
Legacy Assembler Reengineering and Migration

M. P. Ward, H. Zedan and T. Hardcastle
Software Technology Research Lab

De Montfort University
The Gateway,

Leicester LE1 9BH, UK
Martin.Ward@durham.ac.uk and {zedan,timh}@dmu.ac.uk

Abstract

In this paper we describe the legacy assembler problem
and describe how the FermaT transformation system is used
to reengineer assembler systems and migrate from assem-
bler to C and COBOL.

1. Legacy Assembler

A legacy is “something handed down or received from an
ancestor or predecessor”. A legacy assembler system may
be defined as any system which:

1. is implemented in assembler, or has substantial com-
ponents implemented in assembler;

2. was developed some years ago and has been handed
down to the current maintainers;

3. is nevertheless essential to the smooth running of the
organisation.

There are estimated to be over 250 million lines of IBM
370 assembler currently in operation at the major IBM
mainframe sites in Europe alone, but there is a decreasing
pool of experienced assembler programmers. As a result,
there is increasing pressure to move away from assembler,
including pressure to move less critical systems away from
the mainframe platform, so the legacy assembler problem is
likely to become increasingly severe.

There are a number of options for dealing with legacy
assembler systems:

1. Keep the current application and modify it as needed;

2. Discard the application and replace it with a purchased
vendor package;

3. Understand and document the application and then
rewrite it in a high level language (HLL);

4. Use automated migration technology to migrate to a
HLL.

Each of these options may be suitable in some cases, but
also presents problems, which are discussed in the follow-
ing sections.

1.1. Keep the Current Application

If the application is relatively stable with few enhance-
ment requests and bug fixes, then keeping the current ap-
plication may be a viable option. If there is a shortage
of assembler expertise, then a “wrap and freeze” approach
may work: wrap a modern interface around the old ap-
plication and work around any bugs or limitations, rather
than attempting to fix the code. Alternatively, if assembler
expertise is still readily available and enhancement require-
ments are moderate, then it may be possible to modernise
the application and continue to use it.

“Do nothing” is always an attractive option in the short
term: the short term cost of doing nothing is very low! But
in the face of a worsening skills shortage and increasing
pressure to modernise the application, or to migrate to a
more cost-effective platform, then doing nothing may not
be a viable long-term option.

1.2. Replace with a Vendor Package

Brooks [2] comments that “The most radical possible
solution for constructing software is not to construct it at
all....”. The option of replacing a legacy application with a
package would appear to solve the maintenance problem
at a stroke: but in reality, the closest matching vendor
package is still likely to have many differences compared
to the existing application [3]. The organisation will need
to decide how much the business needs to change to fit the
package, and how much the package will need to be tailored

to fit the business. More importantly, the differences be-
tween your application and the package used by everyone
else in the industry may be what gives you a competitive
edge: it would be foolish to throw away this advantage
unless you are forced to do so: one major package tour
operator has rejected the “replace with a package” option
for precisely this reason. The tour operator believed that
their hand-crafted assembler system gave them a substantial
edge in the marketplace: why give this up in order to run
the same package used by every other tour operator in the
business?

1.3. Rewrite in a HLL

One of the biggest problems with many legacy systems is
that the code structure no longer matches the program logic:
after many patches and fixes, the original program design
is inadequate and unsuitable for current requirements. The
business rules may be complex, but the program logic com-
plexity may be far greater than is necessary to implement
the business rules.

As a result, it is difficult to perform major enhancements:
the result is either a huge backlog of change requests or,
more probably, major enhancements are not even contem-
plated. If there is a shortage of assembler expertise, then
it may not be possible to deal with this backlog, even if
there are programming resources available. A major driver
behind the Tenovis migration project (see below) was to
enable the desired enhancements to the system to be made,
despite the shortage of assembler programmers.

Assembler systems are also more expensive to maintain
than equivalent systems written in high level languages. Ca-
per Jones Research computed the annual cost per function
point as follows:

Assembler £48.00
PL/1 £39.00
C £21.00
COBOL £17.00

One solution is therefore to rewrite the assembler system
in a high level language for which programming expertise
is readily available. The design for the new system should
be extracted by analysis of the existing assembler since this
contains the only complete and reliable description of the
business rules embedded in the code. Automated tools to
assist with the analysis of the assembler are therefore very
important.

Another major driver for rewriting or migrating to a HLL
is the need to move less critical systems from the expensive
mainframe platform to cheaper PC or Unix hardware. This
will free up resources on the mainframe and eliminate the
need for expensive upgrades.

