
A Recursion Removal Theorem—Proof and Applications

Martin Ward

Computer Science Dept

Science Labs

South Rd

Durham DH1 3LE

February, 23, 1999

Abstract

In this paper we briefly introduce a Wide Spectrum Language and its transformation theory
and describe a recent success of the theory: a general recursion removal theorem. This theorem
includes as special cases the two techniques discussed by Knuth [12] and Bird [8]. We describe
some applications of the theorem to cascade recursion, binary cascade recursion, Gray codes,
the Towers of Hanoi problem, and an inverse engineering problem.

1 Introduction

In this paper we briefly introduce some of the ideas behind the transformation theory we have
developed over the last eight years at Oxford and Durham Universities and describe a recent result:
a general recursion removal theorem.

We use a Wide Spectrum Language (called WSL), developed in [19,20,21] which includes low-
level programming constructs and high-level abstract specifications within a single language. Work-
ing within a single language means that the proof that a program correctly implements a specifica-
tion, or that a specification correctly captures the behaviour of a program, can be achieved by means
of formal transformations in the language. We don’t have to develop transformations between the
“programming” and “specification” languages. An added advantage is that different parts of the
program can be expressed at different levels of abstraction, if required.

Refinement is defined in terms of the denotational semantics of the language: the semantics of
a program S is a function which maps from an initial state to a final set of states. The set of final
states represents all the possible output states of the program for the given input state. Using a
set of states enables us to model nondeterministic programs and partially defined (or incomplete)
specifications. For programs S1 and S2 we say S1 is refined by S2 (or S2 is a refinement of S1) and
write S1 6 S2 if S2 is more defined and more deterministic than S1. If S1 6 S2 and S2 6 S1 then
we say S1 is equivalent to S2 and write S1 ≈ S2. A transformation is an operation which maps
any program satisfying the applicability conditions of the transformation to an equivalent program.
Equivalence is thus defined in terms of the external “black box” behaviour of the program. See [19]
and [20] for a description of the semantics of WSL and the methods used for proving the correctness
of transformations.

In developing a model based theory of semantic equivalence, we use the popular approach of
defining a core “kernel” language with denotational semantics, and permitting definitional extensions
in terms of the basic constructs. In contrast to other work, we do not use a purely applicative kernel;
instead, the concept of state is included, using the “atomic description” construct of Back [4] which
also allows specifications expressed in first order logic as part of the language, thus providing a
genuine “wide spectrum language”. Unlike the CIP project [5] and others (eg [6,7]) our kernel
language will have state introduced right from the start so that it can cope easily with imperative

1



programs. Our experience is that an imperative kernel language with functional extensions is more
tractable than a functional kernel language with imperative extensions. Unlike Bird [7] we did not
want to be restricted to a purely functional language since this is incompatible with the aims of a
true wide spectrum language.

This approach has proved highly successful, our successes to date include:

• Deriving complex algorithms in a systematic way from their specifications;

• Improving the efficiency of programs;

• Deriving the specification of an unstructured program from the source code (“Inverse Engi-
neering”);

• Discovering bugs in a program by attempting to transform it into a specification.

2 The Wide Spectrum Language

Our kernel language has two primitive statements: the atomic specification and the guard statement.
The atomic specification is based on Back’s atomic description [4]; it is written x/y.Q, where Q

is a formula of first order logic and x and y are sets of variables. Its effect is to add the variables
in x to the state space, assign new values to them such that Q is satisfied, remove the variables
in y from the state and terminate. If there is no assignment to the variables in x which satisfies
Q then the atomic specification does not terminate. The guard statement is written [P], where P

is a formula of first order logic. The statement [P] always terminates, it enforces P to be true at
this point in the program. In effect it restricts previous nondeterminism to those cases which leave
P true at this point. If this cannot be ensured then the set of possible final states is empty, and
therefore all possible final states will satisfy any desired condition. Hence the “null guard”, [false], is
a “correct refinement” of any specification whatsoever. Clearly guard statements cannot be directly
implemented but they are nonetheless a useful theoretical tool.

Morgan and others [13,14,15,16] use a different specification statement, written x : [Pre,Post].
This statement is guaranteed to terminate for all initial states which satisfy Pre and will termi-
nate in a state which satisfies Post while only assigning to variables in the list x. It is thus a
combination of an assignment and a guard statement. In our notation an equivalent statement is
{Pre}; [∃x.Post]; x/〈〉.Post. We find it more natural to separate guard statements from assignments,
otherwise it is easy to (correctly) refine a specification into an (unimplementable) null statement.

The kernel language is constructed from these two primitive statements, a set of statement vari-

ables (these are symbols which will be used to represent the recursive calls of recursive statements)
and the following three compounds:

1. Sequential Composition: (S1; S2)
First S1 is executed and then S2.

2. Choice: (S1 ⊓ S2)
One of the statements S1 or S2 is chosen for execution.

3. Recursive Procedure: (µX.S1)
Within the body S1, occurrences of the statement variable X represent recursive calls to the
procedure.

The kernel language we have developed is particularly elegant and tractable but is too primitive
to form a useful wide spectrum language for the transformational development of programs. For
this purpose we need to extend the language by defining new constructs in terms of the existing
ones using “definitional transformations”. A series of new “language levels” is built up, with the
language at each level being defined in terms of the previous level: the kernel language is the “level
zero” language which forms the foundation for all the others. Each new language level automatically
inherits the transformations proved at the previous level, these form the basis of a new transfor-

2



mation catalogue. Transformations of the new language construct are proved by appealing to the
definitional transformation of the construct and carrying out the actual manipulation in the previ-
ous level language. This technique has proved extremely powerful in the development of a practical
transformation system which currently implements over three hundred transformations, accessible
through a simple user interface [10].

Within expressions we use the following notation:

Sequences: s = 〈a1, a2, . . . , an〉 is a sequence, the ith element ai is denoted s[i], s[i . . j] is the
subsequence 〈s[i], s[i + 1], . . . , s[j]〉, where s[i . . j] = 〈〉 (the empty sequence) if i > j. The
length of sequence s is denoted ℓ(s), so s[ℓ(s)] is the last element of s. We use s[i . .] as an
abbreviation for s[i . . ℓ(s)].

Sequence concatenation: s1 ++ s2 = 〈s1[1], . . . , s1[ℓ(s1)], s2[1], . . . , s2[ℓ(s2)]〉.

Stacks: Sequences are also used to implement stacks, for this purpose we have the following no-
tation: For a sequence s and variable x: x ← s means x := s[1]; s := s[2 . .] which pops an
element of the stack into variable x. To push the value of the expression e onto stack s we
use:s := 〈e〉 ++ s.

Sets: We have the usual set operations ∪ (union), ∩ (intersection) and− (set difference), ⊆ (subset),
∈ (element), ℘ (powerset). { x ∈ A | P (x) } is the set of all elements in A which satisfy
predicate P . For the sequence s, set(s) is the set of elements of the sequence, i.e. set(s) =
{ s[i] | 1 6 i 6 ℓ(s) }.

Substitution: The expression S[S2/S1] where S, S1 and S2 are statements means the result of
replacing all occurrences of S1 in S by S2.

2.1 Language Extensions

The first set of language extensions are as follows. These go to make up the “first level” language.
Subsequent extensions will be defined in terms of the first level language. For the purposes of
this paper we will describe only a subset of the language extensions. See [20] and [19] for a more
complete definition.

• Sequential composition: The sequencing operator is associative so we can eliminate the brack-
ets:

S1; S2; S3; . . . ; Sn =
DF

(. . . ((S1; S2); S3); . . . ; Sn)

• Deterministic Choice: We can use guards to turn a nondeterministic choice into a deterministic
choice:

if B then S1 else S2 fi =
DF

(([B]; S1) ⊓ ([¬B]; S2))

• Assertion: An assertion is a partial skip statement, it aborts if the condition is false but does
nothing if the condition is true. It can be defined using an atomic specification which changes
no variables:

{B} =
DF

〈〉/〈〉.B

• Assignment: We can express a general assignment using a pair of atomic specifications:

x := x′.Q =
DF

x′/〈〉.Q; x/x′.(x = x′)

• Simple Assignment: If Q is of the form x′ = t where t is a list of terms and x′′ is a list of new
variables, then:

x := t =
DF

x′′/〈〉.(x = t); x′/x′′.(x′ = x′′)

3



• Nondeterministic Choice: The “guarded command” of Dijkstra [11]:

if B1 → S1

⊓⊔ B2 → S2

. . .
⊓⊔ Bn → Sn fi

=
DF

(((. . .(([B1]; S1) ⊓
([B2]; S2)) ⊓

. . . ) ⊓
([Bn]; Sn)) ⊓
([¬(B1 ∨ B2 ∨ · · · ∨ Bn)]; abort))

• Deterministic Iteration: We define a while loop using a new recursive procedure X which does
not occur free in S:

while B do S od =
DF

(µX.(([B]; S; X) ⊓ [¬B]))

• Nondeterministic Iteration:
do B1 → S1

⊓⊔ B2 → S2

. . .
⊓⊔ Bn → Sn od

=
DF

while (B1 ∨ B2 ∨ · · · ∨ Bn) do

if B1 → S1

⊓⊔ B2 → S2

. . .
⊓⊔ Bn → Sn fi od

• Initialised local Variables:
var x := t : S end =

DF
x/〈〉.(x = t; S; 〈〉/x.true

• Counted Iteration:
for i := b to f step s do S od =

DF
var i := b :

while i 6 f do

S; i := i+ s od end

• Procedure call:
proc X ≡ S. =

DF
(µX.S)

• Block with local procedure:
begin S1 where proc X ≡ S2. end =

DF
S1[proc X ≡ S2./X]

2.2 Exit Statements

Our programming language will include statements of the form exit(n), where n is an integer, (not

a variable) which occur within loops of the form do S od where S is a statement. These were
described in [12] and more recently in [18]. They are “infinite” or “unbounded” loops which can
only be terminated by the execution of a statement of the form exit(n) which causes the program
to exit the n enclosing loops. To simplify the language we disallow exits which leave a block or a
loop other than an unbounded loop).

