding a common ancestor could fail: for example the system mightnotice that skip is a re�nement of random perm, but the join of skip and random inc seq is notfully de�ned (in fact it is the guard [Sorted(A)]. If a guard or other partially-domained statement(or �miracle� as some auther's refer to it, for example [4]) is reached in the search for a commondescendant then the search has failed since such a speci�cation cannot be implemented.Once SORT has been found, the various implementations of the speci�cation can be extracted byfollowing the rei�cation links. For example the �quicksort� implementation could be selected. Thishas previously been transformed into an e�cient iterative algorithm which has been massaged into7



abort���������	 @@@@@@@@@Rrandom perm random inc seq@@@@@@@@@R ���������	sort �le � SORT?�= ?�= @@@@@@@@@R�=merge sort �le� merge sort array recursive quicksort?�=iterative quicksort���������	 �= ?�=ADA quicksort C quicksortFigure 1: A Fragment of a Repository8



two forms, one appropriate for translation to C and the other for ADA. See [8] for the derivation ofthe programs from the SORT speci�cation. Alternatively a �le sorting algorithm could be extractedby following the �change data representation� links.This process is analogous to the process we go through when selecting a purchase from the setof manufacturer's o�erings. We have a rough idea of what we want, which is still precise enoughfor us to check it against the given supply. Our requirements are frequently expressed as a setof objectives which we require to be simultaneously achieved. (This is analogous to writing aspeci�cation as the join of a set of incomplete speci�cations. A suitable implementation has tosatisfy all the component speci�cations). As we narrow down the set of possibilities we add moredetails to our speci�cation and make more precise discriminations. If no ready-built product issuitable then we may choose to get one specially manufactured, the manufacturing process willthrow up requirements for components which will have to be searched for in turn.8 Adding Existing CodeOne problem with current research on reuse is that several people have produced prototype com-ponent repositories but nobody wants to start using them because of the enormous e�ort involvedin developing a large enough set of components for the repository to be useful. With the systempresented here this problem is much less acute: existing code can be placed in the repository, ini-tially with informal links only. Later, as the code is analysed using code analysis and speci�cationtools such as the Maintainer's Assistant [6,10]. This process can be carried out in conjunction withnormal maintenance, as the speci�cations of code are extracted they can be placed in the repository.In addition the transformational development of new code from speci�cations and components willprovide new components and links for the repository.9 Problems and Bene�ts9.1 Problems� Speci�cation Matching: Any repository or component library is only as good as thetechnique for matching speci�cations and extracting components. This is a di�cult problemin general: the problem gets more di�cult as the library gets larger, but this is just whenit is becoming more useful. We believe that the technique of including a large collectionof �partial� or �generic� speci�cations which can be composed using the join operator willgreatly assist in �nding the required component and eliminating unsuitable matches. With alarge set of generics there will be a number of paths through the repository, from the resultsof an initial informal keyword browse to the desired component. Thus the large size of thelibrary actually assists in the search rather than hindering it. Developing a �standard style�for writing speci�cations and a standard set of generics for composing larger speci�cationswill greatly assist the theorem proving speci�cation matcher and improve the ease with whichspeci�cations and other components can be extracted.� Size of Repository: The more components and links (especially formal links) there arein the repository, the more useful it will be in the construction of new software. Many ofthe components will be substantial pieces of code or documentation, including perhaps manydi�erent versions of the same piece of code tailored for di�erent purposes. Thus the overallsize of the repository is likely to be very large. This can be alleviated with the use of opticalWORM2 storage since most of the operations will consist of reading from and adding to therepository with only very occasional deletions.2Write Once Read Many 9



� E�ciency: Constructing a program from a set of general-purpose reusable components canoften generate a highly ine�cient result. There may be extra layers of procedure calls plusthe general-purpose modules are not able to make use of regularities in the data for thecurrent program to carry out their actions more e�ciently. This problem can be avoided bythe application of e�ciency improving transformations to the generated code. Optimisingcompilers carry this out at a very low level: they construct the program from standardcode blocks which implement the high-level constructs and then optimise the result to tryand remove the ine�ciencies introduced. The transformations we have developed work ata higher level than any optimising compiler, they include removing unnecessary procedurecalls, migrating code between modules, adding data structures to store intermediate resultsrather than re-calculating, changing the representation of data structures, etc. Because thetransformations have been proven to preserve the e�ect of the program, and because theycan be applied and the correctness conditions checked automatically, there is no chance ofintroducing clerical or logical errors in a long series of transformations. Hence they can beused freely wherever appropriate to improve the e�ciency of the �nal product to a su�cientdegree. The resulting modules can in turn be added to the repository and reused, as can anynew e�ciency improving techniques which are developed.9.2 Bene�ts� Recording formal as well as informal links in the repository means that the work involved inproving that a module correctly implements its speci�cation is not lost but is repaid manytimes over.� The repository records speci�cations and development methods as well as code, so these canbe reused in the same way.� Maintenance work carried out using tools such as the �Maintainer's Assistant� [10] generatesnew components with validated high-level speci�cations as a by-product. These can be in-corporated in the repository so that the existing development and maintenance investmentcan be made greater use of.� The creation of formal links means that there is a high degree of con�dence that the compon-ents in the repository meet their speci�cations, hence new programs constructed from thesecomponents will be correspondingly reliable.� The e�ciency improving transformations make it possible to construct e�cient programs outof general purpose components.� The derivation of speci�cations from old code undergoing maintenance means that such codecan be brought into a CASE strategy.10 ConclusionWe have described a theory for program transformation and re�nement which has proved verypowerful for the derivation of programs from speci�cations and the analysis of existing programs insoftware maintenance [10]. This, together with the join concept for composing speci�cations andprograms, and the �meta-programming� language for describing program developments, forms thefoundation for the construction of a repository of reusable components which can be used in theconstruction of new software with greater reliability at greatly reduced cost.Bibliography 10



[1] R. J. R. Back, Correctness Preserving Program Re�nements, Mathematical Centre Tracts#131,Mathematisch Centrum, Amsterdam, 1980.[2] E. W. Dijkstra, A Discipline of Programming , Prentice-Hall, Englewood Cli�s, NJ, 1976.[3] B. W. Kernighan, �The UNIX system and Software Reusability",� IEEE Trans. Software Eng.SE-10 (Sept., 1984), 513�528.[4] C. C. Morgan, �The Speci�cation Statement,� Trans. Programming Lang. and Syst. 10 (1988),403�419.[5] R. M. Stallman, Using and Porting GNU CC , Free Software Foundation, Inc., Sept., 1989.[6] M. Ward, �Transforming a Program into a Speci�cation,� Durham University, Technical Report88/1, 1988.[7] M. Ward, �Proving Program Re�nements and Transformations,� Oxford University, DPhilThesis, 1989.[8] M. Ward, �Derivation of a Sorting Algorithm,� Durham University, Technical Report, 1990.[9] M. Ward, �Speci�cations and Programs in a Wide Spectrum Language,� Submitted to J. Assoc.Comput. Mach., Apr., 1991.[10] M. Ward, F. W. Calliss & M. Munro, �The Maintainer's Assistant,� Conference on SoftwareMaintenance 16th�19th October 1989, Miami Florida (Oct., 1989).

11


