
The Formal Transformation Approach to Source Code Analysis and

Manipulation

M. P. Ward

Software Technology Research Lab

De Montfort University

The Gateway,

Leicester LE1 9BH, UK

Martin.Ward@durham.ac.uk

Abstract

In this paper we give a brief introduction to the
foundations of WSL transformation theory and de-
scribe some applications to program slicing. We
introduce some generalisations of traditional slicing,
amorphous slicing and conditioned slicing which are
possible in the framework of WSL transformations.
One generalisation is “semantic slicing” which com-
bines slicing and abstraction to a specification.

1 Introduction

In the development of methods for program ana-
lysis and manipulation it is important to start from
a rigorous mathematical foundation. Without such
a foundation, it is all too easy to assume that a
particular transformation is valid, and come to rely
upon it, only to discover that there are certain special
cases where the transformation is not valid.

The following transformation was found in an art-
icle on program manipulation published in Commu-
nications of the ACM:

do S1 od is equivalent to do S2 od

if and only if
do S1 od is equivalent to do S1; S2 od

Here, S1 and S2 are any statements and the do . . . od
loops are unbounded or infinite loops which can only
be terminated by executing an exit statement within
the loop body. The statement exit(n) will terminate
n enclosing do . . . od loops.

The reverse implication is easily seen to be false:
simply take S2 to be skip, then for any statement S1:

do S1 od is equivalent to do S1; skip od

while:

do S1 od is equivalent to do skip od

is not necessarily the case!

The forward implication looks more reasonable, and
quite a useful transformation: it suggests that if we
have two loops which implement the same program,
then we can generate another program by combining
the two loops. But consider these two programs:

do if x 6 0 then exit fi;
if even(x) then x := x− 2 else x := x+ 1 fi od

and

do if x 6 0 then exit fi;
x := x− 1 od

Both programs will terminate with x = 0 if they are
started in a state with the integer x > 0, otherwise
both loops will terminate immediately.

The interleaved program is:

do if x 6 0 then exit fi;
if even(x) then x := x− 2 else x := x+ 1 fi;
if x 6 0 then exit fi;
x := x− 1 od

If x = 1 initially, then x = 1 at the end of the loop
body. So the loop never terminates.

The point of this example is that it is very easy
to invent a plausible new “transformation”, and even
base further research on it, before discovering that it is
not valid. This underlines the importance of a sound
mathematical foundation.



2 Refinement and Equivalence

The way to get a rigourous proof of the correctness
of a transformation is to first define precisely when
two programs are “equivalent”, and then show that
the transformation in question will turn any suitable
program into an equivalent program. To do this,
we need to make some simplifying assumptions: for
example, we usually ignore the execution time of the
program. This is not because we don’t care about
efficiency (far from it!) but because we want to be able
to use the theory to prove the correctness of optimising
transformations: where a program is transformed into
a more efficient version.

More generally, we ignore the internal sequence
of state changes that a program carries out: we are
only interested in the initial and final states (but see
Section 5 for a discussion of operational semantics).

Our mathematical model defines the semantics of a
program as a function from states to sets of states. For
each initial state s, the function f returns the set of
states f(s) which are all the possible final states of the
program when it is started in state s. A special state
⊥ indicates nontermination or an error condition. If
⊥ is in the set of final states, then the program might
not terminate for that initial state (in which case, we
put all the other states into f(s)).

If two programs have the same semantic function
then they are equivalent. A transformation is an op-
eration which takes any program satisfying its applic-
ability conditions and returns an equivalent program.

A generalisation of equivalence is the notion of
refinement : one program is a refinement of another
if it terminates on all the initial states for which the
original program terminates, and for each such state
it is guaranteed to terminate in a possible final state
for the original program. In other words, a refinement
of a program is more defined and more deterministic

than the original program. If program S1 has semantic
function f1 and S2 has semantic function f2, then we
say that S1 is refined by S2 (or S2 is a refinement of
S1), and write S1 ≤ S2 if f2(s) ⊆ f1(s). If S1 may
not terminate for initial state s, then by definition
f1(s) contains ⊥ and every other state, so f2(s) can
be anything at all.