Previously, the only formal treatments of exit statements have treated them in the same way
as unstructured goto statements by adding “continuations” to the denotational semantics of all
the other statements. This adds greatly to the complexity of the semantics and also means that
all the results obtained prior to this modification will have to be re-proved with respect to the
new semantics. The approach taken in our work, which does not seem to have been tried before,
is to express every program which uses exit statements and unbounded loop in terms of the first
level language without changing the language semantics. This means that the new statements will
not change the denotational semantics of the kernel so all the transformations developed without
reference to exit statements will still apply in the more general case. In fact we make much use
of the transformations derived without reference to exits in the derivation of transformations of
statements which use the exit statement.

The interpretation of these statements in terms of the first level language is as follows:

4



We have an integer variable depth which records the current depth of nesting of loops. At
the beginning of the program we have depth := 0 and each exit statement exit(k) is translated:
depth := depth − k since it changes the depth of “current execution” by moving out of k enclosing
loops. To prevent any more statements at the current depth being executed after an exit statement
has been executed we surround all statements by “guards” which are if statements which will test
depth and only allow the statement to be executed if depth has the correct value. Each unbounded
loop do S od is translated:

depth := n; while depth = n do guardn(S) od

where n is an integer constant representing the depth of the loop (1 for an outermost loop, 2 for
double nested loops etc.) and guardn(S) is the statement S with each component statement guarded
so that if the depth is changed by an exit statement then no more statements in the loop will be
executed and the loop will terminate. The important property of a guarded statement is that it
will only be executed if depth has the correct value. Thus: {depth 6= n}; guardn(S) ≈ skip. So for
example, the program:

do do last := item[i];
i := i+ 1;
if i = n+ 1 then write(count); exit(2) fi;
if item[i] 6= last then write(count); exit(1)

else count := count + number[i] fi od;
count := number[i] od

translates to the following:

depth := 1;
while depth = 1 do

depth := 2;
while depth = 2 do

last := item[i];
i := i+ 1;
if i = n+ 1 then write(count); depth := depth− 2 fi;
if depth = 2

then if item[i] 6= last then write(count); depth := depth− 1
else count := count + number[i] fi od;

if depth = 1 then count := number[i] fi od

2.3 Action Systems

This section will introduce the concept of an Action System as a set of parameterless mutually
recursive procedures. A program written using labels and jumps translates directly into an action
system. Note however that if the end of the body of an action is reached, then control is passed
to the action which called it (or to the statement following the action system) rather than “falling
through” to the next label. The exception to this is a special action called the terminating action,
usually denoted Z, which when called results in the immediate termination of the whole action
system.

Our recursive statement does not directly allow the definition of mutually recursive procedures
(since all calls to a procedure must occur within the procedure body). However we can define a
set of mutually recursive procedures by putting them all within a single procedure. For example
suppose we have two statements, S1 and S2 both containing statement variables X1 and X2 (where
we intend S1 to be the body of X1 and S2 to be the body of X2). We can represent these by a
single recursive program:

x := 1;
proc A ≡ if x = 1 → S1[x := 1; A/X1][x := 2; A/X2]

5



⊓⊔ x = 2 → S2[x := 1; A/X1][x := 2; A/X2] fi.

where an additional variable x records which procedure is required when the composite procedure
A is called.

Arsac [2,3] uses a restricted definition of actions together with deterministic assignments, the
binary if statement and do loops with exits so there is no place for nondeterminism in his results.
The main differences between our action systems and Arsac’s are: (i) that we use a much more
powerful language (including general specifications) , (ii) we give a formal definition (ultimately
in terms of denotational semantics), and (iii) our action systems are simple statements which can
form components of other constructs. This last point is vitally important in this application since
it gives us a way to restructure the body of a recursive procedure as an action system. It is this
restructuring which gives the recursion removal theorem much of its power and generality.

Definition 2.1 An action is a parameterless procedure acting on global variables (cf [2,3]). It is
written in the form A ≡ S where A is a statement variable (the name of the action) and S is a
statement (the action body). A set of (mutually recursive) actions is called an action system. There
may sometimes be a special action (usually denoted Z), execution of which causes termination of
the whole action system even if there are unfinished recursive calls. An occurrence of a statement
call X within the action body refers to a call of another action.

The action system:

actions A1 :
A1 ≡ S1.

A2 ≡ S2.

. . .
An ≡ Sn. endactions

(where statements S1, . . . ,Sn must have no exit(n) statements within less than n nested loops) is
defined as follows:

var action := “A1”;
proc A ≡ if action = “A1” → action := “O”; guardZ(S1)[action := “Ai”; A/call Ai]

⊓⊔ action = “A2” → action := “O”; guardZ(S2)[action := “Ai”; A/call Ai]
. . .
⊓⊔ action = “An” → action := “O”; guardZ(Sn)[action := “Ai”; A/call Ai]. end

Here action is a new variable which contains the name of the next action to be invoked and
guardZ(S) is defined in a similar way to guardn(S) so that:

guardZ(call Z) =
DF

action := “Z”

guardZ(v := e) =
DF

if action = “O” then v := e fi etc.

and as soon as action is set to “Z” no further statements will be executed. This ensures the correct
operation of the “halting” action. Here “A1”, . . . , “An”, “O” and “Z” represent a suitable set of n+2
distinct constant values.

The procedure A is never called with action equal to “Z” (or in fact anything other than
“A1”, . . . , “An”). The assignment action := “O” is not really needed because the variable action

will be assigned again before its value is tested; it is added so that we can distinguish the following
three cases depending on the value of action:

1. Currently executing an action: action = “O”;

2. About to call another (or the same) action (other than the terminating action): action = one
of “A1”, . . . , “An”;

3. Have called the terminating action, all outstanding recursive calls are terminated without any
statements being executed: action = “Z”.

6



Definition 2.2 An action is regular if every execution of the action leads to an action call. (This
is similar to a regular rule in a Post production system [17]).

Definition 2.3 An action system is regular if every action in the system is regular. Any algorithm
defined by a flowchart, or a program which contains labels and gotos but no procedure calls in
non-terminal positions, can be expressed as a regular action system.

2.4 Procedures and Functions with Parameters

For simplicity we will only consider procedures with parameters which are called by value or by
value-result. Here the value of the actual parameter is copied into a local variable which replaces
the formal parameter in the body of the procedure. For result parameters, the final value of this
local variable is copied back into the actual parameter. In this case the actual parameter must be
a variable or some other object (eg an array element) which can be assigned a value. Such objects
are often denoted as “L-values” because they can occur on the left of assignment statements.

The reason for concentrating on value parameters is that they avoid some of the problems
caused by “aliasing” where two variable names refer to the same object. For example if a global
variable of the procedure is also used as a parameter, or if the same variable is uses for two actual
parameters then with other forms of parameter passing aliasing will occur but with value parameters
the aliasing is avoided (unless the same variable is used for two result parameters and the procedure
tries to return two different values). This means that procedures with value parameters have simpler
semantics.

In most cases the different methods of parameter passing produce the same result, though
there may be differences in efficiency. For this reason the language Ada allows the compiler to
choose between call by value and call by reference and requires all programs to give the same
result whatever method is used: programs which would give different results are technically illegal,
although no compiler could determine which programs are legal and which are illegal. It is generally
better to specify that a compiler rejects certain specific constructs as erroneous rather than simply
leaving the result “undefined”. (For example: making it an error to access the value of a loop variable
after the loop has terminated rather than leaving the value undefined). This prevents programmers
making use of the effect produced by a particular compiler and so writing programs which may give
different results at a different installation, or with a different version of the compiler.

Other languages (eg Modula) default to passing simple variables by value (to avoid repeated
recomputation of expressions) and passing structures and arrays by reference (to avoid copying the
whole structure when only part of it may be accessed).

Our “definitional transformation” for a procedure with formal parameters and local variables
will replace them both by global stacks. Consider the following piece of code, which contains a call
to the recursive procedure F . This procedure uses a local variable a which must be preserved over
recursive calls to F :

begin . . . ; F (t, v); . . .
where

proc F (x, var : y) ≡
var a := d :

S end.

end

where t is an expression, v a variable, x is a value parameter, v a value-result parameter and a a
local variable which is assigned the initial value d. This is defined as:

begin

x := 〈〉; y := 〈〉; a := 〈〉;
. . . ;

7



x
push
←− t; y

push
←− v;

F ;

v
pop
←− y; x := x[2 . .];

. . .
where

proc F ≡

a
push
←− d;

S[x[1]/x][y[1]/y][a[1]/a]

[x
push
←− t′; y

push
←− v′; F ; v′

pop
←− y; x := x[2 . .]/F (t′, v′)];

a := a[2 . .].
end

Here the substitution of x[1] for x etc. ensures that the body of the procedure only accesses and
updates the tops of the stacks which replace the parameters and local variables. This means that
any call of F will only affect the values at the tops of the stacks x, y and a so an inner recursive

call of F , which takes the form: x
push
←− t′; y

push
←− v′; F ; v′

pop
←− y; x := x[2 . .], will only affect the

value of v (and global variables in S) and will not affect the stacks. The proof is by the theorems
on invariant maintenance for recursive statements [19].

To allow side effects in expressions and conditions we introduce the new notation of “expression
brackets”, and . These allow us to include statements as part of an expression, for example the
following are valid expressions:

x := x+ 1; x
x := x+ 1; x− 1

if x > 0 then x else − x fi

The first and second are equivalent to C’s ++x and x++ respectively, the third is a conditional
expression which returns the absolute value of x.

Note that expression brackets may be nested, for example the assignment:

a := S1; b := if S2; Q then S3; t1 else t2 fi; b.b

is represented as:

S1; S2; if Q then S3; b := t1 else b := t2 fi; a := b.b

Definition 2.4 Function calls: The definitional transformation of a function call will replace the
function call by a call to a procedure which assigns the value returned by the function to a variable.
This variable then replaces the function call in the expression. Several calls in one expression are
replaced by the same number of procedure calls and new variables. Boolean functions are treated
as functions which return one of the values “tt” or “ff ” (representing true and false). So a boolean
function call is replaced by a formula (b = “tt”) where b is a new local variable. The statement
in which the function call appeared is preceded by a procedure call which sets b to “tt” or “ff ”,
depending on the result of the corresponding boolean function.