1.4. Use Automated Migration Technology

In a survey of potential solutions to the legacy assembler
problem, Ehrman [3] dismisses the option of automated mi-
gration, claiming that the technology is insufficiently well-
developed to meet the huge challenge of migrating from
assembler to maintainable and efficient high level language
code. Until recently, most automated migration offerings
have taken the form of a “brute force” conversion, which
simply maps each assembler instruction to corresponding
code in the HLL. Registers, flags and storage are mapped
into HLL variables that mimic the original machines archi-
tecture and instructions and each assembler instruction is
translated directly to the equivalent HLL code. Brute force
translations:

• Are typically seven times slower than the assembler
[4];

• Result in highly obscure code: the complexity of the
original program is preserved with complexities of the
translation added;

• Are difficult to modify and maintain: the maintainers
will probably need to be familiar with both the original
source language and the target language in order to
make sense of the code;

• Do not make use of the facilities of the target lan-
guage which improve maintainability and performance
(structuring concepts, subroutine libraries etc.)

Brute force translations may work for small applications
with limited maintenance requirements where it is essential
to migrate to a different platform. But even in this situation,
performance and maintainability of the code may be little
better than can be achieved by running the original code
under an emulator.

The FermaT migration technology takes a different ap-
proach: the assembler instructions are translated into an
intermediate language (a wide-spectrum language called
WSL) which is uniquely suitable for applying program
transformations. Many thousands of WSL to WSL transfor-
mations are applied to restructure and simplify the program
and raise the level of abstraction. The restructured WSL is
than translated into maintainable and readable HLL code. In
the next section we discuss some of the challenges faced by
a practical migration technology, and the rest of the paper
will describe FermaT’s solution in more detail.

2. The Challenge for Automated Migration

The technical difficulty of automated migration should
not be underestimated. Translating assembler instructions
to the corresponding HLL code, and even unscrambling

spaghetti code caused by the use of labels and branches,
is only a very small part of the translation task. Other
technical problems include:

• Register operations: registers are used extensively in
assembler programs for intermediate data, pointers,
return addresses and so on. The migrated code should
eliminate the use of registers where possible;

• Condition codes: test instructions set a condition code
or flags which can then be tested by conditional branch
instructions. These need to be combined into struc-
tured branching statements such as if statements or
while loops: note that the condition code may be
tested more than once, perhaps at some distance from
the instruction which sets it. So it is not sufficient
simply to look for a compare instruction followed by a
conditional branch;

• Subroutine call and return: in IBM 370 assembler a
subroutine call is implemented as a BAL (Branch And
Link) instruction which stores the return address in
a register and branches to the subroutine entry point
(there is no hardware stack). To return from the sub-
routine the program branches to the address in the reg-
ister via a BR (Branch to Register) instruction. Return
addresses may be saved and restored in various places,
loaded into a different register, overwritten, or simply
ignored. Also, a return address may be incremented
(to branch over parameter data which appears after the
BAL instruction). Merely determining which instruc-
tions form the body of the subroutine can be a major
analysis task: there is nothing to stop the programmer
from branching from the middle of one subroutine to
the middle of another routine, for example;

• The 370 instruction set includes an EX (EXecute) in-
struction which takes a register number and the address
of another instruction. The referenced instruction is
loaded and then modified by the value in the register,
and then the modified instruction is executed. This
can be used to implement a “variable length move”
instruction, by modifying the length field of a “move
characters” instruction, but any instruction can be EX-
ecuted. EXecuting another EX instruction causes an
ABEND: some programmers do “EX R0,*” (where
the instruction executes itself) precisely to achieve an
ABEND: so the translator has to take this into account
also;

• Jump tables: these are typically a branch to a com-
puted address which is followed by a table of uncondi-
tional branch instructions. The effect is a multi-way
branch, similar to the “computed GOTO” in FOR-
TRAN. There are many ways to implement a jump
table in assembler: typically the branch into the table
will be a “branch to register” instruction which must

be distinguished from a “branch to register” used as a
subroutine return;

• Self-modifying code: a common idiom is to implement
a “first time through switch” by modifying a NOP
instruction into an unconditional branch, or modifying
an unconditional branch into a NOP. Less commonly a
conditional branch can be modified or created. More
general self-modifying code (such as dynamically cre-
ating a block of code and then executing it) is rare in
370 assembler systems;

• System macros: the macro expansion for a system
macro typically stores values in a few registers and
then either executes an SVC call or branches to the
operating system. It does not make sense to translate
the macro expansion to HLL, so the macros should be
detected and translated separately. Some macros may
cause “unstructured” transfer of control: for example
the system GET macro (which reads a record from a
file) will branch to a label on reaching the end of the
file. The end of file label is not listed in the macro, but
in the DCB (Data Control Block) which itself may only
be indirectly indicated in the GET macro line. The
DCB itself may refer to a DCBE macro which records
the EODAD (end of file) address label;

• User macros: users typically write their own macros,
and these may include customised versions of system
macros. The translation technology needs to be highly
customisable to cope with these and to decide in each
case whether to translate the macro directly, or trans-
late the macro expansion;