3 Transformation Theory

Our transformation theory developed in roughly
the following stages:

1. Start with a very simple and tractable kernel
language;

2. Develop proof techniques based on set theory and
mathematical logic, for proving the correctness of
transformations in the kernel language;

3. Extend the kernel language by definitional trans-
formations which introduce new constructs (the
result is the WSL wide spectrum language);

4. Develop a catalogue of proven WSL transforma-
tions: each transformation is proved correct by
appealing to already proven transformations, or
by translating to the kernel language and apply-
ing the proof techniques directly.

5. Tackle some challenging program development
and reverse engineering tasks to demonstrate the
validity of this approach;

6. Extend WSL with constructs for implementing
program transformations (the result is called
METAWSL);

7. Implement an industrial strength transformation
engine inMETAWSL with translators to and from
existing programming languages. This allowed us
to test our theories on large scale legacy systems
(including systems written in IBM Assembler: see
[13,14,17]).

3.1 The Kernel Language

It turns out that for our kernel language we can
do away with many familiar programming constructs:
including assignments and if statements. We need
just four primitive statements and three compound
statements. Let P and Q be any logical formulae
(technically, these are formulae of an infinitary first
order logic) and x and y be any finite lists of variables.
The primitive statements are:

1. Assertion: {P} is an assertion statement which
acts as a partial skip statement. If the formula
P is true then the statement terminates immedi-
ately without changing any variables, otherwise it
aborts (we treat abnormal termination and non-
termination as equivalent, so a program which
aborts is equivalent to one which never termin-
ates);

2. Guard: [Q] is a guard statement. It always
terminates, and enforcesQ to be true at this point
in the program without changing the values of any

variables. It has the effect of restricting previous
nondeterminism to those cases which will causeQ



to be true at this point. If this cannot be ensured
then the set of possible final states is empty,
and therefore all the final states will satisfy any
desired condition (including Q);

3. Add variables: add(x) adds the variables in x
to the state space (if they are not already present)
and assigns arbitrary values to them. The arbit-
rary values may be restricted to particular values
by a subsequent guard;

4. Remove variables: remove(y) removes the vari-
ables in y from the state space (if they are
present).

while the compound statements are:

1. Sequence: (S1; S2) executes S1 followed by S2;

2. Nondeterministic choice: (S1 u S2) chooses
one of S1 or S2 for execution, the choice being
made nondeterministically;

3. Recursion: (µX.S1) where X is a statement

variable (a symbol taken from a suitable set of
symbols). The statement S1 may contain oc-
currences of X as one or more of its component
statements. These represent recursive calls to the
procedure whose body is S1.

Some of these constructs, particularly the guard
statement, may be unfamiliar to many programmers,
while other more familiar constructs such as assign-
ments and conditional statements appear to be miss-
ing. It turns out that assignments and conditionals,
which used to be thought of as “atomic” operations,
can be constructed out of these more fundamental
constructs. On the other hand, the guard statement
by itself is unimplementable in any programming lan-
guage: for example, the guard statement [false] is
guaranteed to terminate in a state in which false is
true. In the semantic model this is easy to achieve:
the semantic function for [false] has an empty set of
final states for each proper initial state. As a result,
[false] is a valid refinement for any program. Morgan
[9] calls this construct “miracle”. Such considerations
have led to the Kernel language constructs being de-
scribed as “the Quarks of Programming”: mysterious
entities which cannot be observed in isolation, but
which combine to form what were previously thought
of as the fundamental particles.

Assignments can be constructed from a sequence of
add statements and guards. For example, the assign-
ment x := 1 is constructed by adding x and restricting
its value: (add(〈x〉); [x = 1]). For an assignment such
as x := x+ 1 we need to record the new value of x in
a new variable, x′ say, before copying it into x. So we

can construct x := x+1 as follows: (add(〈x′〉); ([x′ =
x+ 1]; (add(〈x〉); ([x = x′]; remove(x′))))).