For example, the statement with function calls:

begin a := F (x) + F (y)
where

funct F (x) ≡ if B then t1 else t2 fi. end

is interpreted:

begin var r1, r2 :
F (x); r1 := r; F (y); r2 := r;
a := r1 + r2

where

proc F (x) ≡ if B then r := t1 else r := t2 fi. end

8



The statement:

begin

a := while B(x) do x := F (x) od; x+ c
where

funct B(x) ≡ S; x > y .

funct F (x) ≡ if B then t1 else t2 fi.

is interpreted:

begin

do B(x); if r = “ff ” then exit fi;
F (x); x := r od;

a := x+ c where

proc B(x) ≡ S; if x > y then r := “tt” else r := “ff ” fi,
proc F (x) ≡ if B then r := t1 else r := t2 fi. end

See [19] for the formal definition of generalised expressions and generalised conditions and their
interpretation functions.

3 Example Transformations

In this section we describe a few of the transformations we will use later:

3.1 Expand IF statement

The if statement:
if B then S1 else S2 fi; S

can be expanded over the following statement to give:

if B then S1; S else S2; S fi

3.2 Loop Inversion

If the statement S1 contains no exits which can cause termination of an enclosing loop (i.e. in the
notation of [19] it is a proper sequence) then the loop:

do S1; S2 od

can be inverted to:
S1; do S2; S1 od

This transformation may be used in the forwards direction to move the termination test of a loop to
the beginning, prior to transforming it into a while loop, or it may be used in the reverse direction
to merge two copies of the statement S1.

3.3 Loop Unrolling

The next three transformations concern various forms of loop unrolling. They play an important
role in the proofs of other transformations as well as being generally useful.

Lemma 3.1 Loop Unrolling:

while B do S od ≈ if B then S; while B do S od fi

Lemma 3.2 Selective unrolling of while loops: For any condition Q we have:

while B do S od ≈ while B do S; if B ∧ Q then S fi od

9



Lemma 3.3 Entire Loop Unfolding: if B′ ⇒ B then:

while B do S od ≈ while B do S; if Q then while B′ do S od fi od

Each of these transformation has a generalisation in which instead of inserting the “unrolled” part
after S it is copied after an arbitrary selection of the terminal statements in S.

3.4 Absorption

Definition 3.4 A primitive statement is any statement other than a conditional, a do . . . od loop
or a sequence of statements. The depth of a component of a statement is the number of enclosing
do . . . od loops around the component. A terminal statement is a primitive statement which is
either

(i) in a terminal position, or

(ii) is an exit(n) at depth less than n, or

(iii) is an exit(n) at depth n where the outermost do . . . od loop is in a terminal position.

The terminal value of a terminal statement exit(n) is n minus the depth. Incrementing a
statement by k means adding exit(k) after each non-exit terminal statement with terminal value
zero, and replacing each terminal statement exit(n) with terminal value zero by exit(n+ k).

A sequence S; S′ of two statements can be merged together by the absorption The statement S′

following S is “absorbed” into it by replacing all of the terminal statements of S which would lead
to S′ by a copy of S′ incremented by the depth of the terminal statement. For example:

do do if y > x then exit fi;
x := x− 1;
if x = 0 then exit(2) fi od;

if z > x then exit fi od;
if z = x then exit fi

after absorption becomes:

do do if y > x then exit fi;
x := x− 1;
if x = 0 then if z = x then exit(3) else exit(2) fi fi od;

if z > x then if z = x then exit(2) else exit fi od

4 The Theorem

Theorem 4.1 Suppose we have a recursive procedure whose body is an action system in the fol-
lowing form, in which the body of the procedure is an action system. (A call Z in the action system
will therefore terminate only the current invocation of the procedure):

proc F (x) ≡
actions A1 :
A1 ≡ S1.

. . . Ai ≡ Si.

. . . Bj ≡ Sj0; F (gj1(x)); Sj1; F (gj2(x)); . . . ; F (gjnj
(x)); Sjnj

.

. . . endactions.

where Sj1, . . . ,Sjnj
preserve the value of x and no S contains a call to F (i.e. all the calls to F are

listed explicitly in the Bj actions) and the statements Sj0,Sj1 . . . ,Sjnj−1 contain no action calls.
There are M +N actions in total: A1, . . . , AM , B1, . . . , BN .

We claim that this is equivalent to the following iterative procedure which uses a new local stack
L and a new local variable m:

10



proc F ′(x) ≡
var L := 〈〉,m := 0:

actions A1 :
A1 ≡ S1[call /F/call Z].
. . . Ai ≡ Si[call /F/call Z].
. . . Bj ≡ Sj0; L := 〈〈0, gj1(x)〉, 〈〈j, 1〉, x〉, 〈0, gj2(x)〉, . . . , 〈0, gjnj

(x)〉, 〈〈j, nj〉, x〉〉 ++ L;
call /F .

. . . /F ≡ if L = 〈〉 then call Z
else 〈m,x〉 ← L;

if m = 0 → call A1

⊓⊔ . . . ⊓⊔ m = 〈j, k〉 → Sjk; call /F
. . . fi fi. endactions

end.

Note that any procedure F (x) can be restructured into the required form; in fact (as we shall
see later) there may be several different ways of structuring F (x) which meet these criteria.

We will assume that the action system is regular, i.e. every execution of an action body leads to
the call of another action. This means that the action body (and hence the current invocation of F )
can only be terminated by a call to action Z. Transformations are presented in [19] to convert any
action system into a regular one, perhaps with the aid of a stack. We will also assume for simplicity
that all the action calls appear in terminal positions in an action body, regularity then implies that
the statement at every terminal position is an action call. Any regular action system can be put
into this form by repeated application of the absorption transformation of [19].

Any regular action system can be transformed into a double-nested loop using a transformation
proved in [19] so we have the following equivalent for F (x) (where a is a new local variable):

proc F (x) ≡
var a := “A1” :

do do if a = “A1” → S1[a := “Z”; exit(2)/call Z][a := “X”; exit/call X]
⊓⊔ . . . ⊓⊔ a = “Ai” → Si[a := “Z”; exit(2)/call Z][a := “X”; exit/call X]
⊓⊔ . . . ⊓⊔ a = “Bj” → Sj0; F (gj1(x)); Sj1; F (gj2(x)); . . . ; F (gjnj

(x));
Sjnj

[a := “Z”; exit(2)/call Z][a := “X”; exit/call X]
. . . fi od od end.

The substitutions replace each action call by exit(2) (if it is call Z) or by an assignment to a followed
by an exit. Because all calls appear in terminal positions only the last element of the sequence in
the body of Bj needs to have the substitution applied.

Since we know that a is only assigned the value “Z” just before the loop is terminated, we can
replace the exit(2)’s by exit’s inside the inner loop and test a outside to see if the outer loop is
terminated. Formally this transformation is an inverse of absorption:

proc F (x) ≡
var a := “A1” :

do do if a = “A1” → S1[a := “Z”; exit/call Z][a := “X”; exit/call X]
⊓⊔ . . . ⊓⊔ a = “Ai” → Si[a := “Z”; exit/call Z][a := “X”; exit/call X]
⊓⊔ . . . ⊓⊔ a = “Bj” → Sj0; F (gj1(x)); Sj1; F (gj2(x)); . . . ; F (gjnj

(x));
Sjnj

[a := “Z”; exit/call Z][a := “X”; exit/call X]
. . . fi od;

if a = “Z” then exit fi od end.

Since all calls appear in terminal positions the body of the inner loop is reducible. Also, since
the action system is regular, each arm of the inner if statement will result in an exit so the body
of the loop is improper. This means that the inner loop is a false loop which can be removed. The
outer loop can be transformed to a while loop since the termination test is initially false. We get:

11



proc F (x) ≡
var a := “A1” :

while a 6= “Z” do

if a = “A1” → S1[a := “X”/call X]
⊓⊔ . . . ⊓⊔ a = “Ai” → Si[a := “X”/call X]
⊓⊔ . . . ⊓⊔ a = “Bj” → Sj0; F (gj1(x)); Sj1; F (gj2(x)); . . . ; F (gjnj

(x));
Sjnj

[a := “X”/call X]
. . . fi od end.

We claim that this is equivalent to the following iterative procedure which uses a stack L and
another local variable m:

proc F ′(x) ≡
var a := “A1”, L := 〈〉,m := 0 :

while a 6= “Z” do

if a = “/F ” →
if L = 〈〉

then a := “Z”
else 〈m,x〉 ← L;

if m = 0 → a := “A1”
⊓⊔ . . . ⊓⊔ m = 〈j, k〉 → Sjk[a := “/F ”/call Z][a := “X”/call X]
. . . fi fi

⊓⊔ a = “A1” → S1[a := “/F ”/call Z][a := “X”/call X]
⊓⊔ . . . ⊓⊔ a = “Ai” → Si[a := “/F ”/call Z][a := “X”/call X]
⊓⊔ . . . ⊓⊔ a = “Bj” → Sj0; L := 〈〈0, gj1(x)〉, 〈〈j, 1〉, x〉, 〈0, gj2(x)〉,

. . . , 〈〈j, nj + 1〉, x〉〉 ++ L;
a := “/F ”

. . . fi od end.

To prove the claim, let DO′ be the while loop above and let DO be:

while a 6= “Z” do

if a = “/F ” →
if L = 〈〉

then a := “Z”
else 〈m,x〉 ← L;

if m = 0 → a := “A1”
⊓⊔ . . . ⊓⊔ m = 〈j, k〉 → Sjk[a := “/F ”/call Z][a := “X”/call X]
. . . fi fi

⊓⊔ a = “A1” → S1[a := “X”/call X]
⊓⊔ . . . ⊓⊔ a = “Ai” → Si[a := “X”/call X]
⊓⊔ . . . ⊓⊔ a = “Bj” → Sj0; F (gj1(x)); Sj1; F (gj2(x)); . . . ; F (gjnj

(x));
Sjnj

[a := “X”/call X]
. . . fi od

this is the same as the loop in F (x) above with an extra (redundant) test added to the guarded
command.