• Structured macros: in the case of so-called “structured
macros” (IF, WHILE etc.) it is best simply to translate
the macro expansion because there are no restrictions
on using structured macros in unstructured ways;

• Data translation: all the assembler data declarations
need to be translated to suitable HLL data declarations.
Assembler imposes no restrictions on data types: a
four byte quantity can be used interchangeably as an
integer, a floating point number, a pointer, an array of
four characters, or 32 separate one-bit flags. Ideally,
the HLL data should be laid out in memory in the same
was as the assembler data: so that accessing one data
element via an offset from the address of another data
element will work correctly. Reorganising the data
layout (if required) is a separate step that should be
carried out after migration, rather than attempting to
combine two complex operations (migration and data
reorganisation) into a single process. Symbolic data
names and values should be preserved where possible,
for example:

RECLEN EQU *-RECSTART

should translate to code which defines RECLLEN sym-
bolically in terms of RECSTART;

• Pointers: these are used extensively in many assembler
programs. If the HLL is C then pointers and pointer
arithmetic is available: for COBOL it is still possible
to emulate the effect of pointer arithmetic, but the code
is less intuitive and less familiar to many COBOL
programmers;

• Memory addressing: DSECT data in a 370 assembler
program is accessed through a base register which con-
tains the address of the start of the block of data. If the
base register is modified, then the same symbolic data
name will now refer to a different memory location;

• Packed Decimal Data: 370 assembler (and COBOL
also) have native support for packed decimal data
types. IBM’s mainframe C compiler also supports
packed decimal data, but if the migration is to a dif-
ferent platform then either the data will need to be
translated, or the packed decimal operations will have
to be emulated;

• Pointer lengths may be different in the source and
target languages;

• “Endianness”: when migrating to different hardware
platforms, the two systems might store multi-byte in-
tegers in different orders (most significant byte first vs
least significant byte first).

2.1. Embedded Systems

A major application for assembler code is in embedded
systems. Many embedded systems were developed for
processors with limited memory and processing capability,
and were therefore implemented in tightly coded hand writ-
ten assembler. Modern processors are now available at a
lower cost which have much more processing and memory
capacity and with efficient C compilers. To make use of
these new processors the embedded system needs to be
re-implemented in a high level language in order to reduce
maintenance costs and enable implementation of major en-
hancements. Many of the challenges with 370 assembler
(such as the EXecute instruction and self-modifying code)
are not relevant to embedded systems processors, but other
challenges become important (such as 16 bit addresses and
8 or 16 bit registers).

3. Our Approach

Over the last 20 years the authors have developed a wide
spectrum language (WSL) and transformation theory which
has formed the basis for a successful assembler analysis

and migration system. WSL and the transformation theory
has been discussed in other papers [6,7,11] so will not be
described in detail here. See Chapter 3 of [12] for a recent
description of WSL.

The translation of an assembler modules is carried out in
four phases:

1. Translation of the assembler to WSL;

2. Data restructuring and translation;

3. WSL to WSL transformations;

4. Translation of the WSL to HLL.

These phases are described in the following sections.

3.1. Assembler to WSL Translation

The assembler to WSL translator is designed to translate
an assembler module to WSL as accurately as possible: cap-
turing every detail of the behaviour of the system without
worrying about the size, efficiency or complexity of the
resulting code. This is because it is anticipated that phase
3 (WSL to WSL translation) will remove inefficiencies and
redundant operations. As a result, we can separate the two,
apparently conflicting, requirements of correctness and ef-
ficiency/maintainability into separate phases, and therefore
meet both requirements.

Perfect correctness is not possible: any scientific model
of something must be an imperfect representation(i.e. an
approximation): otherwise it would not be a model, but
the thing itself! Our approach therefore is to model as
accurately as possible everything that can be modelled, and
to detect and flag cases that cannot be modelled.

The translator is table-driven: each assembler instruction
or macro is listed in a configuration table, along with its
WSL translation. If a macro is listed in the table then
the corresponding WSL code is generated and the macro
expansion is skipped, otherwise the macro expansion is
translated. The translator works from an assembly listing
with all macros expanded, so it has available the offset
address of each instruction and data element, the object
code generated, and the full expansion of each macro.

The translator parses the listing into an internal data
format and then makes several passes over the data to de-
termine jump tables, all the possible targets for branch to
register instructions, relative branch targets, self-modifying
code, CICS calls, DSECT names and so on. A final pass
over the internal data generates a WSL file and a data file
(which lists all data declarations).

3.2. Data Restructuring and Translation

A separate process parses the data file and restructures
the data declarations into nested structures. IBM assembler
offers several ways to create overlapping data structures:
declaring a symbol with a type and length but with a “repeat
count” of zero will not allocate any data, so subsequent data
declarations will overlap the symbol. An ORG directive
can be used to redefine the same area of memory with two
or more different layouts.