Conditional statements are constructed by com-
bining guards with nondeterministic choice. For ex-
ample, if B then S1 else S2 fi can be constructed as
(([B]; S1) u ([¬B]; S2)).

3.2 The Specification Statement

For our transformation theory to be useful for both
forward and reverse engineering it is important to
be able to represent abstract specifications as part of
the language. Then the refinement of a specification
into an executable program, or the reverse process
of abstracting a specification from executable code,
can both be carried out within a single language.
We define the notation x := x′.Q where x is a se-
quence of variables and x′ the corresponding sequence
of “primed variables”, and Q is any formula. This
assigns new values to the variables in x so that the
formula Q is true where (within Q) x represents the
old values and x′ represents the new values. If there
are no new values for x which satisfy Q then the
statement aborts. The formal definition is:

x := x′.Q =
DF
({∃x′.Q}; (add(x′); ([Q];
(add(x); ([x = x′]; remove(x′))))))

3.3 Semantic Refinement

A state is a collection of variables (the state space)
with values assigned to them; thus a state is a function
which maps from a finite set V of variables to a set
H of values. There is a special extra state ⊥ which is
used to represent nontermination or error conditions.
(It does not give values to any variables). States other
than ⊥ are called proper states. A state transforma-
tion f maps each initial state s in one state space, to
the set of possible final states f(s), which may be in a
different state space. If ⊥ is in f(s) then, by definition,
so is every other state, also f(⊥) is the set of all states
(including ⊥).

Semantic refinement is defined in terms of these
state transformations. A state transformation f is a
refinement of a state transformation g if they have the
same initial and final state spaces and f(s) ⊆ g(s) for
every initial state s. Note that if ⊥ ∈ g(s) for some
s, then by definition g(s) includes every state, so f(s)
can be anything at all. In other words we can correctly
refine an “undefined” program to do anything we
please. If f is a refinement of g (equivalently, g is
refined by f) we write g ≤ f .



A structure for a logical language L consists of
a set of values, plus a mapping between constant
symbols, function symbols and relation symbols of L
and elements, functions and relations on the set of
values. If the interpretation of statement S1 under
the structure M is refined by the interpretation of
statement S2 under the same structure, then we write
S1 ≤M S2. A model for a set of sentences (formulae
with no free variables) is a structure for the language
such that each of the sentences is interpreted as true.
If S1 ≤M S2 for every model M of a countable set ∆
of sentences of L then we write ∆ |= S1 ≤ S2.

Here ∆ is the set of assumptions about the logical
symbols under which the refinement is valid.

3.4 Weakest Preconditions

Given any statement S and any formula R which
defines a condition on the final states for S, we define
the weakest precondition WP(S,R) to be the weakest
condition on the initial states for S such that if S is
started in any state which satisfies WP(S,R) then it
is guaranteed to terminate in a state which satisfies
R. By using an infinitary logic, it turns out that
WP(S,R) has a simple definition for all kernel lan-
guage programs S and all (infinitary logic) formulae
R:

WP({P},R) =
DF

P ∧ R

WP([Q],R) =
DF

Q⇒ R

WP(add(x),R) =
DF

∀x.R

WP(remove(x),R) =
DF

R

WP((S1; S2),R) =DF
WP(S1,WP(S2,R))

WP((S1 u S2),R) =DF
WP(S1,R) ∧ WP(S2,R)

WP((µX.S),R) =
DF

∨

n<ω

WP((µX.S)n,R)

where (µX.S)0 = abort = {false} and (µX.S)n+1 =
S[(µX.S)n/X] which is S with all occurrences of X
replaced by (µX.S)n. (In general, for statements S, T
and T′, the notation S[T′/T] means S with T′ instead
of each T).

The motivation for considering weakest precondi-
tions is given in the next section.