4.1 Preliminary Lemmas

To carry through the proof we require the following two lemmas:

Lemma 4.2 a := “A1”; DO ≈ F (x); a := “/F ”; DO

Proof: Apply entire loop unrolling to a := “A1”; DO to get:

a := “A1”;

12



while a 6= “Z” do

if a = “/F ” →
if L = 〈〉

then a := “Z”
else 〈m,x〉 ← L;

if m = 0 → a := “A1”
⊓⊔ . . . ⊓⊔ m = 〈j, k〉 → Sjk[a := “/F ”/call Z][a := “X”/call X]
. . . fi;
DO fi

⊓⊔ a = “A1” → S1[a := “X”/call X]
⊓⊔ . . . ⊓⊔ a = “Ai” → Si[a := “X”/call X]
⊓⊔ . . . ⊓⊔ a = “Bj” → Sj0; F (gj1(x)); Sj1; F (gj2(x)); . . . ; F (gjnj

(x));
Sjnj

[a := “X”/call X]
. . . fi od

By unrolling DO we see that:

〈m,x〉 ← L;
if m = 0 → a := “A1”
⊓⊔ . . . ⊓⊔ m = 〈j, k〉 → Sjk[a := “/F ”/call Z][a := “X”/call X]
. . . fi;
DO

≈ a := “/F ”; DO

when L 6= 〈〉. We also have a := “Z” ≈ a := “/F ”; DO when L = 〈〉. So we can simplify the loop
body to:

a := “A1”;
while a 6= “Z” do

if a = “/F ” →
if L = 〈〉

then a := “/F ”; DO

else a := “/F ”; DO fi

⊓⊔ a = “A1” → S1[a := “X”/call X]
⊓⊔ . . . ⊓⊔ a = “Ai” → Si[a := “X”/call X]
⊓⊔ . . . ⊓⊔ a = “Bj” → Sj0; F (gj1(x)); Sj1; F (gj2(x)); . . . ; F (gjnj

(x));
Sjnj

[a := “X”/call X]
. . . fi od

The test of L = 〈〉 is clearly redundant. We know that a = “Z” is true after DO so we can take it
out of the loop to get:

a := “A1”;
while a 6= “Z” do

if a = “/F ” → a := “Z”
⊓⊔ a = “A1” → S1[a := “X”/call X]
⊓⊔ . . . ⊓⊔ a = “Ai” → Si[a := “X”/call X]
⊓⊔ . . . ⊓⊔ a = “Bj” → Sj0; F (gj1(x)); Sj1; F (gj2(x)); . . . ; F (gjnj

(x));
Sjnj

[a := “X”/call X]
. . . fi od;

a := “/F ”; DO

If we convert this loop into an action system and replace the action /F by the equivalent action
Z then we get something identical to the body of F (x). So we can fold it into a procedure call to
get:

F (x); a := “/F ”; DO

as required. This completes the lemma.

13



The lemma we need for DO′ is more tricky. Let IFn be defined as follows:

IFn =
DF

if a = “/F ” →
if L = 〈〉 then a := “Z”

else 〈m,x〉 ← L;
if m = 0 → a := “A1”
⊓⊔ . . . ⊓⊔ m = 〈j, k〉 → Sjk[a := “/F ”/call Z][a := “X”/call X]

. . . fi fi

⊓⊔ a = “A1” → S1[a := “/F ”/call Z][a := “X”/call X]
⊓⊔ . . . ⊓⊔ a = “Ai” → Si[a := “/F ”/call Z][a := “X”/call X]
⊓⊔ . . . ⊓⊔ a = “Bj” → Sj0; F

n(gj0(x)); Sj1; F
n(gj1(x));

. . . Fn(gjnj
(x)); Sjnj

[a := “/F ”/call Z][a := “X”/call X] fi

Let IF be the corresponding statement with F not truncated. From the definition of F we see that
Fn+1(x) is equivalent to:

var a := “A1” :
while a 6= “Z” ∧ a 6= “/F ” do

IFn od end

Note that if a 6= “Z” initially then IFn cannot set a to “Z”, so if a 6= “Z” then the loop while a 6=
“Z” ∧ a 6= “/F ” do IFn od must terminate with a = “/F ” if it terminates at all.

Lemma 4.3 while a 6= “Z” ∧ a 6= “/F ” do IF od; DO′
6 DO′

Proof: We use the induction rule for recursion and prove by induction on n that while a 6= “Z” ∧
a 6= “/F ” do IFn od; DO′

6 DO′ for all n < ω. For the induction step we use a sub-induction which
uses the induction rule for iteration and prove: while a 6= “Z” ∧ a 6= “/F ” do IFn+1 odm; DO′

6

DO′ for every m < ω.

From the (sub) induction hypothesis we have:

while a 6= “Z” ∧ a 6= “/F ” do IFn+1 odm+1; DO′

= if a 6= “Z” ∧ a 6= “/F ”
then IFn+1; while a 6= “Z” ∧ a 6= “/F ” do IFn+1 odm; DO′

else DO′ fi

6 if a 6= “Z” ∧ a 6= “/F ”
then IFn+1; DO′

else DO′ fi

so we need to prove IFn+1; DO′
6 DO′. For this we consider the different cases which the if

statement tests for—these depend on the initial value of a.

Examining the body of IFn+1 we see that for most of the cases the clause of the IF statement is
identical to a clause in the DO statement, for example:

{a = “Ai”}; IFn+1; DO′ ≈ {a = “Ai”}; Si[a := “/F ”/call Z][a := “X”/call X]; DO′

and
{a = “Ai”}; DO′ ≈ {a = “Ai”}; Si[a := “/F ”/call Z][a := “X”/call X]; DO′

by unrolling the first step of DO′ and pruning. Hence:

{a = “Ai”}; IFn+1; DO′ ≈ {a = “Ai”}; DO′

as required. The case a = “/F ” follows similarly. So we are left with the cases a = “Bj”, i.e. all
that remains is to prove:

{a = “Bj”}; Sj0; F
n+1(gj0(x)); Sj1; F

n+1(gj1(x));

. . . Fn+1(gjnj
(x)); Sjnj

[a := “/F ”/call Z][a := “X”/call X]; DO′

6 {a = “Bj”}; DO′ (1)

14



To prove this we use the fact, noted above, that Fn+1(x) can be expressed in terms of while a 6=
“Z” ∧ a 6= “/F ” do IFn od and use the main induction hypothesis to show that while a 6= “Z” ∧
a 6= “/F ” do IFn od; DO′

6 DO′.

First note that the value of a is not used by Sjk or Fn+1. Also, since the original body of F
contains a regular action system with all the action calls in terminal places, each terminal statement
of Sjnj

must be an action call. So Sjnj
[a := “/F ”/call Z][a := “X”/call X] must assign some value

to a. So we can add assignments to a anywhere in the sequence on the LHS. By unfolding DO′ and
pruning (as in the previous Lemma) we have:

Sjnj
[a := “/F ”/call Z][a := “X”/call X]; DO′ ≈ L := 〈〈〈j, nj〉, x〉〉 ++ L; a := “/F ”; DO′

As in the previous Lemma, move the assignment to L to after Sj0. We now claim:

Fn+1(gjnj
(x)); a := “/F ”; DO′

6 L := 〈〈0, gjnj
(x)〉〉 ++ L; a := “/F ”; DO′

To prove this we note that:

Fn+1(gjnj
(x)); a := “/F ”; DO′

≈ x := gjnj
(x); Fn+1(x); a := “/F ”; DO′

since, when a = “/F ”, DO′ doesn’t use the initial value of x.

≈ x := gjnj
(x); a := “A1”; while a 6= “Z” ∧ a 6= “/F ” do IFn od; a := “/F ”; DO′

by unfolding Fn+1.

≈ x := gjnj
(x); a := “A1”; while a 6= “Z” ∧ a 6= “/F ” do IFn od; DO′

since the while loop terminates with a = “/F ”.

≈ x := gjnj
(x); a := “A1”; DO′

from the sub-induction result.

≈ L := 〈〈0, gjnj
(x)〉〉 ++ L; a := “/F ”; DO′

by unfolding DO′ and pruning. Finally the assignment to L can be merged with the first assignment
to L (which we moved to just after Sj0) since Fn+1 and Sjk do not use L. Continuing in this way
we can convert all the calls to Fn+1 and the intermediate statements into assignments to L to get:

{a = “Bj”}; Sj0; F
n+1(gj0(x)); Sj1; F

n+1(gj1(x));

. . . Fn+1(gjnj
(x)); Sjnj

[a := “/F ”/call Z][a := “X”/call X]; DO′

6

{a = “Bj”}; Sj0; L := 〈〈0, gj1(x)〉, 〈〈j, 1〉, x〉, 〈0, gj2(x)〉,

. . , 〈〈j, nj + 1〉, x〉〉 ++ L; a := “/F ”; DO′

By unfolding and pruning DO′ we see this is equivalent to {a = “Bj”}; DO′ as required.

This completes the proof of the lemma.

From this lemma we deduce the following corollary:

15



Corollary 4.4 F (g(x)); a := “/F ”; DO′
6 L := 〈〈0, g(x)〉〉 ++ L; a := “/F ”; DO′.

Proof: Expanding F (x) in the LHS we have:

F (g(x)); a := “/F ”; DO′

≈ x := g(x); F (x); a := “/F ”; DO′

≈ x := g(x); a := “A1”; while a 6= “Z” ∧ a 6= “/F ” do IF od; a := “/F ”; DO′

≈ x := g(x); a := “A1”; while a 6= “Z” ∧ a 6= “/F ” do IF od; DO′

since the while loop terminates with a = “/F ”.

6 x := g(x); a := “A1”; DO′

from Lemma(4.3)

6 x := g(x); L := 〈〈0, x〉〉 ++ L; a := “/F ”; DO′

by unfolding and pruning DO′.

6 L := 〈〈0, g(x)〉〉 ++ L; a := “/F ”; DO′

since DO′ does not use the value of x when a = “/F ” initially.

4.2 The Theorem

We now turn our attention to the main theorem. To prove that F (x) ≈ F ′(x) it is sufficient to
prove that DO ≈ DO′. The proof uses the general induction rule for iteration and the induction
rule for recursion.