The data restructuring process analyses the length, repeat
count, offset and type of each symbol to determine the nest-
ing of data structures. Where structures cannot be properly
nested it generates unions of structures.

C or COBOL data declarations are generated from the
restructured data file: “filler” data items are inserted where
necessary to ensure that the layout of the C or COBOL data
is identical to the original assembler data. This is important
for two reasons:

1. If the migrated code is to be executed on the main-
frame, then it may be necessary to share data structures
with existing assembler or HLL programs: it will be
essential to ensure that the data layouts match in this
case;

2. Even if the intention is to migrate to a different plat-
form, the code may expect a certain layout of data and
may fail if the data is reorganised. For example, an
offset from one data element may be used to access a
different element, or pointers may be moved around in
the data structures. The migration process can detect
and report on places where data items are accessed
outside their declared length: this report will indicate
potential failure points if the data were to be reorgan-
ised.

3.3. WSL to WSL Transformation

This is the heart of the transformation system: a large
number of correctness-preserving transformations are ap-
plied to the WSL code in order to remove redundant state-
ments, restructure the code, determine procedure bound-
aries and so on.

The transformation engine is based on the WSL trans-
formation theory which provides methods to prove the cor-
rectness of a WSL to WSL transformation. As a result
we can have a very high degree of confidence in the ac-
curacy of the results, despite the fact that an average of over
4,000 transformations are applied to each assembler module
during the migration process. If the average transforma-
tion were “only” 99.9% accurate, then after applying 4,000

transformations the probability of a correct result falls to
less than 2%. So it is vitally important to be confident of
the correctness of each transformation step.

Most transformations fit into one of the two main classes:

1. Small, localised transformations. These are applied
to a localised region of the program to make a small
improvement: such as merging two if statements, re-
moving a single register reference or removing a local
variable. Repeated application of localised transfor-
mations over the whole program can have a dramatic
effect on the structure, efficiency and maintainability
of the program.

2. Whole-program analysis transformations: these in-
clude Constant Propagation, Dead Code Removal,
Data Translation and transformations based on con-
structing the Static Single Assignment (SSA) form of
the program. See Section 4 for details on the construc-
tion and applications of SSA form.

A control program selects the order of executing the
transformations: this control program is simply another
transformation (Fix Assembler) which invokes other trans-
formations via calls to @Trans? and @Trans. The func-
tion @Trans? test whether the give transformation is ap-
plicable at the current position in the current program. The
procedure @Trans applies the given transformation to the
current program at the current position. Typically, the
localised transformations are iterated over every applica-
ble position in the syntax tree of the WSL program: this
is easily achieved with the foreach and ateach looping
constructs of METAWSL. (See [8] for a description of
METAWSL and these constructs). METAWSL is an ex-
tension of WSL specifically designed for writing program
transformations. An example of such an iteration is the
following code from Fix Assembler:
foreach Statement do

if @ST(@I) = T Cond ∧ @Size(@I) 6 20
then if @Trans?(TR Join All Cases)

then PRINFLUSH(“+”);
@Trans(TR Join All Cases, “”)

fi fi od;

Within the foreach loop the function @I returns the cur-
rently selected item (in this case, the currently selected
statement). Function @ST returns the specific type of its
argument, so if the current item is an if statement, then
@ST(@I) returns T Cond. @Size(@I) is the number
of components of the current item: for an if statement
this is the number of branches. So this loop will test and
apply the transformation TR Join All Cases to every if
statement which has no more than 20 branches. It prints a
“+” each time a transformation is applied. Originally, such
messages were necessary to inform the user that the system

was still running and applying transformations (and had not
got stuck in a loop). With the dramatic improvements in
CPU speeds and improvements in the efficiency of FermaT,
these messages are not really necessary: in fact, if printed
to the screen they scroll up far too fast to read!

3.3.1 Preventing Loops

There are two cases where this strategy can cause looping:
both of which must be avoided:

1. A transformation could make the WSL program larger.
Later on (perhaps as a result of other transformations)
the same transformation could become applicable to
a component of the expanded program. The result is
that the program size grows indefinitely without con-
verging to a solution;

2. A transformation could “undo” the effect of a previous
transformation: the program could then oscillate be-
tween two different versions, again without converging
to a solution.

Broadly speaking, our solution to both of these problems is
to only apply a transformation when it makes the program
“better” according to some complexity metric. If the com-
plexity metric is integer valued and every program reduces
complexity (according to the metric), then the transforma-
tion process is guaranteed to converge.

Unfortunately, there is currently no universal integer
valued complexity metric which is monotonically reduced
under every transformation application (this is a topic for
further research). However, the vast majority of transforma-
tions do reduce the size of the program: overall, the WSL to
WSL transformation step reduces the size to between a third
to a half of the original. A few transformations do increase
the size of the program, but the result is “obviously” an
improvement (in the opinion of the developers anyway!)
and the migration engine is prevented from applying the
inverse of these transformations.