3.5 Proof-Theoretic Refinement

Given two statements S1 and S2, and a formula R,
we can express the weakest preconditions WP(S1,R)
and WP(S2,R) as formulae in infinitary logic, as

shown above. We can define a notion of refinement
using weakest preconditions as follows: S1 is refined
by S2 if and only if the formula

WP(S1,R)⇒WP(S2,R)

can be proved for every formula R. Back and von
Wright [3] and Morgan [9,10] use a second order logic
to carry out this proof. In a second order logic we can
quantify over boolean predicates, so the formula to be
proved is:

∀R.WP(S1,R)⇒WP(S2,R)

This approach has a serious drawback: second order
logic is incomplete which means that there is not ne-
cessarily a proof for every valid transformation. Back
[1,2] gets round this difficulty by extending the logic
with a new predicate symbol to represent the post-
condition and carrying out the proof in the extended
logic.

However, it turns out that these exotic logics and
extensions are not necessary because there are two
simple postconditions which completely characterise
the refinement relation. We can define a refinement
relation using weakest preconditions on these two
postconditions:

Definition 3.1 Let x be a sequence of all variables
assigned to in either S1 or S2 and let x

′ be a se-
quence of new variables the same length as x. If the
formulae WP(S1,x 6= x′) ⇒ WP(S2,x 6= x′) and
WP(S1, true) ⇒ WP(S2, true) are provable from the
set ∆ of sentences, then we say that S1 is refined by
S2 and write: ∆ ` S1 ≤ S2.

It turns out that these two notions of refinement
(semantic refinement and proof theoretic refinement)
are the same. In other words:

Theorem 3.2 For any statements S1 and S2, and

any countable set ∆ of sentences of L:

∆ |= S1 ≤ S2 if and only if ∆ ` S1 ≤ S2

Proof: See [12].

These two equivalent definitions of refinement give
rise to two very different methods for proving the
correctness of refinements. Both methods are ex-
ploited in [12]—for example, weakest preconditions
and infinitary logic are used to develop the induction
rule for recursion and the recursive implementation
theorem, while state transformations are used to prove
the representation theorem.



Definition 3.3 Two programs are equivalent, writ-
ten ∆ ` S1 ≈ S2 if and only if ∆ ` S1 ≤ S2 and

∆ ` S2 ≤ S1.

3.6 Example Transformations

To see how we use weakest preconditions to prove
the validity of transformations we will take a very
simple example: reversing an if statement. To prove
the transformation:

∆ ` ifB then S1 else S2 fi ≈ if ¬B then S2 else S1 fi

we simply need to show that the corresponding weak-
est preconditions are equivalent:

WP(if B then S1 else S2 fi,R)

= WP((([B]; S1) u ([¬B]; S2)),R)

= WP((([B]; S1),R) ∧ WP([¬B]; S2)),R)

= B⇒WP(S1,R) ∧ ¬B⇒WP(S2,R)

⇔ (¬B)⇒WP(S2,R) ∧ ¬(¬B)⇒WP(S1,R)

= WP(if ¬B then S2 else S1 fi,R)

Another simple transformation is merging two as-
signments to the same variable:

∆ ` x := e1; x := e2 ≈ x := e2[e1/x]

The assignment x := e is defined as add(〈x′〉); [x′ =
e]; add(〈x〉); [x = x′] so the weakest precondition is:

WP(x := e,R)

= WP(add(〈x′〉); [x′ = e],∀x. (x = x′ ⇒ R))

= WP(add(〈x′〉); [x′ = e],R[x′/x])

= ∀x′. (x′ = e⇒ R[x′/x])

= R[x′/x][e/x′]

= R[e/x]

The proof of this transformation is:

WP(x := e1; x := e2,R)

= WP(x := e1,WP(x := e2,R))

= WP(x := e1,R[e2/x])

= R[e2/x][e1/x]

= R[(e2[e1/x])/x]

= WP(x := e2[e1/x],R)

For more complex transformations involving recurs-
ive constructs, we have a useful induction rule which is

not limited to a single recursive procedure, but can be
used on statements containing one or more recursive
components (including nested recursion). For any
statement S, define Sn to be S with each recursive
statement replaced by its nth truncation.

Lemma 3.4 The General Induction Rule for Recur-

sion: If S is any statement with bounded non-
determinacy, and S′ is another statement such that
∆ ` Sn ≤ S′ for all n < ω, then ∆ ` S ≤ S′.

