
A Recursion Removal TheoremMartin WardComputer Science DeptScience LabsSouth RdDurham DH1 3LEJuly 16, 1993AbstractIn this paper we brie
y introduce a Wide Spectrum Language and its transformation theoryand describe a recent success of the theory: a general recursion removal theorem. Recursionremoval often forms an important step in the systematic development of an algorithm from aformal speci�cation. We use semantic-preserving transformations to carry out such develop-ments and the theorem proves the correctness of many di�erent classes of recursion removal.This theorem includes as special cases the two techniques discussed by Knuth [13] and Bird [7].We describe some applications of the theorem to cascade recursion, binary cascade recursion,Gray codes, and an inverse engineering problem.1 IntroductionIn this paper we brie
y introduce some of the ideas behind the transformation theory we havedeveloped over the last eight years at Oxford and Durham Universities and describe a recentresult: a general recursion removal theorem.We use a Wide Spectrum Language (called WSL), developed in [20,26,26] which includes low-level programming constructs and high-level abstract speci�cations within a single language. Work-ing within a single language means that the proof that a program correctly implements a speci�ca-tion, or that a speci�cation correctly captures the behaviour of a program, can be achieved by meansof formal transformations in the language. We don't have to develop transformations between the\programming" and \speci�cation" languages. An added advantage is that di�erent parts of theprogram can be expressed at di�erent levels of abstraction, if required.Re�nement is de�ned in terms of the denotational semantics of the language: the semantics ofa program S is a function which maps from an initial state to a �nal set of states. The set of �nalstates represents all the possible output states of the program for the given input state. Using aset of states enables us to model nondeterministic programs and partially de�ned (or incomplete)speci�cations. For programs S1 and S2 we say S1 is re�ned by S2 (or S2 is a re�nement of S1)and write S1 � S2 if S2 is more de�ned and more deterministic than S1. If S1 � S2 and S2 � S1then we say S1 is equivalent to S2 and write S1 � S2. A transformation is an operation whichmaps any program satisfying the applicability conditions of the transformation to an equivalentprogram. Thus a transformation is a special case of re�nement. See [20] and [26] for a descriptionof the semantics of WSL and the methods used for proving the correctness of transformations.Many of the transformations of WSL programs are \re�nements" in the wider sense of trans-forming an abstract speci�cation or algorithm into a concrete implementation; in [22] we discussways of de�ning the relative \degree of abstractness" of semantically equivalent WSL programs.In developing a model based theory of semantic equivalence, we use the popular approach of de-�ning a core \kernel" language with denotational semantics, and permitting de�nitional extensions1

in terms of the basic constructs. In contrast to other work, we do not use a purely applicative ker-nel; instead, the concept of state is included, with primitive statements to add and remove variablesto/from the state space. Together with guards and assertions, this allows speci�cations expressedin �rst order logic to be part of the language, thus providing a genuine \wide spectrum language".Unlike the CIP project [5] and others (eg [6,8]) our kernel language will have state introduced rightfrom the start so that it can cope easily with imperative programs. Our experience is that animperative kernel language with functional extensions is more tractable than a functional kernellanguage with imperative extensions. Unlike Bird [8] we did not want to be restricted to a purelyfunctional language since this is incompatible with the aims of a true wide spectrum language.This approach has proved highly successful, not only to the goal of re�ning speci�cations intoalgorithms by formal transformation (see [21,25,27]), but also working in the reverse direction:starting with an unstructured program we can transform it into a high-level speci�cation [24].2 The Wide Spectrum LanguageOur kernel language has four primitive statements:1. Assertion: fPg2. Guard: [P]3. Add variables (with arbitrary values): add(x)4. Remove variables: remove(x)where x is a sequence of variables and P a formula of �rst order logic.An assertion is a partial skip statement, it aborts if the condition is false but does nothing if thecondition is true. The abort statement ffalseg therefore always aborts. The guard statement [P]always terminates, it enforces P to be true at this point in the program.If this cannot be ensuredthen the set of possible �nal states is empty, and therefore all possible �nal states will satisfy anydesired condition. Hence the \null guard", [false], is a \correct re�nement" of any speci�cationwhatsoever. Clearly guard statements cannot be directly implemented but they are nonetheless auseful theoretical tool.The add(x) statement is unrestricted in its nondeterminacy, by following it with a suitable guardwe can restrict the nondeterminacy and achieve the e�ect of a general assignment. For example,Back's atomic description [4], written x=y:Q, whereQ is a formula of �rst order logic (with equality)and x and y are sets of variables, is equivalent to the sequence f9x:Qg; add(x); [Q]; remove(y).Its e�ect is to add the variables in x to the state space, assign new values to them such that Q issatis�ed, remove the variables in y from the state and terminate. If there is no assignment to thevariables in x which satis�es Q then the atomic speci�cation does not terminate.Morgan and others [14,15,16,17] use a di�erent speci�cation statement, written x : [Pre;Post].This statement is guaranteed to terminate for all initial states which satisfy Pre and will termin-ate in a state which satis�es Post while only assigning to variables in the list x. It is thus acombination of an assignment and a guard statement. In our notation an equivalent statement isfPreg; add(x); [Post].The kernel language is constructed from these four primitive statements, a set of statementvariables (these are symbols which will be used to represent the recursive calls of recursive state-ments) and the following four compounds:1. Sequential Composition: (S1; S2)First S1 is executed and then S2.2. Choice: (S1 u S2)One of the statements S1 or S2 is chosen for execution. It is the strongest program re�nedby both S1 and S2. 2