As a result of these precautions, the only infinite loops
we have seen have been the result of bugs in the implemen-
tation of a transformation.

3.3.2 Dataflow Analysis

The raw WSL (before transformation) accurately models
the control flow of the original assembler but only allows
a very crude dataflow analysis since it contains control flow
paths from the end of every assembler subroutine (ie from
every Branch to Register instruction) to every possible re-
turn point from a subroutine. But an accurate dataflow anal-
ysis is required in order to extract WSL procedures from
the unstructured code: to decide if a particular set of WSL
actions can be used to form a WSL procedure body FermaT
needs to determine that the return address passed in via a

register at the top of the subroutine is preserved through
the subroutine body (although it may be incremented) and
is finally passed to the dispatch action in the destination
variable. If this is the case, then FermaT can create a WSL
procedure from the set of actions, and convert the action
calls to procedure calls and remove some dispatch calls.

For example, suppose we have the following assembler
code:

A1 BAL R12,FOO SUBROUTINE CALL
A2 ...
FOO ST R12,SAVER12 SAVE RETURN ADDRESS

LA R12,0 RE-USE R12
...
L R13,SAVER12 RESTORE RETURN ADDR
BR B13 RETURN FROM SUBR

This translates to the following WSL code:
A1 ≡ r12 := 234; call FOO end
A2 ≡ . . . end
FOO ≡ SAVER12 := r12;

r12 := 0;
. . .

r13 := SAVER12;
destination := r13;
call dispatch end

. . .

dispatch ≡ if destination = 0 then call Z
. . .

elsif destination = 234 then call A2
. . . fi end

Here, the return address stored in r12 (the address of the
label A2) is represented as the “dispatch code” 234. This is
calculated as the decimal offset of label A2 from the start
of the program (the offset of each instruction is given in the
assembler listing).

If the dataflow analysis on the body of FOO is success-
ful, then the Fix Dispatch transformation will transform
the code into this:
begin

A1 ≡ FOO(); call A2 end
A2 ≡ . . . end
. . .

dispatch ≡ if destination = 0 then call Z
. . . fi end

where
proc FOO() ≡ SAVER12 := r12;

r12 := 0;
. . .

r13 := SAVER12 end
end

We have created a new procedure FOO, removed the FOO
action from the action system and removed a control flow

link from the dispatch action. The result is a simplified
control flow, from which a more accurate dataflow analysis
can be constructed.

FermaT does not depend on a single, initial, dataflow
analysis but iteratively improves the dataflow analysis as
the control structure is improved: the simplified control
structure makes possible a more accurate dataflow analysis
which, in turn, leads to further simplifications in the control
structure.

The first iteration can process assembler subroutines
which call no other (internal) subroutines (external calls
are handled separately: FermaT recognises when a return
address is passed to an external routine and assumes that
control will return via that return address). In the next
iteration, FermaT can process subroutines which only call
subroutines processed in the first iteration, and so on.

Many assembler subroutines include tests for error con-
ditions which will branch to an error routine, leading ulti-
mately to an ABEND instruction instead of returning to the
caller. A WSL procedure, on the other hand, must always
return to the caller. The solution is to set a special flag
variable exit flag and then return. If exit flag = 0 then
the return was a normal return, if exit flag = 1 then the
program must immediately ABEND.

3.4. WSL to HLL Translation

As with the assembler to WSL translator, our aim is for
the WSL to C and WSL to COBOL translators to be a
simple as possible: all the work should be done by WSL
to WSL translators with the final WSL being as close as
possible to the target language. To achieve this, each target
language translator includes a series of language-specific
transformations: for example, assignments which move
more than four bytes (or exactly three bytes) will need to
be converted to memmove calls before translating to C. On
the other hand, before migrating to COBOL, functions need
to be converted to procedures and pointer operations will
need converting to code which uses the SET ADDRESS OF
feature.

The WSL to COBOL translator is also table-driven, this
is mainly to allow users to customise the COBOL code gen-
erated for their customer-specific assembler macros. The
translation table is also used for IBM system macros. So,
for example, the WSL statement:
!P GET(FILE1 VAR os, r0, r1, r15,BUF1)

is translated to the COBOL code:

READ FILE1 INTO BUF1
AT END MOVE 1 TO EOF-FLAG

END-READ

The WSL to HLL translators also generate a migration
report for each module, listing the following information:

• Dead Code Candidates: procedures which do not ap-
pear to be called anywhere;

• Memory Overflows: variables which are accessed via
an offset or length which exceeds their defined length.
These will need special attention if the memory layout
is changed;

• Metrics for each extracted procedure;

• Variables referenced and updated;

• EXecute statements and their targets (this information
is used by the dead code marking routine to avoid
marking EXecuted statements as dead code);

• Dead Code Candidate Line Numbers: also used by the
dead code marking routine.