An example transformation which is proved using
the generic induction rule is loop merging. If S is any
statement and B1 and B2 are any formulae such that
B1 ⇒ B2 then:

∆ ` while B1 do S od; while B2 do S od

≈ while B2 do S od

where the while loop while B do S od is defined in
terms of a tail recursion (µX. if B then S; X fi)

4 Extensions to the Kernel Language

The WSL language is built up in a set of layers,
starting with the kernel language. The first level lan-
guage includes specification statements, assignments,
if statements, while and for loops, Dijkstra’s guarded
commands [5] and simple local variables:

begin x := t : S end

=
DF
(add(x); ([x = t]; (S; remove(x))))

The second level language adds do . . . od loops,
action systems and true local variables.

We earlier remarked on the remarkable properties
of the guard statement, in particular [false] is a valid
refinement for any program or specification. This
is because the set of final states is empty for every
(proper) initial state. A program which may have an
empty set of final states is called a null program and
is inherently unimplementable in any programming
language. So it is important to avoid inadvertantly
introducing a null program as the result of a refine-
ment process. Morgan [9] calls the program [false] a
“miracle”, after Dijkstra’s “Law of Excluded Miracles”
[5]:

WP(S, false) = false

Part of the motivation for our specification statement
is to exclude null programs (Morgan leaves it to the
programmer to ensure that null programs are not



introduced by accident). Fortunately, any WSL pro-
gram with no explicit guard statements is non-null and
obeys Dijkstra’s law.

5 Operational Semantics

The correctness proofs of WSL transformations
only look at the external behaviour of the programs.
If you want to know which transformations preserve
the actual sequence of internal operations, then it
would appear that a new definition of the semantics of
programs is required: one which defines the meaning
of a program to be a function from the initial state to
the possible sequences of internal states culminating in
the final state of the program: in other words, an op-
erational semantics. We would then need to attempt
to re-prove the correctness of all the transformations
under the new semantics, in order to find out which
ones are still valid. But we would not have the benefit
of the weakest precondition approach, and we would
not be able to re-use any existing proofs.

It turns out that this extra work is not necessary:
instead the operational semantics can be “encoded” in
the denotational semantics. We add a new variable,
seq, to the program which will be used to record the
sequence of state changes. We then annotate the
original program, adding assignments to seq at the
appropriate places:

annotate(S1; S2)
= annotate(S1); annotate(S2)

annotate(if B then S1 else S2 fi)
= if B then annotate(S1) else annotate(S2) fi

annotate(v := e)
= seq := seq ++ 〈〈“v”, e〉〉;

and so on for the other constructs.

Given a transformation which turns S1 into the
equivalent program S2, if we want to show that
the transformation preserves operational semantics
it is sufficient to show that it turns the annotated
program annotate(S1) into a program equivalent to
annotate(S2).

The “reverse if” transformation of Section 3.6 is
an example of a transformation which preserves op-
erational semantics, while “merge assignments” does
not.

6 Slicing

The notion of a program slice, originally introduced
by Mark Weiser [18], is useful in program analysis and
debugging. A slice of a program is taken with respect
to a program point p and a variable x; the slice consists
of all statements of the program that might affect the
value of x at point p.

Initially we will consider the special case where p is
the end point of the program, but we will generalise
the variable x to a set X of variables. If X does
not contain all the variables in the final state space
of the program, then the sliced program will not be
equivalent to the original program. However, consider
the setW \X, whereW is the final state space. These
are the variables whose values we are not interested in.
By removing these variables from the final state space
we can get a program which is equivalent to the sliced
program. Suppose program S maps state space V to
W (we write this as S : V → W ), then the effect of
slicing S at its end point on the variables in X is to
generate a program equivalent to S; remove(W \X).

So one way to define a program slice is:

Definition 6.1 A traditional program slice of S on
X is any program S′ generated from S by deleting
individual statements, such that:

∆ ` S; remove(W \X) ≈ S′

Within this framework, a proof of correctness of an
algorithm for program slicing (such as the algorithm
for interprocedural slicing in [8]) is simply a proof of
the validity of the transformation which deletes the
statements in S; remove(W \X) to create S′.