3. Join: (S1 t S2)The join of two programs is the weakest program which re�nes them both.4. Recursive Procedure: (�X:S1)Within the body S1, occurrences of the statement variable X represent recursive calls to theprocedure.There is a rather pleasing duality between the assertion and the guard and also between thechoice and join constructs. In fact, the set of programs forms a lattice [11] with [false] as the topelement, ffalseg as the bottom element, u as the lattice meet and t as the lattice join operators.The kernel language is particularly elegant and tractable but is too primitive to form a usefulwide spectrum language for the transformational development of programs. For this purpose weneed to extend the language by de�ning new constructs in terms of the existing ones using \de�n-itional transformations". A series of new \language levels" is built up, with the language at eachlevel being de�ned in terms of the previous level: the kernel language is the \level zero" languagewhich forms the foundation for all the others. Each new language level automatically inheritsthe transformations proved at the previous level, these form the basis of a new transformationcatalogue. Transformations of the new language construct are proved by appealing to the de�n-itional transformation of the construct and carrying out the actual manipulation in the previouslevel language. This technique has proved extremely powerful in the development of a practicaltransformation system which currently implements over four hundred transformations, accessiblethrough a simple user interface [10].2.1 Syntax of ExpressionsExpressions include variable names, numbers, strings of the form \text : : :", the constants N, R,Q, Z, and the following operators and functions: (in the following e1, e2 etc. represent any validexpressions):Numeric operators: e1 + e2, e1 � e2, e1 � e2, e1=e2, ee21 , e1 mod e2, e1 div e2, frac(e1), abs(e1),sgn(e1), max(e1; e2; : : :), min(e1; e2; : : :), with the usual meanings.Sequences: s = ha1; a2; : : : ; ani is a sequence, the ith element ai is denoted s[i], s[i : : j] is thesubsequence hs[i]; s[i + 1]; : : : ; s[j]i, where s[i : : j] = hi (the empty sequence) if i > j. Thelength of sequence s is denoted `(s), so s[`(s)] is the last element of s. We use s[i : :] as anabbreviation for s[i : : `(s)]. reverse(s) = han; an�1; : : : ; a2; a1i, head(s) is the same as s[1] andtail(s) is s[2 : :].Sequence concatenation: s1 ++ s2 = hs1[1]; : : : ; s1[`(s1)]; s2[1]; : : : ; s2[`(s2)]i. The append func-tion, append(s1; s2; : : : ; sn), is the same as s1 ++ s2 ++ � � � ++ sn.Subsequences: The assignment s[i : : j] := t[k : : l] where j � i = l � k assigns s the valuehs[1]; : : : ; s[i� 1]; t[k]; : : : ; t[l]; s[j+ 1]; : : : ; s[`(s)]i.Sets: We have the usual set operations [(union), \ (intersection) and � (set di�erence), �(subset), 2 (element), } (powerset). f x 2 A j P(x) g is the set of all elements in A whichsatisfy predicate P. For the sequence s, set(s) is the set of elements of the sequence, i.e.set(s) = f s[i] j 1 � i � `(s) g.Relations and Functions: A relation is a (�nite or in�nite) set of pairs, a subset of A�B whereA is the domain and B the range. A relation f is a function i� 8x; y1; y2: ��(x; y1) 2 f ^(x; y2) 2 f�) y1 = y2�. In this case we write f(x) = y when (x; y) 2 f.Substitution: The expression e[e2=e1] where e, e1 and e2are expressions means the result ofreplacing all occurrences of e1 in e by e2. (This notation is also used for substitution instatements). 3

2.2 Syntax of Formulaetrue and false are true and false conditions, true is de�ned as 8v: (v = v) and false as :8v: (v = v).In the following Q, Q1, Q2 etc. represent arbitrary formulae and e1, e2, etc. arbitrary expressions:Relations: e1 = e2, e1 6= e2, e1 < e2, e1 � e2, e1 > e2, e1 � e2, even?(e1), odd?(e1);Logical operators: :Q, Q1 _Q2, Q1 ^Q2;Quanti�ers: 8v:Q and 9v:Q are allowed in formulae.2.3 Language ExtensionsThe �rst set of language extensions, which go to make up the \�rst level" language, are as follows.Subsequent extensions will be de�ned in terms of the �rst level language. For the purposes ofthis paper we will describe only a subset of the language extensions. See [26] and [20] for a morecomplete de�nition.� Sequential composition: The sequencing operator is associative so we can eliminate the brack-ets: S1; S2; S3; : : : ; Sn =DF (: : :((S1; S2); S3); : : : ; Sn)� Deterministic Choice: We can use guards to turn a nondeterministic choice into a determin-istic choice: if B then S1 else S2 � =DF (([B]; S1) u ([:B]; S2))� Assignment: We can express a general assignment using add, remove, and guards:x := x0:Q =DF f9x:Qg; add(x0); [Q]; add(x); [x = x0]; remove(x0)Here, x is a sequence of variables and x0 is a sequence of new variables. The formula Qexpresses the relation between the initial values of x and the �nal values. For example:hxi := hx0i:(x0 = x + 1) increments the value of the variable x. We will sometimes omit thesequence brackets around singleton sequences of variables and expressions where this causesno confusion.� Simple Assignment: If e is a list of expressions and x a list of variables and x0 a list of newvariables, then: x := e =DF x := x0:(x0 = e)With this notation, the statement to increment x can be written: x := x + 1 (omitting thesequence brackets as discussed above).� Stack Operations: x e =DF x := hei ++ xx push � e =DF x := hei ++ xx pop � e =DF e := x[1]; x := x[2 : :]� Nondeterministic Choice: The \guarded command" of Dijkstra [12]:if B1 ! S1ut B2 ! S2: : :ut Bn ! Sn � =DF (((: : :(([B1]; S1) u([B2]; S2)) u: : :) u([Bn]; Sn)) u([:(B1 _ B2 _ � � � _ Bn)]; abort))4