4. Assembler Analysis and Reengineering

In cases where automated migration is not the preferred
solution to a legacy assembler problem, each of the other
solutions (keep the current application, replace with a pack-
age or rewrite manually) will require a detailed analysis of
the assembler.

The starting point for assembler analysis is the restruc-
tured WSL file since this will provide a much more accurate
dataflow analysis. The raw WSL contains links back to the
assembler listing in the form of FermaT comments contain-
ing a line number and a list of the symbols which appear on
that line of the listing. These comments are carried through
the transformation process.

The next phase is to compute a “basic blocks” file from
the WSL. The WSL program is divided into blocks of code:
each block has a single entry point at the top, one or more
exit points at the bottom and no more than one assignment
to any variable. The blocks are combined into a control flow
graph (CFG) which includes links to the WSL program and
the assembler listing.

There are unique start and end nodes: every node in
the CFG is reachable from the start, and the end node is
reachable from every other node in the CFG. From the CFG
we compute control dependencies and control dependence
equivalences in linear time using the algorithm in [5]. The
control dependencies of node A are all the nodes which
must be executed from one exit out of A but which may
be avoided by another path out of A. In other words, B is
a control dependency of A if every path from one exit of A
to the end node must pass through B, while there exists a
path from another exit of A to the end node which avoids
B. The control variables in A are therefore important in
determining whether B is executed or not.

The nodes in the CFG can be partitioned into control
dependence equivalence classes: all the nodes in each par-
tition have the same control dependencies. This means that
the set of all control dependencies can be represented in a
form which is linear in the size of the program.

We compute the Static Single Assignment (SSA) form
of the CFG using the near-linear time algorithm in [1]. The
SSA form renames all variables so that each assignment is
to a unique variable. At places where control flow paths
join, “phi functions” are inserted to combine the dataflows
from different variables which were originally the same
variable. For example, in the program:
if z = 0 then x := 1 else x := 2 fi;
y := x

the two assignments to x are renamed to x1 and x2 respec-
tively. But then what name is used for the reference to
x in the assignment to y? The solution is to insert a phi
function:
if z = 0 then x1 := 1 else x2 := 2 fi;
x3 := φ(x1, x2);
y := x3

The SSA form represents all the dataflows in the program in
a concise format: typically linear in the size of the program,
but quadratic in the worst case. However, the worst case
only occurs when the entire program is a deeply-nested loop
with a large number of variables modified in the innermost
loop. This is very unlikely to arise in practice as the FermaT
transformations attempt to reduce the level of nesting of
loops where possible.

All the control dependence and data dependence infor-
mation is then written out in a concise form which relates
the dependencies back to the assembler program. From this
dataflow (df) file we can compute forwards and backwards
slices directly on the assembler source file.

The following shows an example of a backwards slice on
the symbol NDATE at line 452:

GPASS EQU * 189
* <FERMAT><SB><1><==========================> 190

MVI PASOPT,C’N’ DEFAULT NO PASSWORD 190
ICM R1,B’1111’,IKJPW SOURCE FIELD 191

* <FERMAT><EB><1><==========================> 191
BZ GRESU NOT PRESENT, CONT 192

...
RACROUTE REQUEST=EXTRACT,WORKA=(9), X 404

TYPE=ENCRYPT,ENCRYPT=((6),INST),... 405
* <FERMAT><SB><1><==========================> 428

LTR R15,R15 TEST RACX 428
* <FERMAT><EB><1><==========================> 428

BNZ ENDBRAC BAD 429
MVC RXPWNEWP,PASSWORK MOVE BACK AGAIN 430

* 431
* PERFORM UPDATE ON LOCAL SYSTEM WITH ICHEINTY. 432
* 433

LA R4,RXPWUSER ADDR USERNAME 434
LA R5,8 MAX LENGTH 435
LA R6,0 COUNTER 436

LOOPU EQU * 437
CLI 0(R4),C’ ’ END YET? 438

BE ENDU YES 439
LA R4,1(R4) UP PTR 440
LA R6,1(R6) UP COUNTER 441
BCT R5,LOOPU LOOP IF NOT END 442

ENDU EQU * 443
STC R6,NUSER SET LENGTH OF UID 444
MVC NUSER+1(8),RXPWUSER SET VALUE OF UID 445

* 446
* UPDATE PASSWORD IF SPECIFIED 447
* 448
* <FERMAT><SB><1><==========================> 449

CLI PASOPT,C’Y’ PASSWORD OPERAND 449
* <FERMAT><EB><1><==========================> 449

BNE RESREV NO 450
* 451

MVC NDATE,=XL4’0000000F’ ZEROS (PACK DEC) 452

Note that NDATE is being initialised with a constant
value: so there are no direct dataflows to this point in
the program. There are three control dependencies in the
extract: the conditional branches on lines 191/192, 428/429
and 449/450. Note that the branches on lines 438/439 and
442 are not control dependencies because the two control
paths from the branches rejoin before reaching line 452.