Lemma 4.5 For every n < ω: DO′n
6 DO:

Proof: By induction on n.

DO′n+1

6 if a 6= “Z”
then if a = “/F ” →

if L = 〈〉
then a := “Z”
else 〈m,x〉 ← L;

if m = 0 → a := “A1”
⊓⊔ . . . ⊓⊔ m = 〈j, k〉 → Sjk[a := “/F ”/call Z][a := “X”/call X]
. . . fi fi

⊓⊔ a = “A1” → S1[a := “/F ”/call Z][a := “X”/call X]
⊓⊔ . . . ⊓⊔ a = “Ai” → Si[a := “/F ”/call Z][a := “X”/call X]
⊓⊔ . . . ⊓⊔ a = “Bj” → Sj0; L := 〈〈0, gj1(x)〉, 〈〈j, 1〉, x〉, 〈0, gj2(x)〉,

. . . , 〈〈j, nj + 1〉, x〉〉 ++ L;
a := “/F ”

. . . fi;
DO fi

by unfolding and using the induction hypothesis.
Absorb DO into the preceding statement. We claim:

L := 〈〈0, gj1(x)〉, 〈〈j, 1〉, x〉, 〈0, gj2(x)〉, . . . , 〈〈j, nj + 1〉, x〉〉 ++ L; a := “/F ”; DO

≈ F (gj1(x)); Sj1; F (gj2(x)); . . . ; F (gjnj
(x)); Sjnj

[a := “X”/call X]; DO (2)

16



Using this claim we can transform each of the a = “Bj” lines to be the same as in DO, we then
separate DO from each arm of the guarded command and use loop rolling to get:

DO′n+1
6 DO

as required.

So all that remains is to prove the claim (2). Unroll the first step of DO and prune the if

statements to get:

L := 〈〈0, gj1(x)〉, 〈〈j, 1〉, x〉, 〈0, gj2(x)〉, . . . , 〈〈j, nj + 1〉, x〉〉 ++ L; a := “/F ”;
〈m,x〉 ← L;
if m = 0 → a := “A1”
⊓⊔ . . . ⊓⊔ m = 〈j, k〉 → Sjk[a := “/F ”/call Z][a := “X”/call X]
. . . fi;
DO

this simplifies to:

L := 〈〈〈j, 1〉, x〉, 〈0, gj2(x)〉, . . . , 〈〈j, nj + 1〉, x〉〉 ++ L; a := “/F ”;
m := 0; x := gj1(x);
a := “A1”;
DO

By Lemma (4.2) we get:

L := 〈〈〈j, 1〉, x〉, 〈0, gj2(x)〉, . . . , 〈〈j, nj + 1〉, x〉〉 ++ L; a := “/F ”;
m := 0; x := gj1(x);
F (x);
a := “/F ”;
DO

Since F (x) preserves x and does not use L or m we can move the procedure call to the beginning:

F (gj1(x));
L := 〈〈〈j, 1〉, x〉, 〈0, gj2(x)〉, . . . , 〈〈j, nj + 1〉, x〉〉 ++ L; a := “/F ”;
m := 0; x := gj1(x);
a := “/F ”;
DO

Unroll DO again and simplify:

F (gj1(x));
L := 〈〈0, gj2(x)〉, . . . , 〈〈j, nj + 1〉, x〉〉 ++ L; a := “/F ”;
m := 〈j, 1〉;
Sj1;
DO

since Sjnj
contains no action calls. Since it also preserves the value of x and doesn’t use L or m we

can move it to after the procedure call:

F (gj1(x)); Sj1;
L := 〈〈0, gj2(x)〉, . . . , 〈〈j, nj + 1〉, x〉〉 ++ L; a := “/F ”;
m := 〈j, 1〉;
a := “/F ”;
DO

17



Continuing in this way we can eliminate all the items pushed onto the front of L. We get:

F (gj1(x)); Sj1; F (gj2(x)); Sj2; . . . ; Sjnj
; F (gjnj

(x)); Sjnj
[a := “X”/call X];

DO

which completes the proof of the lemma.

Hence, by the induction rule for iteration, we have: DO′
6 DO.

For the converse we prove by induction that DOn
6 DO′:

Lemma 4.6 For every n < ω: DOn
6 DO′

Proof: By induction on n.

DOn+1

6 if a 6= “Z”
then if a = “/F ” →

if L = 〈〉
then a := “Z”
else 〈m,x〉 ← L;

if m = 0 → a := “A1”
⊓⊔ . . . ⊓⊔ m = 〈j, k〉 → Sjk[a := “/F ”/call Z][a := “X”/call X]
. . . fi fi

⊓⊔ a = “A1” → S1[a := “/F ”/call Z][a := “X”/call X]
⊓⊔ . . . ⊓⊔ a = “Ai” → Si[a := “/F ”/call Z][a := “X”/call X]
⊓⊔ . . . ⊓⊔ a = “Bj” → Sj0; F (gj1(x)); Sj1; F (gj2(x)); Sj2;

. . . ; Sjnj
; F (gjnj

(x)); Sjnj
[a := “X”/call X]

. . . fi;
DO′ fi

by unfolding and using the induction hypothesis.
Push DO′ into each arm of the inner if statement. By analogy with the previous part it is sufficient
to prove:

F (gj1(x)); Sj1; F (gj2(x)); . . . ; F (gjnj
(x)); Sjnj

[a := “X”/call X]; DO′

6 L := 〈〈0, gj1(x)〉, 〈〈j, 1〉, x〉, 〈0, gj2(x)〉, . . . , 〈〈j, nj〉, x〉〉 ++ L; a := “/F ”; DO′ (3)

The statement Sjnj
[a := “X”/call X] can be replaced by a push to the stack to get:

F (gj1(x)); Sj1; F (gj2(x)); . . . ; F (gjnj
(x)); L := 〈〈〈j, nj〉, x〉〉 ++ L; a := “/F ”; DO′

Move the assignment to L to the beginning:

L := 〈〈〈j, nj〉, x〉〉 ++ L; F (gj1(x)); Sj1; F (gj2(x)); . . . ; F (gjnj
(x)); a := “/F ”; DO′

Apply Corollary (4.4):

L := 〈〈〈j, nj〉, x〉〉 ++ L; F (gj1(x)); Sj1; F (gj2(x)); . . . ; L := 〈〈0, gjnj
(x)〉〉 ++ L; a := “/F ”; DO′

Merge the assignments to L:

L := 〈〈0, gjnj
(x)〉, 〈〈j, nj〉, x〉〉 ++ L; F (gj1(x)); Sj1; F (gj2(x)); . . . ; a := “/F ”; DO′

Continuing in this way we can replace the whole sequence of calls and statements by an assignment
to L:

L := 〈〈0, gj1(x)〉, 〈〈j, 1〉, x〉, 〈0, gj2(x)〉, . . . , 〈〈j, nj〉, x〉〉 ++ L; a := “/F ”; DO′

This completes the proof.

18



Corollary 4.7 By unfolding some calls to “/F ” and pruning, we get the following, slightly more
efficient, version:

proc F ′(x) ≡
var L := 〈〉,m := 0:

actions A1 :
A1 ≡ S1[call /F/call Z].
. . . Ai ≡ Si[call /F/call Z].
. . . Bj ≡ Sj0; L := 〈〈〈j, 1〉, x〉, 〈0, gj2(x)〉, . . . , 〈0, gjnj

(x)〉, 〈〈j, nj〉, x〉〉 ++ L; x := gj1(x); call A1.

. . . /F ≡ if L = 〈〉 then call Z
else 〈m,x〉 ← L;

if m = 0 → call A1

⊓⊔ . . . ⊓⊔ m = 〈j, k〉 → Sjk[call /F/call Z]
. . . fi fi. endactions

end.

In the case where nj = 1 for all j, this version will never push a 〈0, x〉 pair onto the stack. This can
be significant for parameterless procedures where the number of j values is small as it can reduce
the amount of storage required by the stack. In the extreme case where there is only one j value,
the stack reduces to a sequence of identical elements and can therefore be represented by an integer
which simply records the length of the stack.

5 Cascade Recursion

This theorem can provide several different iterative equivalents for a given recursive procedure,
depending on how the initial restructuring of the procedure body into an action system is carried
out. Two extreme cases are:

1. Each action contains no more than one procedure call. This imposes no restrictions on the
other statements in the body and is therefore frequently used (for example, many compilers
use essentially this approach to deal with recursion). Bird [8] calls this the direct method.

2. Each action contains as long a sequence of procedure calls as possible. The resulting iterative
program is a simple while loop with the stack managing all the control flow. Bird [8] de-
scribes this as the postponed obligations method: all the sub-invocations arising from a given
invocation of the procedure are postponed on the stack before any is fulfilled.

These two special cases of the general transformation will be applied to the following simple
cascade recursion schema:

proc F (x) ≡
if B then T

else S1; F (g1(x)); M(x); F (g2(x)); S2 fi.

For the direct method we restructure the body of the procedure into the following action system:

proc F (x) ≡
actions A1 :
A1 ≡ if B then T

else call B1 fi.

B1 ≡ S1; F (g1(x)); call B2.

B2 ≡ M(x); F (g2(x)); call A2.

A2 ≡ S2; call Z. endactions.

Applying the general recursion removal transformation we get:

proc F (x) ≡
var L := 〈〉,m := 0:

actions A1 :

19



A1 ≡ if B then T

else call B1 fi.

B1 ≡ S1; L := 〈〈0, g1(x)〉, 〈1, x〉〉 ++ L; call /F .

B2 ≡ M(x); L := 〈〈0, g2(x)〉, 〈2, x〉〉 ++ L; call /F .

A2 ≡ S2; call /F .

/F ≡ if L = 〈〉 then call Z
else 〈m,x〉 ← L;

if m = 0 → call A1

⊓⊔ m = 1 → call B1

⊓⊔ m = 2 → call B2 fi fi. endactions end.

The action system is (naturally) regular, so we can apply the transformations in [19] to restructure
the action system:

proc F (x) ≡
var L := 〈〉,m := 0:

do while ¬B do S1; L := 〈〈1, x〉〉 ++ L; x := g1(x) od;
T;
do if L = 〈〉 then exit(2) fi;
〈m,x〉 ← L;
if m = 1 → M(x); L := 〈〈2, x〉〉 ++ L; x := g2(x); exit

⊓⊔ m = 2 → S2 fi od od end.