� Deterministic Iteration: We de�ne a while loop using a new recursive procedure X which doesnot occur free in S: while B do S od =DF (�X:(([B]; S; X) u [:B]))� Nondeterministic Iteration:do B1 ! S1ut B2 ! S2: : :ut Bn ! Sn od =DF while (B1 _ B2 _ � � � _ Bn) doif B1 ! S1ut B2 ! S2: : :ut Bn ! Sn � od� Initialised local Variables:var x := t : S end =DF add(x); [x = t]; S; remove(x)� Counted Iteration:for i := b to f step s do S od =DF var i := b :while i � f doS; i := i+ s od end� Procedure call: proc X � S: =DF (�X:S)� Block with local procedure:begin S1 where proc X � S2: end =DF S1[proc X � S2:=X]2.4 Exit StatementsOur programming language will include statements of the form exit(n), where n is an integer, (nota variable) which occur within loops of the form do S od where S is a statement. These weredescribed in [13] and more recently in [19]. They are \in�nite" or \unbounded" loops which canonly be terminated by the execution of a statement of the form exit(n) which causes the programto exit n of the enclosing loops. To simplify the language we disallow exits which leave a block ora loop other than an unbounded loop.Previously, the only formal treatments of exit statements have treated them in the same wayas unstructured goto statements by adding \continuations" to the denotational semantics of allthe other statements. This adds greatly to the complexity of the semantics and also means thatall the results obtained prior to this modi�cation will have to be re-proved with respect to thenew semantics. The approach taken in our work, which does not seem to have been tried before,is to express every program which uses exit statements and unbounded loop in terms of the �rstlevel language without changing the language semantics. This means that the new statements willnot change the denotational semantics of the kernel so all the transformations developed withoutreference to exit statements will still apply in the more general case. In fact we make much useof the transformations derived without reference to exits in the derivation of transformations ofstatements which use the exit statement.The interpretation of these statements in terms of the �rst level language is as follows:We have an integer variable depth which records the current depth of nesting of loops. Atthe beginning of the program we have depth := 0 and each exit statement exit(k) is translated:depth := depth � k since it changes the depth of \current execution" by moving out of k enclosingloops. To prevent any more statements at the current depth being executed after an exit statementhas been executed we surround all statements by \guards" which are if statements which will test5

depth and only allow the statement to be executed if depth has the correct value. Each unboundedloop do S od is translated:depth := n; while depth = n do guardn(S) odwhere n is an integer constant representing the depth of the loop (1 for an outermost loop, 2for double nested loops etc.) and guardn(S) is the statement S with each component statementguarded so that if the depth is changed by an exit statement, then no more statements in theloop will be executed and the loop will terminate. The important property of a guarded statementis that it will only be executed if depth has the correct value. Thus if depth 6= n initially thenguardn(S) � skip. So for example, the program:do do last := item[i];i := i+ 1;if i = n + 1 then write(count); exit(2) �;if item[i] 6= last then write(count); exit(1)else count := count + number[i] � od;count := number[i] odtranslates to the following:depth := 1;while depth = 1 dodepth := 2;while depth = 2 dolast := item[i];i := i + 1;if i = n+ 1 then write(count); depth := depth � 2 �;if depth = 2then if item[i] 6= last then write(count); depth := depth � 1else count := count + number[i] � � od;if depth = 1 then count := number[i] � od2.5 Action SystemsThis section will introduce the concept of an Action System as a set of parameterless mutuallyrecursive procedures. A program written using labels and jumps translates directly into an actionsystem. Note however that if the end of the body of an action is reached, then control is passedto the action which called it (or to the statement following the action system) rather than \fallingthrough" to the next label. The exception to this is a special action called the terminating action,usually denoted Z, which when called results in the immediate termination of the whole actionsystem.Our recursive statement does not directly allow the de�nition of mutually recursive procedures(since all calls to a procedure must occur within the procedure body). However we can de�ne aset of mutually recursive procedures by putting them all within a single procedure. For examplesuppose we have two statements, S1 and S2 both containing statement variables X1 and X2 (wherewe intend S1 to be the body of X1 and S2 to be the body of X2). We can represent these by asingle recursive program:x := 1;proc A � if x = 1 ! S1[x := 1; A=X1][x := 2; A=X2]ut x = 2 ! S2[x := 1; A=X1][x := 2; A=X2] �:where an additional variable x records which procedure is required when the composite procedureA is called. 6

Arsac [2,3] uses a restricted de�nition of actions together with deterministic assignments, thebinary if statement and do loops with exits: so there is no place for nondeterminism in his results.The main di�erences between our action systems and Arsac's are: (i) that we use a much morepowerful language (including general speci�cations) , (ii) we give a formal de�nition (ultimatelyin terms of denotational semantics), and (iii) our action systems are simple statements which canform components of other constructs. This last point is vitally important in this application sinceit gives us a way to restructure the body of a recursive procedure as an action system. It is thisrestructuring which gives the recursion removal theorem much of its power and generality.De�nition 2.1 An action is a parameterless procedure acting on global variables (cf [2,3]). Itis written in the form A � S where A is a statement variable (the name of the action) andS is a statement (the action body). A set of (mutually recursive) actions is called an actionsystem. There may sometimes be a special action (usually denoted Z), execution of which causestermination of the whole action system even if there are un�nished recursive calls. An occurrenceof a statement call X within the action body refers to a call of another action.The action system:actions A1 :A1 � S1:A2 � S2:: : :An � Sn: endactions(where statements S1; : : : ;Sn must have no exit(n) statements within less than n nested loops) isde�ned as follows:var action := \A1";proc A � if action = \A1" ! action := \O"; guardZ(S1)[action := \Ai"; A=call Ai]ut action = \A2" ! action := \O"; guardZ(S2)[action := \Ai"; A=call Ai]: : :ut action = \An" ! action := \O"; guardZ(Sn)[action := \Ai"; A=call Ai]: endHere action is a new variable which contains the name of the next action to be invoked andguardZ(S) is de�ned in a similar way to guardn(S) so that:guardZ(call Z) =DF action := \Z"guardZ(v := e) =DF if action = \O" then v := e � etc.and as soon as action is set to \Z" no further statements will be executed. This ensures the correctoperation of the \halting" action. Here \A1"; : : : ; \An"; \O" and \Z" represent a suitable set ofn+ 2 distinct constant values.The procedure A is never called with action equal to \Z" (or in fact anything other than\A1"; : : : ; \An"). The assignment action := \O" is not really needed because the variable actionwill be assigned again before its value is tested; it is added so that we can distinguish the followingthree cases depending on the value of action:1. Currently executing an action: action = \O";2. About to call another (or the same) action (other than the terminating action): action =one of \A1"; : : : ; \An";3. Have called the terminating action, all outstanding recursive calls are terminated withoutany statements being executed: action = \Z".De�nition 2.2 An action is regular if every execution of the action leads to an action call. (Thisis similar to a regular rule in a Post production system [18]).7