The control dependency on line 449 has a data depen-
dency to line 190 (PASOPT is assigned on line 190 and
tested on line 449 which is a control dependency for line
452.

With this simple program it is fairly easy to determine
all the dependencies manually: but a typical legacy assem-
bler system involves a large amount of “spaghetti” code
with complex control flow, extended dataflows (where a
reference to a data item is a considerable distance from the
corresponding assignment) and complex control dependen-
cies. In these cases, automated analysis is essential.

4.0.1 Reengineering to an Object Oriented System

The first step in the analysis phase of any reengineering
project is to determine the top level structure of the system:
i.e. the set of programs executed and the data files they
operate on. The order in which programs are invoked is
determined by the operator instructions and the JCL (Job
Control Language) files. FermaT includes a sophisticated
JCL parser which processes all the JCL files to determine:

• The linkage between logical file names and physical
file names at each program invocation;

• The order in which programs are invoked

The next step is to determine the major inputs and out-
puts for each module. The individual modules are then
restructured and analysed. For each output a backwards
slice is computed: this slice contains all the code needed
to compute this output of the module. Overlapping slices
can be factored out into shared subroutines. The resulting
analysis can be used to develop an object structure for the
reengineered program, and to implement the methods for
each object.

5. Organisation of a Migration Project

A typical migration project is carried out in two phases:
the first phase is a pilot migration of a sample of code. The
sample should contain about 10% of the total lines of code
in the system and should include examples of all the kinds
of code and programming techniques used in the system.
It should ideally be a self-contained subsystem which can
be tested in isolation (or with a minimal development of
test harnesses). The purpose of phase one is to allow
rapid turnaround of the code and rapid customisation of the
source and target translators and the transformation process.

A recent migration project involved translating over half
a million lines of 186 assembler to high-level, structured,
maintainable C code, suitable for porting to a more modern
processor and also suitable for implementing a backlog of
enhancements. The migrated system is a PBX (Private
Branch eXchange) running on four different hardware plat-
forms and installed in sites spread across 18 countries. The
system contains about 800,000 lines of C code, and 544,000
lines of 186 assembler: with the assembler split over 318
source files.

For this project, a 186 to WSL translator needed to be
developed from scratch. An initial case study involved mi-
grating a single 3,000 assembler source file to C. A simple
x86 to WSL translator was developed and a standard set
of restructuring transformations were applied: these were
initially developed for IBM assembler to C migration but
required only slight changes to cope with the WSL gener-
ated from x86 code. The resulting structured WSL code was
translated to C using an existing WSL to C translator. This
translator was developed for IBM assembler to C migration
[9,10] but again, only needed slight modifications to cope
with the different register and flag names.

The next stage in the project was the migration of a
subset of the system, which formed a “mini” call control.
This consisted of 67,000 lines of assembler in 41 source
files.

A number of additional, largely customer-specific, re-
quirements were identified at this stage. The x86 to WSL
translator was completely rewritten and made table-driven.
The WSL to C translator was also rewritten (in about five
man days) since the common code was determined to be
only a small part of the translator.

Altogether there were five iterations of the mini call
control code with the customer examining the code after
each iteration and giving feedback. After implementing var-
ious customer-specific enhancements to the translators and
transformations, and making various changes to the style of
the generated C code, the code from the fifth iteration was

compiled and installed on the hardware where it performed
flawlessly.

The final stage was to migrate the entire system. Only
three iterations (out of the planned five) were required to
iron out any remaining issues which were not exposed by
the mini call control migration.

The final migration process was carried out on a 2.6GHz
PC with 512Mb of RAM. All 318 source files were pro-
cessed successfully in 1 hour, 27 minutes of CPU time
(1 hour 30 minutes elapsed time) for an average of 16.5
seconds per file. A total of 1,436,031 transformations were
applied, averaging 4,500 transformations per file and 275
transformations per second.

Prior to the project the customer had received a quote
for a complete manual translation of the software, after the
data structures had been designed, which came to 67 man
months. The total effort for the automated migration was
less than 6 1/2 man months: less than 10% of the estimated
effort for a manual translation.

