
A Knowledge�Based System forSoftware MaintenanceF.W. Calliss, M. Khalil, M. Munro and M. WardCenter for Software MaintenanceUniversity of DurhamDurham, England DH1 3LEAbstractA description of an Intelligent, Knowledge-Based maintenance tool, being developed by theCentre for Software Maintenance at the University of Durham is described. The tool is intendedto help reduce the amount of time spent on analysing code. Code analysis is performed whena programmer is familiarising himself with a piece of code, and when the e�ects of a proposedmodi�cation of the code is being assessed.1 The ProblemThere has been much research in recent years on the problems of program and system development,but very little work has been done on the problems of maintaining developed programs. The earlypromises of researchers in formal methods and structured programming, that the maintenanceproblem would �simply disappear� as their methods are developed and applied, have not beenrealised for several fundamental reasons:� There exists a large quantity of what might be termed as �geriatric code�. This code has oftenbeen heavily modi�ed to make it perform many more functions than was originally intended.This code represents a considerable investment on the part of the owner and cannot thereforesimply be discarded and rewritten using modern techniques.� For much of this software there is little or no documentation. The documentation that doesexist is unlikely to have been maintained along with the code and is therefore useless.� The original designers and coders may long since have moved on to pastures new.� The requirements of the customer are constantly changing, and the environment under whichthe software is run is also changing (from adding another terminal to a time-sharing systemto porting the whole system onto di�erent hardware with a di�erent operating system). Thismeans that any large system will be constantly being modi�ed to �t the changed requirementsand environment as well as �xing bugs. Thus even the hypothetical �bug-free� program willrequire maintenance and even the most structured program can be reduced to a tangled messby a series of unstructured modi�cations and patches.Much of the work which has been directed at the problems of program maintenance has beendirected towards �restructuring� unstructured programs. Restructuring is the process of taking aprogram text, shu�ing the pieces of code around to produce a logically equivalent program whichconforms to some given programming criteria. This only tackles one small part of the maintenancetask and even then can present new problems [5]. By far the largest part of the maintenanceprogrammers job involves program analysis�the study of the source code in order to try and workout what the program is supposed to do and which other pieces of code are a�ected and how. Whena program modi�cation is proposed then further analysis of the modi�ed program is required toshow that the modi�cation has the desired e�ect without introducing further bugs. For many large1



programs the chance of introducing another bug can be surprisingly high.2 The Research ProjectIn response to these problems, the Centre for Software Maintenance has organised a researchproject, funded by the UK Alvey research initiative, with the aim of building a program analysistool for use during the maintenance of a large system written in C, given only the source code.This tool will aid the maintenance programmer in understanding an initially unfamiliar system inas short a time as possible. Understanding a system has several aspects:� Being able to describe the speci�cation of a piece of code in a clear and concise way.� Discovering the �ow of information through the program (especially into and out of thosemodules which are to be modi�ed).� Discovering the �ow of control�this includes a call graph of the subroutines for each moduleof interest.� Untangling the structure to reveal which pieces of code form the bodies of loops and discov-ering under what conditions they are executed.� Determining the use and scope of each variable name. Some work has already been carriedout in this area at Durham with the development of interactive cross referencers [6, 19].� Using the above information to determine the e�ects of a proposed modi�cation (for instanceto determine which modules will be a�ected via the control and data �ow from a modi�edmodule).2.1 The Knowledge BasesMuch of the knowledge is based on the concept of program plans. These are the basic building blocksfrom which algorithms are constructed and are familiar cliches to most programmers. For examplea mergesort algorithm can be viewed as a composition of a plan for recursion on a binary tree, a planfor splitting a sequence in two, a plan for sorting pairs of numbers, and a plan for merging sortedlists. There are also collections of specialised plans appropriate to each programming language.For example, scanning a �le in COBOL, the use of formulas with side e�ects in C and the useof functions which return their error status as the result and their actual e�ect as a side e�ect inboth C and PASCAL. One approach to program comprehension is to transform the program intoa composition of recognised plans.In �gure 1, we see a schematic diagram of the proposed tool. The expert system is seen to takeknowledge from several sources. We will discuss each of these in turn.2.1.1 Maintenance KnowledgeThis will be knowledge about how maintenance programmers do their work. This knowledge willhave to be elicited from expert maintainers using knowledge elicitation techniques similar to thosedescribed by Letovsky and Soloway [16, 17, 18] in their work on delocalised plans.This knowledge will provide the bulk of the system's heuristic knowledge that will dictate theweighting patterns on searches through the expert system.2.1.2 Program PlansWhen dealing with program plans we divide them into two di�erent categories:2