De�nition 2.3 An action system is regular if every action in the system is regular. Any algorithmde�ned by a
owchart, or a program which contains labels and gotos but no procedure calls innon-terminal positions, can be expressed as a regular action system.2.6 Procedures and Functions with ParametersFor simplicity we will only consider procedures with parameters which are called by value or byvalue-result. Here the value of the actual parameter is copied into a local variable which replacesthe formal parameter in the body of the procedure. For result parameters, the �nal value of thislocal variable is copied back into the actual parameter. In this case the actual parameter must bea variable or some other object (eg an array element) which can be assigned a value. Such objectsare often denoted as \L-values" because they can occur on the left of assignment statements.Our \de�nitional transformation" for a procedure with formal parameters and local variableswill replace them both by global stacks. Consider the following piece of code, which contains a callto the recursive procedure F. This procedure uses a local variable a which must be preserved overrecursive calls to F:begin : : : ; F(t; v); : : :whereproc F(x; var : y) �var a := d :S end:endwhere t is an expression, v a variable, x is a value parameter, v a value-result parameter and a alocal variable which is assigned the initial value d. This is de�ned as:beginx := hi; y := hi; a := hi;: : : ;x push � t; y push � v;F;v pop � y; x := x[2 : :];: : :whereproc F �a push � d;S[x[1]=x][y[1]=y][a[1]=a][x push � t0; y push � v0; F; v0 pop � y; x := x[2 : :]=F(t0; v0)];a := a[2 : :]:endHere the substitution of x[1] for x etc. ensures that the body of the procedure only accesses andupdates the tops of the stacks which replace the parameters and local variables. This means thatany call of F will only a�ect the values at the tops of the stacks x, y and a so an inner recursivecall of F, which takes the form: x push � t0; y push � v0; F; v0 pop � y; x := x[2 : :], will only a�ect thevalue of v (and global variables in S) and will not a�ect the stacks. The proof is by the theoremson invariant maintenance for recursive statements [20].To allow side e�ects in expressions and conditions we introduce the new notation of \expressionbrackets", and . These allow us to include statements as part of an expression, for example thefollowing are valid expressions:x := x+ 1; x 8

x := x+ 1; x� 1We also have conditional expressions where if and � are used as expression brackets, for example:if x > 0 then x else � x �The �rst and second are equivalent to C's ++x and x++ respectively, the third is a conditionalexpression which returns the absolute value of x.Note that expression brackets may be nested, for example the assignment:a := S1; b := if S2; Q then S3; t1 else t2 �; b � bis represented as:S1; S2; if Q then S3; b := t1 else b := t2 �; a := b � bDe�nition 2.4 Function calls: The de�nitional transformation of a function call will replace thefunction call by a call to a procedure which assigns the value returned by the function to a variable.This variable then replaces the function call in the expression. Several calls in one expression arereplaced by the same number of procedure calls and new variables. Boolean functions are treatedas functions which return one of the values \tt" or \ff" (representing true and false). So a booleanfunction call is replaced by a formula (b = \tt") where b is a new local variable. The statementin which the function call appeared is preceded by a procedure call which sets b to \tt" or \ff",depending on the result of the corresponding boolean function.For example, the statement with function calls:begin a := F(x) + F(y)wherefunct F(x) � if B then t1 else t2 �: endis interpreted:begin var r1; r2 :F(x); r1 := r; F(y); r2 := r;a := r1 + r2 endwhereproc F(x) � if B then r := t1 else r := t2 �: endThe statement:begina := while B(x) do x := F(x) od; x+ cwherefunct B(x) � S; x > y :funct F(x) � if B then t1 else t2 �:is interpreted:begindo B(x); if r = \ff" then exit �;F(x); x := r od;a := x+ c whereproc B(x) � S; if x > y then r := \tt" else r := \ff" �;proc F(x) � if B then r := t1 else r := t2 �: endSee [20] for the formal de�nition of generalised expressions and generalised conditions and theirinterpretation functions. 9

3 Example TransformationsIn this section we describe a few of the transformations we will use later:3.1 Expand IF statementThe if statement: if B then S1 else S2 �; Scan be expanded over the following statement to give:if B then S1; S else S2; S �3.2 Loop InversionIf the statement S1 contains no exits which can cause termination of an enclosing loop (i.e. in thenotation of [20] it is a proper sequence) then the loop:do S1; S2 odcan be inverted to: S1; do S2; S1 odThis transformation may be used in the forwards direction to move the termination test of a loop tothe beginning, prior to transforming it into a while loop, or it may be used in the reverse directionto merge two copies of the statement S1.3.3 Loop UnrollingThe next three transformations concern various forms of loop unrolling. They play an importantrole in the proofs of other transformations as well as being generally useful.Lemma 3.1 Loop Unrolling:while B do S od � if B then S; while B do S od �Lemma 3.2 Selective unrolling of while loops: For any condition Q we have:while B do S od � while B do S; if B ^ Q then S � odLemma 3.3 Entire Loop Unfolding: if B0) B then:while B do S od � while B do S; if Q then while B0 do S od � odEach of these transformation has a generalisation in which instead of inserting the \unrolled" partafter S it is copied after an arbitrary selection of the terminal statements in S.3.4 AbsorptionDe�nition 3.4 A primitive statement is any statement other than a conditional, a do : : : odloop or a sequence of statements. The depth of a component of a statement is the number ofenclosing do : : : od loops around the component. A terminal statement is a primitive statementwhich is either(i) in a terminal position, or(ii) is an exit(n) at depth less than n, or(iii) is an exit(n) at depth n where the outermost do : : : od loop is in a terminal position.10