The definition immediately suggests a possible gen-
eralisation: why restrict the transformations to delet-
ing individual statements? Harman and Danicic [6]
coined the term “amorphous program slicing” for a
combination of slicing and transformation, but per-
haps the term “semantic slice” is more expressive:
we are slicing on the semantics of the program since
we are allowing any operation which preserves the
semantics. A traditional slice could then be called a
“syntactic slice” since with traditional slicing we pre-
serve the syntax of the program so far as is consistent
with removing irrelevant statements.

Definition 6.2 A semantic slice of S on X is any
program S′ such that:

∆ ` S; remove(W \X) ≈ S′



Note that there are many possible semantic slices
for a program (but we would normally expect that the
semantic slice should be no larger than the equivalent
syntactic slice). This is because with any reverse
engineering or program understanding process there
are other constraints on the format of the abstract
specification. See [15] and [16] for a discussion of the
issues.

An intermediate operation between traditional syn-
tactic slicing and semantic slicing restricts the trans-
formations to preserve operational semantics using the
technique in Section 5:

Definition 6.3 An operational slice of S on X is any
program S′ such that:

∆ ` annotate(S); remove(W \X) ≈ annotate(S′)

6.1 Slicing At Any Position

To slice at an arbitrary position in the program we
need to preserve the sequence of values of the given
variables at that point in the program. To do this, we
simply insert an assignment to a new variable slice

at the required position which records the current
values of the variables. If X = {x1, . . . , xn} is the
set of variables we are interested in then we insert the
statement:

slice := slice ++ 〈〈x1, . . . , xn〉〉

at the point where we want to slice to record the
current values of the variables at that point. Then we
slice at the end of the program on the single variable
slice.

This process can be generalised to slice at several
points in the program, perhaps with a different set of
“variables of interest” at each point, simply by insert-
ing the slice assignments at the appropriate places.

6.2 Conditioned Slicing

A Conditioned Slice of a program is a generalisa-
tion of a traditional slice where an extra condition is
given for the initial state to satisfy. This additional
condition can be used to simplify the program before
applying a traditional slicing algorithm. Danicic et
al [7] describe a tool called ConSIT, for slicing a
program at a particular point, given that the initial
state satisfies a given condition. Conditioned slicing
is thus a generalisation of static slicing (where there
are no conditions on the initial state) and dynamic
slicing (slicing based on a particular initial state).

The slicing condition can be given in the form of
ASSERT statements scattered through the program: [7]
claim that these ASSERT statement are equivalent to a
single condition on the initial state: but this seems to
require that assertions can be formulae of infinitary
logic. Fortunately, the assertion statements in WSL
are already expressed in infinitary logic, so this is not
a problem in our framework.

The ConSIT tool works on an intraprocedural sub-
set of C using a three phase approach:

1. Symbolically Execute: to propagate assertions
through the program where possible;

2. Produce Conditioned Program: eliminate state-
ments which are never executed under the given
conditions;

3. Perform Static Slicing: using the traditional
method.

In our transformation framework, the ASSERT state-
ments are simply WSL assertions. The symbolic
execution and producing the conditioned program are
examples of transformations which can be applied
to the WSL program plus assertions. In [11] we
provide a number of transformations for propagating
assertions and eliminating dead code. Using weakest
preconditions, for example, we can move an assertion
(with the appropriate modification) backwards past
any statement:

∆ ` S; {Q} ≈ {WP(S,Q)}; S

For example: x := y + 1; {x > 0} becomes {y + 1 >
0}; x := y + 1.

Similarly, an assertion can be moved out of a loop:

∆ ` while B do {Q}; S od

≈ {
∧

n>0

(
∧

i<nWP((S;)
n,B)

⇒WP((S;)n,Q)
)

};
while B do S od

where (S;)0 is skip and (S;)n+1 is S; (S;)n.