6. Related Work

Feldman and Friedman [4] describe an automated assem-
bler to C migration project which involved the migration of
a large database system and application generator written
in IBM 370 assembly language. They developed a “literal”
translator which translated each instruction separately into
C code with no optimisation. In effect, the result of the
translation was an IBM 370 simulator. When became clear
that this approach would not be sufficient, a new trans-
lator (called Bogart) was developed based on abstraction
and re-implementation. Bogart produced code which was
between half and three quarters as large and more than
twice as fast as the literal translator’s output. However,
the translator required extensive manual modification of the
assembler code before it could be applied. Experienced
programmers could process about 3600 lines of code per
person-month. As a result, “Manual preparation of the code
has probably damaged the code’s quality. Programmers
estimate that the code is less efficient after standardization,
and, naturally, new bugs were introduced. . . . two versions
now had to be debugged, tested, and maintained” [4]. In
addition “Readability was only a secondary goal in this
case, because the target code was not meant to be handled
by human programmers”

In contrast, our goals with the FermaT migration system
are:

1. No manual modification of the assembler code re-
quired before migration;

2. Generate HLL code which is both efficient to exe-
cute and maintainable by programmers unfamiliar with
IBM 370 assembler;

3. Reduce the amount of modification of the HLL code
to the absolute minimum: our aim is always for 100%
automated migration, but there will always be a hand-
ful of constructs which appear so rarely in the code
that it is easier to fix the generated code than program
a special-purpose transformation rule.

The core transformation engine of FermaT (without the
source and target translators) is available under the GNU
GPL (General Public Licence) from the following web sites:

http://www.dur.ac.uk/∼dcs6mpw/fermat.html
http://www.cse.dmu.ac.uk/∼mward/fermat.html

7. Future work

We are currently exploring the integration of FermaT
with AnaTempura for source code analysis.

AnaTempura is a tool for the runtime verification of sys-
tems using Interval Temporal Logic (ITL) and its executable
subset Tempura. The runtime verification technique uses
assertion points to check whether a system satisfies timing,
safety or security properties expressed in ITL. The assertion
points are inserted in the source code of the system and
will generate a sequence of information (system states), like
values of variables and timestamps of value change, while
the system is running. Since an ITL property corresponds to
a set of sequences of states (intervals), runtime verification
is just checking whether the sequence generated by the
system is a member of the set of sequences corresponding
to the property we want to check.

The integration between AnaTempura and FermaT will
allow us to:

• Check (both statically and dynamically) that, for ex-
ample the migration process is correct with respect
to some properties that are preserved by the original
system; and

• Perform various source code analysis, especially if we
perform slicing first using FermaT.

8. Conclusion

Program transformations form the basis for a practical
solution to assembler reengineering and migration projects.
Near 100% automated migration can be achieved once the
transformation engine has been properly tuned to match the
source system.

9. References

[1] Gianfranco Bilardi & Keshav Pingali, “The Static Single
Assignment Form and its Computation,” Cornell University
Technical Report, July, 1999, 〈http: //www.cs.cornell. edu/
Info/Projects/Bernoulli/papers/ ssa.ps〉.

[2] F. P. Brooks, “No Silver Bullet,” IEEE Computer 20 (Apr.,
1987), 10–19.

[3] John R. Ehrman, “Continuing to Profit from Legacy
Assembler Code,” SHARE 100, Feb 2003, Session 8132
(2003).

[4] Yishai A. Feldman & Doron A. Friedman, “Portability by
Automatic Translation: A Large-Scale Case Study,” Proc.
Tenth Knowledge-Based Software Engineering Conference,
Boston, Mass. (Nov., 1995).

[5] Keshav Pingali & Gianfranco Bilardi, “Optimal Control
Dependence Computation and the Roman Chariots Problem,”
Trans. Programming Lang. and Syst. (May, 1997), 〈http: //
www.cs.cornell. edu/ Info/Projects/Bernoulli/papers/
toplas97.ps〉.

[6] H. A. Priestley & M. Ward, “A Multipurpose Backtracking
Algorithm,” J. Symb. Comput. 18 (1994), 1–40, 〈http: //www.
dur.ac.uk/∼dcs0mpw/martin/papers/backtr-t.ps.gz〉.

[7] M. Ward, “Proving Program Refinements and
Transformations,” Oxford University, DPhil Thesis, 1989.

[8] M. Ward, “Language Oriented Programming,”
Software—Concepts and Tools 15 (1994), 147–161, 〈http: //
www.dur.ac.uk/∼dcs0mpw/martin/papers/
middle-out-t.ps.gz〉.

[9] M. Ward, “Assembler to C Migration using the FermaT
Transformation System,” International Conference on
Software Maintenance, 30th Aug–3rd Sept 1999, Oxford,
England (1999).

[10] M. Ward, “Reverse Engineering from Assembler to Formal
Specifications via Program Transformations,” 7th Working
Conference on Reverse Engineering, 23-25th November ,
Brisbane, Queensland, Australia (2000), 〈http: //www.dur.ac.
uk/∼dcs0mpw/martin/papers/wcre2000.ps.gz〉.

[11] M. Ward, “Derivation of Data Intensive Algorithms by
Formal Transformation,” IEEE Trans. Software Eng. 22
(Sept., 1996), 665–686, 〈http: //www.dur.ac.uk/∼dcs0mpw/
martin/papers/ sw-alg.ps.gz〉.

[12] H. Yang & M. Ward, Successful Evolution of Software
Systems , Artech House, 2003, ISBN 1-58053-349-3.