The terminal value of a terminal statement exit(n) is n minus the depth. Incrementing astatement by k means adding exit(k) after each non-exit terminal statement with terminal valuezero, and replacing each terminal statement exit(n) with terminal value zero by exit(n+ k).A sequence S; S0 of two statements can be merged together by the absorption The statementS0 following S is \absorbed" into it by replacing all of the terminal statements of S which wouldlead to S0 by a copy of S0 incremented by the depth of the terminal statement. For example:do do if y > x then exit �;x := x� 1;if x = 0 then exit(2) � od;if z > x then exit � od;if z = x then exit �after absorption becomes:do do if y > x then exit �;x := x� 1;if x = 0 then if z = x then exit(3) else exit(2) � � od;if z > x then if z = x then exit(2) else exit � od4 The TheoremTheorem 4.1 Suppose we have a recursive procedure whose body is an action system in thefollowing form, in which the body of the procedure is an action system. (A call Z in the actionsystem will therefore terminate only the current invocation of the procedure):proc F(x) �actions A1 :A1 � S1:: : :Ai � Si:: : :Bj � Sj0; F(gj1(x)); Sj1; F(gj2(x)); : : : ; F(gjnj(x)); Sjnj:: : : endactions:where Sj1; : : : ;Sjnj preserve the value of x and no S contains a call to F (i.e. all the calls to F arelisted explicitly in the Bj actions) and the statements Sj0;Sj1 : : : ;Sjnj�1 contain no action calls.There are M +N actions in total: A1; : : : ; AM; B1; : : : ; BN.We claim that this is equivalent to the following iterative procedure which uses a new localstack L and a new local variable m and where we have added a new action F̂ to the action system:proc F0(x) �var L := hi;m := 0 :actions A1 :A1 � S1[call F̂=call Z]:: : :Ai � Si[call F̂=call Z]:: : :Bj � Sj0; L := hh0; gj1(x)i; hhj; 1i; xi; h0; gj2(x)i; : : : ; h0; gjnj(x)i; hhj; nji; xii ++ L;call F̂:: : : F̂ � if L = hi then call Zelse hm; xi L;if m = 0 ! call A1ut : : : ut m = hj; ki ! Sjk[call F̂=call Z]: : : � �: endactionsend:Proof: See [23] for the proof. 11

Note that any procedure F(x) can be restructured into the required form; in fact (as we shallsee later) there may be several di�erent ways of structuring F(x) which meet these criteria.We will assume that the action system is regular, i.e. every execution of an action body leadsto the call of another action. This means that the action body (and hence the current invocationof F) can only be terminated by a call to action Z. Transformations are presented in [20] to convertany action system into a regular one, perhaps with the aid of a stack. We will also assume forsimplicity that all the action calls appear in terminal positions in an action body, regularity thenimplies that the statement at every terminal position is an action call. Any regular action systemcan be put into this form by repeated application of the absorption transformation of [20].Corollary 4.2 By unfolding some calls to F̂ and pruning, we get the following, slightly moree�cient, version:proc F0(x) �var L := hi;m := 0 :actions A1 :A1 � S1[call F̂=call Z]:: : :Ai � Si[call F̂=call Z]:: : :Bj � Sj0; L := hhhj; 1i; xi; h0; gj2(x)i; : : : ; h0; gjnj(x)i; hhj; nji; xii++ L;x := gj1(x); call A1:: : : F̂ � if L = hi then call Zelse hm; xi L;if m = 0 ! call A1ut : : : ut m = hj; ki ! Sjk[call F̂=call Z]: : : � �: endactionsend:In the case where nj = 1 for all j, this version will never push a h0; xi pair onto the stack. Thiscan be signi�cant for parameterless procedures where the number of j values is small as it canreduce the amount of storage required by the stack. In the extreme case where there is only onej value, the stack reduces to a sequence of identical elements and can therefore be represented byan integer, which simply records the length of the stack.5 Cascade RecursionThis theorem can provide several di�erent iterative equivalents for a given recursive procedure,depending on how the initial restructuring of the procedure body into an action system is carriedout. Two extreme cases are:1. Each action contains no more than one procedure call. This imposes no restrictions on theother statements in the body and is therefore frequently used (for example, many compilersuse essentially this approach to deal with recursion). Bird [7] calls this the direct method.2. Each action contains as long a sequence of procedure calls as possible. The resulting iter-ative program is a simple while loop with the stack managing all the control
ow. Bird [7]describes this as the postponed obligations method: all the sub-invocations arising from agiven invocation of the procedure are postponed on the stack before any is ful�lled.These two special cases of the general transformation will be applied to the following simplecascade recursion schema:proc F(x) �if B then Telse S1; F(g1(x)); M(x); F(g2(x)); S2 �:12

For the direct method we restructure the body of the procedure into the following action system:proc F(x) �actions A1 :A1 � if B then Telse call B1 �:B1 � S1; F(g1(x)); call B2:B2 � M(x); F(g2(x)); call A2:A2 � S2; call Z: endactions:Applying the general recursion removal transformation we get:proc F(x) �var L := hi;m := 0 :actions A1 :A1 � if B then Telse call B1 �:B1 � S1; L := hh0; g1(x)i; h1; xii++ L; call F̂:B2 � M(x); L := hh0; g2(x)i; h2; xii++ L; call F̂:A2 � S2; call F̂:F̂ � if L = hi then call Zelse hm; xi L;if m = 0 ! call A1ut m = 1 ! call B1ut m = 2 ! call B2 � �: endactions end:The action system is (naturally) regular, so we can apply the transformations in [20] to restructurethe action system:proc F(x) �var L := hi;m := 0 :do while :B do S1; L := hh1; xii++ L; x := g1(x) od;T;do if L = hi then exit(2) �;hm; xi L;if m = 1 ! M(x); L := hh2; xii++ L; x := g2(x); exitut m = 2 ! S2 � od od end:Note that whenever h0; gi(x)i was pushed onto the stack, it was immediately popped o�. So wehave avoided pushing h0; gi(x)i altogether in this version.For the postponed obligations case we need to structure the initial action system slightly dif-ferently:proc F(x) �actions A :A � if B then Telse call B �:B � S1; F(g1(x)); M(x); F(g2(x)); S2; call Z: endactions:Applying the general recursion removal transformation we get:proc F(x) �var L := hi;m := 0 :actions A :A � if B then T 13