General Program PlansThis will consist of a small set of plans that show commonly occurring activities in computerprograms. The danger with plan based tools is that the number of plans needed is so large, thatfor computing purposes it can be regarded as in�nite. The plan library alone could take up allof the available on-line storage and still want more [22, 26].For this reason the proposed tool willmake use of plans, but will not be dependent on them. Plans will be used to help guide a particularsearch through the knowledge base.Program Class KnowledgeThis form of knowledge combines a group of specialist plans, known as program class plans, witha specialised set of heuristic rules on how to use the plans.The program class plans are a group of plans that are common to a particular type of program.This project is concerned with maintaining a C compiler, so the set of program class plans wouldbe a set of plans that depict a set of activities that are typically found in a compiler.In order to use this plans e�ectively a specialised set of heuristic rules needs to be developed.In order to develop this set of rules we will have to perform some knowledge elicitation work onexpert compiler writers. We are fortunate, in that the Centre for Software Maintenance has fourex-compiler writers as members so we have easy access to the required experts.2.1.3 Program Specific KnowledgeThis includes the internal representation of source code together with knowledge gleaned from thisusing the code analysis tools already developed. The proposed tool will know what information iswanted in a given situation and so is able to restrict the amount of information that is displayed.The maintenance programmer will analyse the program by interrogating the tool's knowledge�base.2.1.4 DocumentationThe item labelled documentation tool is not part of the present project, but is an idea for a followon project dealing with binding sections of documentation to sections of the code.2.1.5 Other ToolsThe internal representation is in a particularly suitable form for interpretive execution includingdebugging using dynamic data �ow analysis (see for example [6]) and other tools. Adding suchtools to the system could form the basis of another project.2.2 Internal RepresentationThe precise representation of the program in the analyser is very important because we need to beable to extract and analyse the structure of the program and make simple transformations of thestructure easily. For example, variable names and procedure calls will be linked to their de�nitionsso that the call graph can be rapidly examined and general module interconnections deduced.2.3 Functional AspectsThe system must be interactive and be able to give suggestions as to where the maintenanceprogrammer should be directing his attention in the mass of code available. It should present thecode in a way which is easy to read (this will involve automatic indentation, appropriate highlighting3



and local restructuring).To analyse the �higher-level� structure of the program, (for instance, the modules which are toobig to �t on the screen) we need a �summariser� which collapses a section of code into a high- levelspeci�cation or statement. Also the ability to link a comment to a section of code which can thenbe replaced by the comment.The system is envisaged as containing the following main parts:1. A catalogue of proven transformations together with the conditions which need to be testedbefore they can be applied and hints as to the situations in which they will be useful.2. An interactive �structure editor� which acts directly on the internal structure of the pro-gram to edit the program, check the conditions for a particular transformation and applytransformations automatically.3. An �intelligent� system which searches for a suitable sequence of transformations to achievea desired e�ect (eg �Can you move this piece of code to here?�, �Can you eliminate thetwo copies of this statement?�, �Please transform this recursive procedure into an equivalentiterative form�).3 Theoretical FoundationThe proposed system will be based on a formal system developed by Ward [23, 24] in which it ispossible to prove that two versions of a program are equivalent. The formal system is independentof any particular programming language and allows the inclusion of arbitrary speci�cations asstatements in a program. Hence it can be used to prove that a program is equivalent to a givenspeci�cation.Program transformations are used in program development in [3, 4, 10, 11]. However their meth-ods cannot cope with general speci�cations or with transforming programs into speci�cations. Oursystem uses a small �kernel language� which consists of speci�cation statement as the only prim-ative statement together with sequential composition, the if statement, a nondeterministic choicestatement, a while loop and simple recursive procedures. This language has a simple mathematicalsemantics which associates a function with each program. This function maps each allowed initialstate to the set of possible �nal states. Two programs are said to be equivalent if their associatedfunctions are identical.Also associated with any program is a logical formula which encapsulates the initial conditions underwhich the program is guaranteed to terminate in a state which satis�es a given �nal conditions.These formulae are called �weakest preconditions� in [7]. Their value lies in the fact proved in [2]for iterative programs and extended in [23] to recursive programs that two programs are equivalentif and only if they have equivalent weakest preconditions. Thus proving the transformation of aprogram to a di�erent form amounts to proving the equivalence of two formulae�for which all theapparatus of mathematical logic is available.Once a set of simple transformations has been proved they can be used to derive other transform-ations by composition. Also the language can be extended to include new programming constructsby means of �de�nitional transformations� which for each program using the new constructs givean equivalent program de�ned in terms of simpler constructs. We can then prove the equivalenceof two programs using the new constructs by proving that their de�nitional transformations areequivalent. This method is used in [23] to introduce the exit from the middle of a loop, recursiveprocedures with parameters and local variables, functions and expressions with side e�ects.These transformations are used in [24] which takes a published program (from [8]) which was4