Note that whenever 〈0, gi(x)〉 was pushed onto the stack, it was immediately popped off. So we
have avoided pushing 〈0, gi(x)〉 altogether in this version.

For the postponed obligations case we need to structure the initial action system slightly differ-
ently:

proc F (x) ≡
actions A :
A ≡ if B then T

else call B fi.

B ≡ S1; F (g1(x)); M(x); F (g2(x)); S2; call Z. endactions.

Applying the general recursion removal transformation we get:

proc F (x) ≡
var L := 〈〉,m := 0:

actions A :
A ≡ if B then T

else call B fi.

B ≡ S1; L := 〈〈0, g1(x)〉, 〈1, x〉, 〈0, g2(x)〉, 〈2, x〉〉 ++ L; call /F .

/F ≡ if L = 〈〉 then call Z
else 〈m,x〉 ← L;

if m = 0 → call A
⊓⊔ m = 1 → M(x); call /F
⊓⊔ m = 2 → S2; call /F fi fi. endactions end.

This can be expressed as a simple while loop thus:

proc F (x) ≡
var L := 〈〈0, x〉〉,m := 0:

while L 6= 〈〉 do

〈m,x〉 ← L;
if m = 0 → if B then T

else S1; L := 〈〈0, g1(x)〉, 〈1, x〉, 〈0, g2(x)〉, 〈2, x〉〉 ++ L fi

⊓⊔ m = 1 → M(x)

20



⊓⊔ m = 2 → S2 fi od end.

Alternatively, we can restructure so as to avoid some unnecessary pushes and pops:

proc F (x) ≡
var L := 〈〉,m := 0:

do while ¬B do S1; L := 〈〈1, x〉, 〈0, g2(x)〉, 〈2, x〉〉 ++ L; x := g1(x) od;
T;
do if L = 〈〉 then exit(2) fi;
〈m,x〉 ← L;
if m = 0 → exit

⊓⊔ m = 1 → M(x)
⊓⊔ m = 2 → S2 fi od od end.

6 Binary Cascade Recursion

In this section we consider a special case of the cascade recursion above where the functions g1(x)
and g2(x) return x − 1 and the test for a nonrecursive case is simply n = 0. Here each invocation
of the function leads to either zero or two further invocations, so we use the term binary cascade
for this schema:

proc G(n) ≡
if n = 0 then T

else S1; G(n− 1); M(n); G(n− 1); S2 fi.

where T, S1 and S2 are statements which do not change the value of n and M is an external
procedure.

With this schema, the sequence of statements and calls to M depends only on the initial value
of n. We want to determine this sequence explicitly, i.e. we want to determine how many calls of
M are executed, what their arguments are and what statements are executed between the calls.

Since the functions gi are invertable, there is no need to have n as a parameter: we can replace
it by a global variable thus:

proc G ≡
if n = 0 then T

else S1; n := n− 1; G; M(n+ 1); G; n := n+ 1; S2 fi.

It is clear that G preserves the value of n and hence G is equivalent to G(n). We apply the direct
method of recursion removal (discussed in the previous Section) to get:

var L := 〈〉, d := 0 :
do while n 6= 0 do S1; n := n− 1; L := 〈1〉 ++ L od;

T;
do if L = 〈〉 then exit(2) fi;

d← L;
if d = 1 → M(n+ 1); L := 〈2〉 ++ L; exit

⊓⊔ d = 2 → S2; n := n+ 1 fi od od end

Note that since there are no parameters the stack only records control information.

The elements of the stack are either 1 or 2, so we can represent this stack by an integer c whose
digits in a binary representation represent the elements of the stack. We need to distinguish an
empty stack from a stack of zeros so we use the value 1 to represent the empty stack. The statement
L := 〈1〉 ++ L becomes c := 2.c + 1, L := 〈2〉 ++ L becomes c := 2.c and d ← L becomes 〈d, c〉 :=
〈c÷2〉. With this representation, the translation of while n 6= 0 do S1; n := n−1; L := 〈1〉 ++ L od

which pushes n 1’s onto L has the effect of multiplying c by 2n and adding 2n− 1 to the result. We
get:

21



var c := 1, d := 0:
do for i := n step − 1 to 1 do S1[i/n] od;

c := 2n.c+ 2n − 1; n := 0;
T;
do if c = 1 then exit(2) fi;
〈d, c〉 := 〈c÷ 2〉;
if d = 1 → M(n+ 1); c := 2.c; exit

⊓⊔ d = 0 → S2; n := n+ 1 fi od od end

The variable d is not really needed as we can simply test whether c is odd or even, if it is odd then
the effect of 〈c, d〉 := 〈c÷ 2〉 followed by c := 2.c is to subtract one from c:

var c := 1:
do for i := n step − 1 to 1 do S1[i/n] od;

c := 2n(c+ 1)− 1; n := 0;
T;
do if c = 1 then exit(2) fi;

if odd(c) then M(n+ 1); c := c− 1; exit

else S2; c := c/2; n := n+ 1 fi od od end

Take the first three lines out of the outer loop and merge them into the inner loop, this results in
a simple double loop which can be reduced to a single loop:

var c := 2n+1 − 1:
for i := n step − 1 to 1 do S1[i/n] od;
n := 0; T;
do if c = 1 then exit fi;

if odd(c) then M(n+ 1); c := c− 1;
for i := n step − 1 to 1 do S1[i/n] od;
c := 2n(c+ 1)− 1; n := 0;
T

else S2; c := c/2; n := n+ 1 fi od end

The body of this loop is split into two cases (for odd or even c), where one case (for even c) is much
simpler than the other. This suggests a partial entire loop unrolling under the case even(c):

var c := 2n+1 − 1:
for i := n step − 1 to 1 do S1[i/n] od;
n := 0; T;
do if c = 1 then exit fi;

if odd(c) then M(n+ 1); c := c− 1;
for i := n step − 1 to 1 do S1[i/n] od;
c := 2n(c+ 1)− 1; n := 0;
T;
while even(c) do S2; c := c/2; n := n+ 1 od

else S2; c := c/2; n := n+ 1 fi od end

If c is odd then the execution of the loop body will leave c odd. Since c is initially odd (2n+1 − 1 is
odd for all n > 0) we can eliminate the test odd(c):

var c := 2n+1 − 1:
for i := n step − 1 to 1 do S1[i/n] od;
n := 0; T;
do if c = 1 then exit fi;

M(n+ 1); c := c− 1;
for i := n step − 1 to 1 do S1[i/n] od;
c := 2n(c+ 1)− 1; n := 0;

22



T;
while even(c) do S2; c := c/2; n := n+ 1 od od end

Since c is initially odd, the while loop can be moved to the beginning of the loop. The effect of
this while loop is to divide c by 2ntz(c) where ntz(c) is the number of trailing zeros in the binary
expansion of c. Since n is set to zero just before the loop, it also sets n to ntz(c):

var c := 2n+1 − 1:
for i := n step − 1 to 1 do S1[i/n] od;
T;
do n := ntz(c); c := c/2n;

for i := 0 step 1 to n− 1 do S2[i/n] od;
if c = 1 then exit fi;
M(n+ 1);
for i := n step − 1 to 1 do S1[i/n] od;
c := 2n.c− 1;
T od end

The test c = 1 will be true only if the binary expansion of c at the beginning of the loop contained
exactly one 1. If this is not the case then the effect of the loop is to decrement c by one. This means
that the loop continues until the most significant bit of the initial value of c is the only bit set, ie
c = 2n0 where n0 is the initial value of n. Thus we can convert the loop to a while loop:

var c := 2n+1 − 1, n0 := n :
for i := n step − 1 to 1 do S1[i/n] od;
T;
while c 6= 2n0 do

n := ntz(c); c := c/2n;
for i := 0 step 1 to n− 1 do S2[i/n] od;
M(n+ 1);
for i := n step − 1 to 1 do S1[i/n] od;
c := 2n.c− 1; n := 0;
T od;

n := ntz(c); c := c/2n;
for i := 0 step 1 to n− 1 do S2[i/n] od end

The final values of the local variables c and n do not affect the result of the program; so we can
simplify this to:

var c := 2n+1 − 1, n0 := n :
for i := n step − 1 to 1 do S1[i/n] od;
T;
while c 6= 2n0 do

n := ntz(c);
for i := 0 step 1 to n− 1 do S2[i/n] od;
M(n+ 1);
for i := n step − 1 to 1 do S1[i/n] od;
c := c− 1;
T od;

for i := 0 step 1 to n0 − 1 do S2[i/n] od end

Note that for 2n0 < c < 2n0+1, ntz(c) = ntz(2n0+1−c) so we can represent c by c′ where c′ = 2n0+1−c.
Writing the loop as a for loop (and putting c back for c′) we get the final version:

var n0 := n :
for i := n step − 1 to 1 do S1[i/n] od;
T;

23



for c := 1 step 1 to 2n0 − 1 do

n := ntz(c);
for i := 0 step 1 to n− 1 do S2[i/n] od;
M(n+ 1);
for i := n step − 1 to 1 do S1[i/n] od;
T od;

for i := 0 step 1 to n0 − 1 do S2[i/n] od end

For the case where S1 and S2 are both skip this simplifies to:

T;
for c := 1 step 1 to 2n − 1 do

M(ntz(c) + 1);
T od;

7 Example: The Gray Code

An n-bit gray code is a sequence of 2n n-bit binary numbers (sequences of 0’s and 1’s of length
n) starting from 00 . . . 0 such that each element of the sequence differs from the next in a single
bit position (and the 2nth element has a single bit set). We want to define a function g(n) which
returns an n-bit gray code. For n = 0 the gray code is the one element sequence 〈〈〉〉. Note that
there are several different n-bit gray codes for n > 1: the problem of finding all gray codes of a
given length is equivalent to finding all the Hamiltonian cycles of a n-dimensional unit hypercube.