else call B �:B � S1; L := hh0; g1(x)i; h1; xi; h0; g2(x)i; h2; xii++ L; call F̂:F̂ � if L = hi then call Zelse hm; xi L;if m = 0 ! call Aut m = 1 ! M(x); call F̂ut m = 2 ! S2; call F̂ � �: endactions end:This can be expressed as a simple while loop thus:proc F(x) �var L := hh0; xii;m := 0 :while L 6= hi dohm; xi L;if m = 0 ! if B then Telse S1; L := hh0; g1(x)i; h1; xi; h0; g2(x)i; h2; xii++ L �ut m = 1 ! M(x)ut m = 2 ! S2 � od end:Alternatively, we can restructure so as to avoid some unnecessary pushes and pops:proc F(x) �var L := hi;m := 0 :do while :B do S1; L := hh1; xi; h0; g2(x)i; h2; xii++ L; x := g1(x) od;T;do if L = hi then exit(2) �;hm; xi L;if m = 0 ! exitut m = 1 ! M(x)ut m = 2 ! S2 � od od end:6 Binary Cascade RecursionIn this section we consider a special case of the cascade recursion above where the functions g1(x)and g2(x) return x � 1 and the test for a nonrecursive case is simply n = 0. Here each invocationof the function leads to either zero or two further invocations, so we use the term binary cascadefor this schema:proc G(n) �if n = 0 then Telse S1; G(n� 1); M(n); G(n� 1); S2 �:where T, S1 and S2 are statements which do not change the value of n and M is an externalprocedure.With this schema, the sequence of statements and calls to M depends only on the initial valueof n. We want to determine this sequence explicitly, i.e. we want to determine how many calls ofM are executed, what their arguments are and what statements are executed between the calls.Since the functions gi are invertable, there is no need to have n as a parameter: we can replaceit by a global variable thus:proc G �if n = 0 then Telse S1; n := n� 1; G; M(n+ 1); G; n := n+ 1; S2 �:14

It is clear that G preserves the value of n and hence G is equivalent to G(n). We apply the directmethod of recursion removal (discussed in the previous Section) to get:var L := hi; d := 0 :do while n 6= 0 do S1; n := n� 1; L := h1i ++ L od;T;do if L = hi then exit(2) �;d L;if d = 1 ! M(n + 1); L := h2i ++ L; exitut d = 2 ! S2; n := n+ 1 � od od endNote that since there are no parameters the stack only records control information.The elements of the stack are either 1 or 2, so we can represent this stack by an integer cwhose digits in a binary representation represent the elements of the stack. We need to distinguishan empty stack from a stack of zeros so we use the value 1 to represent the empty stack. Thestatement L := h1i ++ L becomes c := 2:c+ 1, L := h2i ++ L becomes c := 2:c and d L becomeshd; ci := hc� 2i. With this representation, the translation of while n 6= 0 do S1; n := n � 1; L :=h1i ++ L od which pushes n 1's onto L has the e�ect of multiplying c by 2n and adding 2n � 1 tothe result. We get:var c := 1; d := 0 :do for i := n step � 1 to 1 do S1[i=n] od;c := 2n:c+ 2n � 1; n := 0;T;do if c = 1 then exit(2) �;hd; ci := hc� 2i;if d = 1 ! M(n + 1); c := 2:c; exitut d = 0 ! S2; n := n+ 1 � od od endUsing the transformations in [20] we can transform this into the following:var n0 := n :for i := n step � 1 to 1 do S1[i=n] od;T;for c := 1 step 1 to 2n0 � 1 don := ntz(c);for i := 0 step 1 to n � 1 do S2[i=n] od;M(n + 1);for i := n step � 1 to 1 do S1[i=n] od;T od;for i := 0 step 1 to n0 � 1 do S2[i=n] od endwhere ntz(c) is the number of trailing zeros in the binary representation of c.For the case where S1 and S2 are both skip this simpli�es to:T;for c := 1 step 1 to 2n � 1 doM(ntz(c) + 1);T od;7 Example: The Gray CodeAn n-bit gray code is a sequence of 2n n-bit binary numbers (sequences of 0's and 1's of lengthn) starting from 00 : : :0 such that each element of the sequence di�ers from the next in a single15

bit position (and the 2nth element has a single bit set). We want to de�ne a function g(n) whichreturns an n-bit gray code. For n = 0 the gray code is the one element sequence hhii. Note thatthere are several di�erent n-bit gray codes for n > 1: the problem of �nding all gray codes of agiven length is equivalent to �nding all the Hamiltonian cycles of a n-dimensional unit hypercube.So suppose we have g(n � 1) and want to construct g(n). The elements of g(n � 1) will ben� 1 bit codes; hence (h0i ++) � g(n� 1) and (h1i ++) � g(n� 1) are disjoint gray code sequencesof length 2n�1. Their corresponding elements di�er in only the �rst bit position, in particular thelast element of (h0i ++) � g(n � 1) di�ers from the last element of (h1i ++) � g(n � 1) in one bitposition. Thus if we reverse the sequence (h1i ++) � g(n� 1) and append it to (h0i ++) � g(n� 1)we will form an n-bit gray code. Thus the de�nition of g(n) is:funct g(n) �if n = 0 then hhiielse (h0i ++) � g(n� 1) ++ reverse((h0i ++) � g(n� 1)) �:This function de�nes g(n) in terms of g(n � 1) and reverse(g(n� 1)): this suggests we de�neg(n) in terms of a function g0(n; s) such that g0(n; 0) = g(n) and g0(n; 1) = reverse(g(n)). Notethat reverse(g(n)) = (h1i ++) � g(n� 1) ++ (h0i ++) � reverse(g(n� 1)). So we can de�ne g0(n; s)as follows:funct g0(n; s) �if n = 0 then hhiielse (hsi ++) � g0(n� 1; 0) ++ (h1� si ++) � g0(n� 1; 1) �:Finally, instead of computing g0(n � 1; s) and appending either h0i or h1i to each element, wecan pass a third argument which is to be appended to each element of the result; i.e. de�neg00(L; n; s) = (L ++) � g0(n; s). We get the following de�nition of g00:funct g00(L; n; s) �if n = 0 then hLielse g00(hsi ++ L; n� 1; 0) ++ g00(h1� si ++ L; n� 1; 1) �:The recursive case of this version simply appends the results of the two recursive calls. Thissuggests we use a procedural equivalent which appends the result to a global variable r. Thus ourgray code function g(n) is equivalent to:funct g(N) �r := hi :beginG(hi; N; 0)whereproc G(L; n; s) �if n = 0 then r := r ++ hLielse G(hsi ++ L; n� 1; 0); G(h1� si ++ L; n� 1; 1) �: end;r :Represent the stack L of bits as an integer c as in Section 6:beginG(1;N; 0)whereproc G(c; n; s) �if n = 0 then r := r ++ hbits(c)ielse G(2:c+ s; n� 1; 0); G(2:c+ 1� s; n� 1; 1) �: endwhere bits(c) returns the sequence of bits represented by the integer c. We can combine c and s16