written in such a way that the structure and e�ect of the program are very hard to discern. Varioustransformations to the program to reveal its structure and enable its e�ect to be summarised as aspeci�cation.3.1 Preventive MaintenanceThis theoretical underpinning gives us the con�dence to apply transformations to a program whichis not (as yet) understood, as is shown in [20, 25]. In general, maintenance programmers arereluctant to make large changes to the source code of any program they are maintaining�least ofall one which has yet to be understood fully, preferring instead to make additions and patches. Theresult is that over a period of time programs become longer, more fragmented and more di�cultto follow with their structure obscured by an accumulation of changes. This can eventually giverise to the feeling �Don't touch that code! It may never work again!!�. Our system will notonly halt this process of fragmentation but will actually reverse it; so that a program which hasbecome obscured through poor programming standards coupled with accumulated modi�cationscan be gradually �cleaned up� over a period of time starting with the most critical areas (thesewill be the sections of code which are most frequently modi�ed). The system will also enable thepiecemeal redocumentation of a program which has little or no documentation or for which thedocumentation is out of date. This process�called �preventive maintenance��can remove theneed for periodically scrapping a whole system and re-writing it from scratch: which seems to beinevitable under current maintenance approaches.It is important to have the ability to make large scale changes in the structure of a programwithout a�ecting its function so that as the function changes the structure can change to re�ectthat function. Also transforming a section of code into an equivalent form is an important toolfor program comprehension, as is replacing sections of code by equivalent single �speci�cation�statements. We aim to consider programs much more as manipulable objects which exist in di�erentforms and which do well-de�ned things.The language independence means that many of the results we develop can be applied to programswritten in di�erent programming languages and also enables the transformation of a programwritten in one high-level programming language to a di�erent one.4 ConclusionThe era of the automatic maintainer is many years away. This project is con�ning itself to themore realistic goal of a maintainer's assistant. The proposed tool will concentrate in the area ofcode analysis, this is because code analysis is perceived as the most time consuming activity inmaintenance, Petzold [1] indicated that in a breakdown of maintenance tasks code analysis wasseen to take up 47% of the time.The lack of success of plan based systems such as PROUST [14, 15] and the Programmer's Ap-prentice [21] has led us to consider di�erent solutions to the problem of understanding code. Fromsome preliminary studies, the use of program transformations seems to have great potential in thearea of program comprehension as well as program development.AcknowledgementThe authors would like to express their appreciation to Barry Cornelius for helpful comments madeon earlier drafts of this paper.This work was supported by a grant from the Alvey Directorate. F.W. Calliss is supported by a5