So suppose we have g(n− 1) and want to construct g(n). The elements of g(n− 1) will be n− 1
bit codes; hence (〈0〉 ++) ∗ g(n − 1) and (〈1〉 ++) ∗ g(n − 1) are disjoint gray code sequences of
length 2n−1. Their corresponding elements differ in only the first bit position, in particular the last
element of (〈0〉 ++) ∗ g(n−1) differs from the last element of (〈1〉 ++) ∗ g(n−1) in one bit position.
Thus if we reverse the sequence (〈1〉 ++) ∗ g(n − 1) and append it to (〈0〉 ++) ∗ g(n − 1) we will
form an n-bit gray code. Thus the definition of g(n) is:

funct g(n) ≡
if n = 0 then 〈〈〉〉

else (〈0〉 ++) ∗ g(n− 1) ++ reverse((〈0〉 ++) ∗ g(n− 1)) fi.

This function defines g(n) in terms of g(n − 1) and reverse(g(n − 1)): this suggests we define
g(n) in terms of a function g′(n, s) such that g′(n, 0) = g(n) and g′(n, 1) = reverse(g(n)). Note that
reverse(g(n)) = (〈1〉 ++) ∗ g(n − 1) ++ (〈0〉 ++) ∗ reverse(g(n − 1)). So we can define g′(n, s) as
follows:

funct g′(n, s) ≡
if n = 0 then 〈〈〉〉

else (〈s〉 ++) ∗ g′(n− 1, 0) ++ (〈1− s〉 ++) ∗ g′(n− 1, 1) fi.

Finally, instead of computing g′(n − 1, s) and appending either 〈0〉 or 〈1〉 to each element, we can
pass a third argument which is to be appended to each element of the result; i.e. define g′′(L, n, s) =
(L ++) ∗ g′(n, s). We get the following definition of g′′:

funct g′′(L, n, s) ≡
if n = 0 then 〈L〉

else g′′(〈s〉 ++ L, n− 1, 0) ++ g′′(〈1− s〉 ++ L, n− 1, 1) fi.

The recursive case of this version simply appends the results of the two recursive calls. This suggests
we use a procedural equivalent which appends the result to a global variable r. Thus our gray code
function g(n) is equivalent to:

funct g(N) ≡
r := 〈〉 :
begin

24



G(〈〉, N, 0)
where

proc G(L, n, s) ≡
if n = 0 then r := r ++ 〈L〉

else G(〈s〉 ++ L, n− 1, 0); G(〈1− s〉 ++ L, n− 1, 1) fi. end;
r .

Represent the stack L of bits as an integer c as in Section 6:

begin

G(1, N, 0)
where

proc G(c, n, s) ≡
if n = 0 then r := r ++ 〈bits(c)〉

else G(2.c+ s, n− 1, 0); G(2.c+ 1− s, n− 1, 1) fi. end

where bits(c) returns the sequence of bits represented by the integer c. We can combine c and s
into one argument c′ where c′ = 2.c+ s:

begin

G(2, N)
where

proc G(c′, n) ≡
if n = 0 then r := r ++ 〈bits(⌊c′/2⌋)〉

else G(2.c′, n− 1); G(2.(c′ ⊕ 1) ⊕ 1, n− 1) fi. end

where a ⊕ b is a “bitwise exclusive or” operator. Note that we always double c′ whenever we
decrement n; this suggests representing c′ by c where c = c′.2n:

begin

G(2N+1, N)
where

proc G(c, n) ≡
if n = 0 then r := r ++ 〈bits(⌊c/2⌋)〉

else G(c, n− 1); G((c ⊕ 2n) ⊕ 2n−1, n− 1) fi. end

We want to replace c by a global variable c′. To do this we add c′ as a new ghost variable; we assign
values to c′ which track the current value of c:

begin var c′ := 2N+1 :
G(2N+1, N)

where

proc G(c, n) ≡
if n = 0 then r := r ++ 〈bits(⌊c/2⌋)〉; c′ := c′ ⊕ 1

else G(c, n− 1); c′ := c′ ⊕ 2n; G((c ⊕ 2n) ⊕ 2n−1, n− 1) fi. end end

By induction on n we prove: {c′ = c}; G(c, n− 1) 6 {c′ = c}; G(c, n− 1); {c′ = c ⊕ 2n}. Then at
every call of G we have c′ = c so we can replace the parameter c by the global variable c′:

begin var c′ := 2N+1 :
G(N)

where

proc G(n) ≡
if n = 0 then r := r ++ 〈bits(⌊c′/2⌋)〉; c′ := c′ ⊕ 1

else G(n− 1); c′ := c′ ⊕ 2n; G(n− 1) fi. end end

Now we have a standard binary cascade recursion for which the transformation of Section 6 gives:

begin var c′ := 2N+1 :
r := r ++ 〈bits(⌊c′/2⌋)〉;

25



for i := 1 step 1 to 2N − 1 do

c′ := c′ ⊕ 2ntz(i)+1;
r := r ++ 〈bits(⌊c′/2⌋)〉 od end end

Finally, the least significant bit of c′ is always ignored and the most significant bit of c′ is always
the 2N+1 bit so we can represent c′ by c = ⌊(c′ − 2N+1)/2⌋:

begin var c := 0:
r := r ++ 〈Nbits(c)〉;
for i := 1 step 1 to 2N − 1 do

c := c ⊕ 2ntz(i);
r := r ++ 〈Nbits(c)〉 od end end

where Nbits(c) = bits(c+ 2N+1).

Thus, the bit which changes between the ith and (i + 1)th codes is the bit in position ntz(i).
From this result we can prove the following:

Theorem 7.1 The ith gray code is i ⊕ ⌊i/2⌋.

Proof: The proof is by induction on i. Suppose c = i ⊕ ⌊i/2⌋ is the ith gray code. Then from
the program above, the (i + 1)th gray code is c ⊕ 2ntz(i+1). The number of trailing zeros in the
binary representation of i + 1 is simply the number of trailing ones in the binary representation
of i. Suppose i is even (i.e. there are no trailing ones) and it’s N -bit binary representation is
〈i1, i2, . . . , in−1, 0〉. Then:

i = 〈 i1, i2, . . . , in−1, 0 〉
⌊i/2⌋ = 〈 0, i1, . . . , in−2, in−1 〉

i ⊕ ⌊i/2⌋ = 〈 i1, i2 ⊕ i1, . . . , in−1 ⊕ in−2, in−1 〉
i+ 1 = 〈 i1, i2, . . . , in−1, 1 〉

⌊(i+ 1)/2⌋ = 〈 0, i1, . . . , in−2, in−1 〉
(i+ 1) ⊕ ⌊(i+ 1)/2⌋ = 〈 i1, i2 ⊕ i1, . . . , in−1 ⊕ in−2, in−1 ⊕ 1 〉

i.e. the 20 bit has changed.

On the other hand, suppose i is odd and has k trailing ones with k > 0. Since (i+ 1) < 2n we
must have k < n. So:

i = 〈 i1, i2, . . . , in−k−1, 0, 1, 1, . . . , 1 〉
⌊i/2⌋ = 〈 0, i1, . . . , in−k−2, in−k−1, 0, 1, . . . , 1 〉

i ⊕ ⌊i/2⌋ = 〈 i1, i2 ⊕ i1, . . . , in−k−1 ⊕ in−k−2, in−k−1, 1, 0, . . . , 0 〉
i+ 1 = 〈 i1, i2, . . . , in−k−1, 1, 0, 0, . . . , 0 〉

⌊(i+ 1)/2⌋ = 〈 0, i1, . . . , in−k−2, in−k−1, 1, 0, . . . , 0 〉
(i+ 1) ⊕ ⌊(i+ 1)/2⌋ = 〈 i1 i2 ⊕ i1 . . . , in−k−1 ⊕ in−k−2 in−k−1 ⊕ 1 1 0 . . . , 0 〉

i.e. the 2k bit has changed.

Which proves the theorem

From this we derive the following gray code generator:

funct g(n) ≡
r := 〈Nbits(0)〉 :
for i := 1 step 1 to 2n − 1 do

r := r ++ 〈Nbits(i ⊕ ⌊i/2⌋)〉 od;
r .

While the previous gray code generator only told us which bit changes from one code to the
next, this one calculates the ith gray code directly from i without using any previous codes.

26



8 Towers of Hanoi

The well-known “Towers of Hanoi” algorithm is a simple binary cascade recursion. The procedure
H(n, a, b, c) moves a stack of n different-sized disks from peg a to peg b using peg c without ever
placing a larger disk upon a smaller(where a, b and c are some permutation of the values {0, 1, 2}):

proc H(n, a, b, c) ≡
if n = 0 then skip

else H(n− 1, a, c, b); move(n, a, b); H(n− 1, c, b, a) fi.

where the procedure move(n, a, b) moves the disk numbered n from disk a to disk b.

The values the parameters a, b and c are always a permutation of their initial values, so we can
replace them by global variables:

proc H(n) ≡
if n = 0 then skip

else 〈b, c〉 := 〈c, b〉; H(n− 1, a); 〈b, c〉 := 〈c, b〉;
move(n, a, b);
〈a, c〉 := 〈c, a〉; H(n− 1); 〈a, c〉 := 〈c, a〉 fi.

Applying the binary cascade recursion transformation we get:

proc H(n) ≡
if odd(n) then 〈b, c〉 := 〈c, b〉 fi;
for c := 1 to 2n − 1 do

if odd(ntz(c)) then 〈a, c〉 := 〈c, a〉 fi;
〈b, c〉 := 〈c, b〉; move(ntz(c) + 1, a, b); 〈a, c〉 := 〈c, a〉;
if odd(ntz(c)) then 〈b, c〉 := 〈c, b〉 fi od;

if odd(n) then 〈a, c〉 := 〈c, a〉 fi.

Hence the sequence in which disks are moved in the Towers of Hanoi problem is the same as the
sequence in which bits are changed in the generation of a gray code.