into one argument c0 where c0 = 2:c+ s:beginG(2;N)whereproc G(c0; n) �if n = 0 then r := r ++ hbits(bc0=2c)ielse G(2:c0; n� 1); G(2:(c0 � 1)� 1; n� 1) �: endwhere a � b is a \bitwise exclusive or" operator. Note that we always double c0 whenever wedecrement n; this suggests representing c0 by c where c = c0:2n:beginG(2N+1; N)whereproc G(c; n) �if n = 0 then r := r ++ hbits(bc=2c)ielse G(c; n� 1); G((c � 2n)� 2n�1; n� 1) �: endWe want to replace c by a global variable c0. To do this we add c0 as a new ghost variable; weassign values to c0 which track the current value of c:begin var c0 := 2N+1 :G(2N+1; N)whereproc G(c; n) �if n = 0 then r := r ++ hbits(bc=2c)i; c0 := c0 � 1else G(c; n� 1); c0 := c0 � 2n; G((c � 2n)� 2n�1; n� 1) �: end endBy induction on n we prove: fc0 = cg; G(c; n� 1) � fc0 = cg; G(c; n� 1); fc0 = c � 2ng. Thenat every call of G we have c0 = c so we can replace the parameter c by the global variable c0:begin var c0 := 2N+1 :G(N)whereproc G(n) �if n = 0 then r := r ++ hbits(bc0=2c)i; c0 := c0 � 1else G(n� 1); c0 := c0 � 2n; G(n� 1) �: end endNow we have a standard binary cascade recursion for which the transformation of Section 6 gives:begin var c0 := 2N+1 :r := r ++ hbits(bc0=2c)i;for i := 1 step 1 to 2N � 1 doc0 := c0 � 2ntz(i)+1;r := r ++ hbits(bc0=2c)i od end endFinally, the least signi�cant bit of c0 is always ignored and the most signi�cant bit of c0 is alwaysthe 2N+1 bit so we can represent c0 by c = b(c0 � 2N+1)=2c:begin var c := 0 :r := r ++ hNbits(c)i;for i := 1 step 1 to 2N � 1 doc := c� 2ntz(i);r := r ++ hNbits(c)i od end endwhere Nbits(c) = bits(c+ 2N+1). 17

Thus, the bit which changes between the ith and (i + 1)th codes is the bit in position ntz(i).From this result we can prove the following:Theorem 7.1 The ith gray code is i� bi=2c.Proof: The proof is by induction on i. Suppose c = i � bi=2c is the ith gray code. Then fromthe program above, the (i + 1)th gray code is c � 2ntz(i+1). The number of trailing zeros in thebinary representation of i + 1 is simply the number of trailing ones in the binary representationof i. Suppose i is even (i.e. there are no trailing ones) and it's N-bit binary representation ishi1; i2; : : : ; in�1; 0i. Then: i = h i1; i2; : : : ; in�1; 0 ibi=2c = h 0; i1; : : : ; in�2; in�1 ii� bi=2c = h i1; i2 � i1; : : : ; in�1 � in�2; in�1 ii+ 1 = h i1; i2; : : : ; in�1; 1 ib(i + 1)=2c = h 0; i1; : : : ; in�2; in�1 i(i+ 1)� b(i + 1)=2c = h i1; i2 � i1; : : : ; in�1 � in�2; in�1 � 1 ii.e. the 20 bit has changed.On the other hand, suppose i is odd and has k trailing ones with k > 0. Since (i+ 1) < 2n wemust have k < n. So: i = h i1; i2; : : : ; in�k�1; 0; 1; 1; : : : ; 1 ibi=2c = h 0; i1; : : : ; in�k�2; in�k�1; 0; 1; : : : ; 1 ii � bi=2c = h i1; i2 � i1; : : : ; in�k�1 � in�k�2; in�k�1; 1; 0; : : : ; 0 ii+ 1 = h i1; i2; : : : ; in�k�1; 1; 0; 0; : : : ; 0 ib(i+ 1)=2c = h 0; i1; : : : ; in�k�2; in�k�1; 1; 0; : : : ; 0 i(i+ 1)� b(i+ 1)=2c = h i1 i2 � i1 : : : ; in�k�1 � in�k�2 in�k�1 � 1 1 0 : : : ; 0 ii.e. the 2k bit has changed.Which proves the theoremFrom this we derive the following gray code generator:funct g(n) �r := hNbits(0)i :for i := 1 step 1 to 2n � 1 dor := r ++ hNbits(i� bi=2c)i od;r :While the previous gray code generator only told us which bit changes from one code to thenext, this one calculates the ith gray code directly from i without using any previous codes.8 Program AnalysisSince the recursion removal theorem can be applied in either direction, and because it places sofew restrictions on the form of the program, it can be applied in the reverse direction as a programanalysis or reverse engineering tool to make explicit the control structure of programs which use astack in a particular way. For example, consider the following function:funct A(m;n) �begin d := 0; stack := hi :do do if m = 0 then n := n+ 1; exitelsif n = 0 then stack := h1i ++ stack; m := m� 1; n := 1else stack := h0i ++ stack; n := n � 1 � od;18

do if stack = hi then exit(2) �;d stack;if d = 0 then stack := h1i ++ stack; m := m� 1; exit �;m := m+ 1 od od end;n :This program was analysed by the REDO group at the Programming Research Group in Oxfordto test their proposed methods for formal reverse engineering of source code. Their paper [9]required eight pages of careful reasoning plus some \inspiration" to uncover the speci�cation thisshort program. With the aid of our theorem the analysis breaks down into three steps:1. Restructure into the right form for application of the theorem (this stage could easily beautomated);2. Apply the theorem;3. Restructure the resulting recursive procedure in a functional form (this stage could also beautomated).If we examine the operations carried out on the stack we see that only constant elements arepushed onto the stack, the program terminated when the stack becomes empty, and the valuepopped o� the stack is used to determine the control
ow. This suggests that we may be able toremove the stack and re-express the control
ow explicitly using our theorem. The �rst step is torestructure the loops into an action system and collect together the \stack push" operations intoseparate actions:var d := 0; stack := hi :actions A1 :A1 � if m = 0 then n := n+ 1; call =Aelsif n = 0 then call B1else call B2 �:B1 � m :=m� 1; n := 1; stack := h1i ++ stack; call A1:B2 � n := n� 1; stack := h0i ++ stack; call A1:=A � if stack = hi then call Zelse d stack;if d = 0 then call B3else m :=m+ 1; call =A � �:B3 � m :=m� 1; stack := h1i ++ stack; call A1:endactions endApply the transformation in Corollary (4.2) to get the recursive version:proc F �actions A1 :A1 � if m = 0 then n := n+ 1; call Zelsif n = 0 then call B1else call B2 �:B1 � m := m� 1; n := 1; F; m := m+ 1; call Z:B2 � n := n� 1; F; call B3:B3 � m := m� 1; F; m := m+ 1; call Z:endactionsUnfold all the actions into A1 to get:proc F �if m = 0 then n := n+ 1elsif n = 0 then m := m� 1; n := 1; F; m :=m+ 119