Science and Engineering Research Council Studentship.References[1] First Software Maintenance Workshop Notes, 8th-9th September 1987 eds. Munro, M. andCalliss, F.W. Centre for Software Maintenance, University of Durham, Durham.[2] Back, R. J. R. Correctness Preserving Program Re�nements, Mathematical Centre Tracts 131,Mathematisch Centrum 1980.[3] Bauer, F. L. �Programming as an Evolutionary Process�, in [12], pp.153-182, 1976.[4] Bauer, F.L. �Program Development By Stepwise Transformations - the Project CIP�, in [13],pp.237-266 1979.[5] Calliss, F.W., �Problems With Automatic Restructurerers�, SIGPLAN Notices, vol. 23, no. 3,pp.13-21, March 1988.[6] Calliss, F.W. and Cornelius, B.J., �Dynamic Data Flow Analysis of C Programs�, in Pro-ceedings of the 21st Hawaii International Conference on SS, IEEE Computer Society Press,1988.[7] Dijkstra, E. A Discipline of Programming, Prentice�Hall Int, New York 1972.[8] Fenton, M. Developing in DataFlex, Book 2, Reports and other outputs, B.E.M. Microsystems1986.[9] Foster, J. and Munro, M., �A Documentation Method Based on Cross-Referencing�, in Pro-ceedings Conference on Software Maintenance-1987, Austin, Texas IEEE Computer SocietyPress, Washington D.C., pp.181-185, September 1987.[10] Gri�ths, M. �Program Production by Successive Transformation�, in [12], pp.125-152 1979.[11] Gri�ths, M. �Development of the Schorr-Waite Algorithm�, in [13], pp.464-471 1979.[12] Bauer, F. L. and Samelson, K. (Eds), Language Hierarchies and Interfaces, Lecture Notes inComputer Science, Volume 46, Springer Verlag 1976.[13] Goos, G. and Hartmanis, H. (Eds), Program Construction, Lecture Notes in Computer Science,Volume 69, Springer Verlag 1979.[14] Johnson, W.L. and Soloway, E., �PROUST�, Byte, vol.10, no.4, April 1985, pp.179-190.[15] Johnson, W.L. and Soloway, E., �PROUST: Knowledge-Based Program Understanding�, inProceedings Conference on Software Maintenance-1985, IEEE Computer Society Press, Wash-ington DC., November 1985, pp.369-380. Also in Readings in Arti�cial Intelligence and Soft-ware Engineering.[16] Letovsky, S., �Cognitive Processes in Program Comprehension�, in Proceedings of the Con-ference on Empirical Studies of Programmers, 1986.[17] Letovsky, S. and Soloway, E., �Strategies for Documenting Delocalized Plans�, in Proceedingsof the Conference on Software Maintenance� 1985, IEEE Computer Society Press, WashingtonDC., pp.144-151, November 1985.[18] Letovsky, S. and Soloway, E., �Delocalized Plans and Program Comprehension�, IEEE Soft-ware, vol.3, no.3, pp.41-49, May 1986.[19] Munro, M. and Robson, D., �An Interactive Cross Reference Tool for use in Software Mainten-ance�, in Proceedings of the 20th Hawaii International Conference on System Sciences, Vol.II,Software, ed. Shriver, B.D., Western Periodicals Company, California. pp.64-70.[20] Munro, M. and Ward, M., �Intelligent Program Analysis Tools for Maintaining Software�,Alvey Directorate. 6



[21] Rich, C., �A Formal Representation for Plans in the Programmer's Apprentice�, in Proceedingsof the Seventh International Joint Conference on Arti�cial Intelligence, IJCAI, Vancouver,August 24th-28th 1981, pp.1044-1053. Also in Readings in Arti�cial Intelligence and SoftwareEngineering.[22] Seviora, R.E., �Knowledge-Based Program Debugging Systems�, IEEE Software, vol.4, no.3,pp.20-32, May 1987.[23] Ward, M., Proving Program Re�nements and Transformations, D.Phil Thesis, Oxford Univer-sity, 1986.[24] Ward, M., �Transforming a Program into a Speci�cation�, Comnputer Science Technical Re-port, 88/1, University of Durham, England. Being reviewed for publication.[25] Ward, M. Calliss, F.W. and Munro, M., �The Use of Transformations in �The Maintainer'sAssistant�� Comnputer Science Technical Report, 88/9, University of Durham, England. Beingreviewed for publication.[26] Waters, R.C., �The Programmer's Apprentice: A Session with KBEmacs�, IEEE Transactionson Software Engineering, vol.11, no.11, pp.1296-1320, November 1981. Also in Readings inArti�cial Intelligence and Software Engineering.

7