It is often worth trying to simplify a recursive procedure as much as possible before removing
the recursion. In this case we would like to be able to determine the parameters a and b for the
move procedure from c alone since this will greatly simplify the iterative version of the program.
Hand simulation for small values of n suggests that each disk always moves in the same direction:
either forwards (0 → 1 → 2 → 0) or backwards (0 → 2 → 1 → 0) with disk k moving
forwards if N − k is odd (where N is the initial value of n and a = 0, b = 1 and c = 2 initially).
This fact is rather tricky to prove from the iterative version of the program, but for the recursive
procedure the proof is a simple induction on n. From the iterative program we know that before
move c, disk number k will have moved m(k, c) times where

m(k, c) = # { i | 1 6 i < c ∧ ntz(i) + 1 = k }

Now ntz(i) + 1 = k iff i = j.2k−1 for some odd j, so:

m(k, c) = #
{

j | 0 < j.2k−1 < c ∧ odd(j)
}

= #
{

j | 0 < j < ⌊c/2k−1⌋ ∧ odd(j)
}

= #
{

j | 0 < j < ⌊(⌊c/2k−1⌋)/2⌋
}

= ⌊(⌊c/2k−1⌋)/2⌋

So after move c the kth disk will have moved to position (m(c, k) mod 3) or (−m(c, k) mod 3)
depending on whether it is moving forwards or backwards. Thus the position of disk k before move
c is p(c, k,N) = ((−1)N−k+1m(c, k) mod 3). Thus given c and N we can immediately determine
the positions of all the disks, the next disk to be moved (it is number ntz(c) + 1), and the peg it
moves to.

27



So our final version of the program is:

proc H(n) ≡
for c := 1 to 2n − 1 do

move(ntz(c) + 1, p(c, ntz(c) + 1, n), p(c+ 1, ntz(c) + 1, n)); od.

9 Program Analysis

Since the recursion removal theorem can be applied in either direction, and because it places so
few restrictions on the form of the program, it can be applied in the reverse direction as a program
analysis or reverse engineering tool to make explicit the control structure of programs which use a
stack in a particular way. For example, consider the following function:

funct A(m,n) ≡
begin d := 0, stack := 〈〉 :

do do if m = 0 then n := n+ 1; exit

elsif n = 0 then stack := 〈1〉 ++ stack; m := m− 1; n := 1
else stack := 〈0〉 ++ stack; n := n− 1 fi od;

do if stack = 〈〉 then exit(2) fi;
d← stack;
if d = 0 then stack := 〈1〉 ++ stack; m := m− 1; exit fi;
m := m+ 1 od od end;

n .

This program was sent by the author as a “challenge” to the REDO group at the Programming
Research group in Oxford to test their proposed methods for formal reverse engineering of source
code. Their paper [9] required eight pages of careful reasoning plus some “inspiration” to analyse
this short program. With the aid of our theorem the analysis breaks down into three steps:

1. Restructure into the right form for application of the theorem (this stage could easily be
automated);

2. Apply the theorem;

3. Restructure the resulting recursive procedure in a functional form (this stage could also be
automated).

If we examine the operations carried out on the stack we see that only constant elements are
pushed onto the stack, the program terminated when the stack becomes empty, and the value
popped off the stack is used to determine the control flow. This suggests that we may be able to
remove the stack and re-express the control flow explicitly using our theorem. The first step is to
restructure the loops into an action system and collect together the “stack push” operations into
separate actions:

var d := 0, stack := 〈〉 :
actions A1 :
A1 ≡ if m = 0 then n := n+ 1; call /A

elsif n = 0 then call B1

else call B2 fi.

B1 ≡ stack := 〈1〉 ++ stack; m := m− 1; n := 1; call A1.

B2 ≡ stack := 〈0〉 ++ stack; n := n− 1; call A1.

/A ≡ if stack = 〈〉 then call Z
else d← stack;

if d = 0 then call B3

else m := m+ 1; call /A fi fi.

B3 ≡ stack := 〈1〉 ++ stack; m := m− 1; call A1.

endactions end

28



This is already almost in the right form to apply the Corollary (4.7) above, all we need to do is to
move the stack assignments past the assignments to n and m:

var d := 0, stack := 〈〉 :
actions A1 :
A1 ≡ if m = 0 then n := n+ 1; call /A

elsif n = 0 then call B1

else call B2 fi.

B1 ≡ m := m− 1; n := 1; stack := 〈1〉 ++ stack; call A1.

B2 ≡ n := n− 1; stack := 〈0〉 ++ stack; call A1.

/A ≡ if stack = 〈〉 then call Z
else d← stack;

if d = 0 then call B3

else m := m+ 1; call /A fi fi.

B3 ≡ m := m− 1; stack := 〈1〉 ++ stack; call A1.

endactions end

Apply the transformation in Corollary (4.7) to get the recursive version:

proc F ≡
actions A1 :
A1 ≡ if m = 0 then n := n+ 1; call Z

elsif n = 0 then call B1

else call B2 fi.

B1 ≡ m := m− 1; n := 1; F ; m := m+ 1; call Z.

B2 ≡ n := n− 1; F ; call B3.

B3 ≡ m := m− 1; F ; m := m+ 1; call Z.

endactions

Unfold all the actions into A1 to get:

proc F ≡ if m = 0 then n := n+ 1
elsif n = 0 then m := m− 1; n := 1; F ; m := m+ 1

else n := n− 1; F ; m := m− 1; F ; m := m+ 1 fi.

We can turn the global variables m and n into parameters if we add a variable r to record the final
value of n (the value of m is unchanged):

var r := 0:
F (n,m); n := r

where

proc F (m,n) ≡ if m = 0 then r := n+ 1
elsif n = 0 then F (m− 1, 1)

else F (m,n− 1); F (m− 1, r) fi.

end

This procedure can be written in a functional form:

begin

r := F (n,m)
where

funct F (m,n) ≡ if m = 0 then n+ 1
elsif n = 0 then F (m− 1, 1)

else F (m− 1, F (m,n− 1)) fi.

end

Substituting this into the original function we get:

funct A(m,n) ≡ if m = 0 then n+ 1

29



elsif n = 0 then A(m− 1, 1)
else A(m− 1, A(m,n− 1)) fi.

where we have replaced calls to F by equivalent calls to A.

This is the famous Ackermann function [1].

10 Conclusion

The program transformation theory used in this paper forms the foundation of the “Maintainer’s
Assistant” project [10,22] at Durham University and the Centre for Software Maintenance Ltd. which
aims to produce a prototype tool to assist a maintenance programmer to understand and modify an
initially unfamiliar program, given only the source code. The tool consists of a structure editor, a
library of proven transformations and a knowledge-based system which analyses the programs and
specifications under consideration and uses heuristic knowledge to determine which transformations
will achieve a given end (for example, deriving the specification of a section of code, finding the most
suitable technique for recursion removal, optimising for efficiency etc.) Part of the project involves
building front ends for IBM Assembler and Z specifications with the aim of analysing Assembler
programs and turning them into equivalent high-level language programs and Z specifications.

11 References

[1] W. Ackermann, “Zum Hilbertschen Aufbau der reellen Zahlen,” Math. Ann. 99 (1928), 118–133.

[2] J. Arsac, “Transformation of Recursive Procedures,” in Tools and Notations for Program Con-

struction, D. Neel, ed., Cambridge University Press, Cambridge, 1982, 211–265.

[3] J. Arsac, “Syntactic Source to Source Transforms and Program Manipulation,” Comm. ACM 22
#1 (Jan., 1979), 43–54.

[4] R. J. R. Back, Correctness Preserving Program Refinements, Mathematical Centre Tracts#131,
Mathematisch Centrum, Amsterdam, 1980.

[5] F. L. Bauer, B. Moller, H. Partsch & P. Pepper, “Formal Construction by Transformation—
Computer Aided Intuition Guided Programming,” IEEE Trans. Software Eng. 15 #2 (Feb., 1989).

[6] F. L. Bauer & H. Wossner, Algorithmic Language and Program Development, Springer-Verlag,
New York–Heidelberg–Berlin, 1982.

[7] R. Bird, “A Calculus of Functions for Program Derivation,” Oxford University, Technical Mono-
graph PRG-64, 1987.

[8] R. Bird, “Notes on Recursion Removal,” Comm. ACM 20 #6 (June, 1977), 434–439.

[9] P. T. Breuer, K. Lano & J. Bowen, “Understanding Programs through Formal Methods,” Oxford
University, Programming Research Group, Apr., 1991.

[10] T. Bull, “An Introduction to the WSL Program Transformer,” Conference on Software Mainte-

nance 26th–29th November 1990, San Diego (Nov., 1990).

[11] E. W. Dijkstra, A Discipline of Programming , Prentice-Hall, Englewood Cliffs, NJ, 1976.

[12] D. E. Knuth, “Structured Programming with the GOTO Statement,” Comput. Surveys 6 #4
(1974), 261–301.

[13] C. C. Morgan, “The Specification Statement,” Trans. Programming Lang. and Syst. 10 (1988),
403–419.

30



[14] C. C. Morgan, Programming from Specifications, Prentice-Hall, Englewood Cliffs, NJ, 1994,
Second Edition.

[15] C. C. Morgan & K. Robinson, “Specification Statements and Refinements,” IBM J. Res. Develop.

31 #5 (1987).

[16] C. C. Morgan, K. Robinson & Paul Gardiner, “On the Refinement Calculus,” Oxford University,
Technical Monograph PRG-70, Oct., 1988.

[17] E. L. Post, “Formal Reduction of the General Combinatorial Decision Problem,” Amer. J. Math.

(1943).

[18] D. Taylor, “An Alternative to Current Looping Syntax,” SIGPLAN Notices 19 #12 (Dec., 1984),
48–53.

[19] M. Ward, “Proving Program Refinements and Transformations,” Oxford University, DPhil The-
sis, 1989, 〈http://www.cse.dmu.ac.uk/∼mward/martin/thesis〉.

[20] M. Ward, “Specifications and Programs in a Wide Spectrum Language,” Submitted to J. Assoc.
Comput. Mach., 1991.

[21] M. Ward, “A Model for Partial Programs,” Submitted to J. Assoc. Comput. Mach., Nov., 1989.

[22] M. Ward, F. W. Calliss & M. Munro, “The Maintainer’s Assistant,” Conference on Software

Maintenance 16th–19th October 1989, Miami Florida (1989), 〈http: // www. cse. dmu. ac. uk/
∼mward/martin/papers/MA-89.ps.gz〉.

31