else n := n� 1; F; m :=m� 1; F; m :=m+ 1 �:This procedure can be written in a functional form:beginr := F(n;m)wherefunct F(m;n) �if m = 0 then n + 1elsif n = 0 then F(m� 1; 1)else F(m� 1; F(m;n� 1)) �:endThis is the famous Ackermann function [1].9 ConclusionIn our work on the derivation of algorithms from speci�cations by formal re�nement we �nd thatthe problem can often be broken down into the following stages:1. Nonexecutable speci�cation2. Recursively de�ned speci�cation3. Recursive procedure4. Iterative algorithmIn [26] we prove some important transformations which enable the transition from (2) to (3) tobe carried out easily. In this paper we provide a general-purpose recursion removal transformationwhich can achieve the transition from (3) to (4). There is often more than one way to apply thetheorem, with each method generating a di�erent iterative algorithm. The aim here is not simplyto improve e�ciency but to discover new algorithms and prove properties of existing algorithms.An added bene�t of the theorem, which illustrates its wide applicability, is that it can be appliedto a given iterative algorithm which uses a stack or array in a particular way. This produces arecursive procedure which is often much easier to analyse and understand. This aspect of thework is being investigated in the \Maintainer's Assistant" project [10,28] at Durham Universityand the Centre for Software Maintenance Ltd. which aims to produce a prototype tool to assista maintenance programmer to understand and modify an initially unfamiliar program, given onlythe source code. The project uses program transformations as a means of code analysis as well asprogram development.10 References[1] W. Ackermann, \Zum Hilbertschen Aufbau der reellen Zahlen,"Math. Ann.99 (1928), 118{133.[2] J. Arsac, \Transformation of Recursive Procedures," in Tools and Notations for Program Con-struction, D. Neel, ed., Cambridge University Press, Cambridge, 1982, 211{265.[3] J. Arsac, \Syntactic Source to Source Program Transformations and Program Manipulation,"Comm. ACM 22 (Jan., 1982), 43{54.[4] R. J. R. Back, Correctness Preserving Program Re�nements, Mathematical Centre Tracts#131,Mathematisch Centrum, Amsterdam, 1980.[5] F. L. Bauer, B. Moller, H. Partsch & P. Pepper, \Formal Construction by Transformation|Computer Aided Intuition Guided Programming," IEEE Trans. Software Eng.15 (Feb., 1989).20

[6] F. L. Bauer & H. Wossner, Algorithmic Language and Program Development, Springer-Verlag,New York{Heidelberg{Berlin, 1982.[7] R. Bird, \Notes on Recursion Removal," Comm. ACM 20 (June, 1977), 434{439.[8] R. Bird, \Lectures on Constructive Functional Programming," Oxford University, TechnicalMonograph PRG-69, Sept., 1988.[9] P. T. Breuer, K. Lano & J. Bowen, \UnderstandingPrograms through Formal Methods," OxfordUniversity, Programming Research Group, 9 Apr., 1991.[10] T. Bull, \An Introduction to the WSL Program Transformer," Conference on Software Main-tenance 26th{29th November 1990, San Diego (Nov., 1990).[11] B. A. Davey & H. A. Priestley, \Partition-induced natural dualities for varieties of pseudocom-plemented distributive lattices ," Discrete Math. to appear (1992).[12] E. W. Dijkstra, A Discipline of Programming , Prentice-Hall, Englewood Cli�s, NJ, 1976.[13] D. E. Knuth, \Structured Programming with the GOTO Statement," Comput. Surveys 6 (1974),261{301.[14] C. Morgan, Programming from Speci�cations, Prentice-Hall, Englewood Cli�s, NJ, 1990.[15] C. Morgan & K. Robinson, \Speci�cation Statements and Re�nements," IBM J. Res. Develop.31 (1987).[16] C. C. Morgan, \The Speci�cation Statement," Trans. Programming Lang. and Syst. 10 (1988),403{419.[17] C. C. Morgan, K. Robinson & Paul Gardiner, \On the Re�nement Calculus," Oxford University,Technical Monograph PRG-70, Oct., 1988.[18] E. L. Post, \Formal Reduction of the General Combinatorial Decision Problem,"Amer. J. Math.(1943).[19] D. Taylor, \An Alternative to Current Looping Syntax," SIGPLAN Notices 19 (Dec., 1984),48{53.[20] M. Ward, \Proving Program Re�nements and Transformations," Oxford University, DPhilThesis, 1989.[21] M. Ward, \Derivation of a Sorting Algorithm," Durham University, Technical Report, 1990.[22] M. Ward, \A De�nition of Abstraction," University of Durham Technical Report, 1990.[23] M. Ward, \A Recursion Removal Theorem - Proof and Applications," Durham University,Technical Report, 1991.[24] M. Ward, \Abstracting a Speci�cation from Code," J. Software Maintenance: Research andPractice 5 (1993), 101{122.[25] M. Ward, \The Largest True Square Problem|An Exercise in the Derivation of an Algorithm,"Durham University, Technical Report, Apr., 1990.[26] M. Ward, \Speci�cations and Programs in a Wide Spectrum Language," Submitted to J. Assoc.Comput. Mach., Apr., 1991.[27] M. Ward, \Derivation of Data Intensive Algorithms by Formal Transformation," Submitted toIEEE Trans. Software Eng., May, 1992. 21

[28] M. Ward, F. W. Calliss & M. Munro, \The Maintainer's Assistant," Conference on SoftwareMaintenance 16th{19th October 1989, Miami Florida (Oct., 1989).

22