Again, a generalisation is suggested: why restrict
ourselves to the assertion moving and dead code re-
moval transformations? A conditioned semantic slice
can be defined as:

Definition 6.4 A conditioned semantic slice of S on
X is any program S′′ such that:

∆ ` S′; remove(W \ {slice}) ≈ S′′

where S′ is constructed from S by inserting assertions
and assignments to slice wherever needed.



7 Slicing Example

The following WSL program is a translation of the
C program in [4]:

i := 1;
posprod := 1;
negprod := 1;
possum := 0;
negsum := 0;
while i 6 n do

a := input[i];
if a > 0
then possum := possum+ a;

posprod := posprod ∗ a
elsif a < 0

then negsum := negsum− a;
negprod := negprod ∗ (−a)

elsif test0 = 1
then if possum > negsum

then possum := 0
else negsum := 0 fi;

if posprod > negprod

then posprod := 1
else negprod := 1 fi fi;

i := i+ 1 od;
if possum > negsum

then sum := possum

else sum := negsum fi;
if posprod > negprod

then prod := posprod

else prod := negprod fi

Suppose we want to slice this program with respect
to the sum variable at the end of the program and with
the additional constraint that all the input values are
positive. We can either add the assertion {∀i. 1 6

i 6 n ⇒ input[i] > 0} to the top of the program, or
equivalently add the assertion {a > 0} just after the
assignment to a at the top of the loop. We also append
the remove statement:

remove(i, posprod, negprod, possum, negsum, n, a, test0)

to the program. This removes all the variables we are
not interested in.

The resulting syntactic slice is:

i := 1;
possum := 0;
negsum := 0;
while i 6 n do

a := input[i];
{a > 0};

if a > 0
then possum := possum+ a fi;

i := i+ 1 od;
if possum > negsum

then sum := possum fi;
remove(i, posprod, negprod, possum, negsum, n, a, test0)

With semantic slicing we can do much more. For a
start, the test a > 0 is redundant because of the asser-
tion. Also negsum is zero throughout and possum > 0
throughout (since it is initialised to zero and only
modified by having positive numbers added). So a
possible semantic slice is:

i := 1;
possum := 0;
while i 6 n do

a := input[i];
{a > 0};
possum := possum+ a;
i := i+ 1 od;

sum := possum;
remove(i, posprod, negprod, possum, negsum, n, a, test0)

But we can do even more than this. If we first move
the assertion out of the loop, then the loop itself can
be collapsed to a reduce operation over the input array:

{∀i. 1 6 i 6 n⇒ input[i] > 0};
sum := +/input[1 . . n];
remove(i, posprod, negprod, possum, negsum, n, a, test0)

The result is a concise specification of the final value
of sum under the given slicing condition.

8 Conclusion

In this paper we have given a brief introduction
to the foundations of program transformation theory
in WSL and described some applications to program
slicing which existing slicing algorithms. Traditional
slicing, which is restricted to deleting irrelevant state-
ments has the advantage of a unique solution and
may be useful in debugging situations where program-
mers are already familiar with the layout of the code.
But in more general program comprehension, reverse
engineering, reengineering and migration tasks, it is
much more useful to use transformations to simplify
the slices and even present the sliced program at a
higher level of abstraction.

A particularly useful application of conditioned se-
mantic slicing is to remove the error handling code



during program comprehension or reverse engineering.
Often much of the code in a program is there to
handle errors: this code can obscure the structure and
function of the “main line” code. By adding assertions
in appropriate places and slicing on the outputs of
interest a much more concise specification of the main
function can be generated.

References

[1] R. J. R. Back, Correctness Preserving Program
Refinements, Mathematical Centre Tracts#131,
Mathematisch Centrum, Amsterdam, 1980.

[2] R. J. R. Back, “A Calculus of Refinements for
Program Derivations,” Acta Informatica 25 (1988),
593–624.

[3] R. J. R. Back & J. von Wright, “Refinement
Concepts Formalised in Higher-Order Logic,” Formal
Aspects of Computing 2 (1990), 247–272.

[4] G. Canfora, A. Cimitile & A. De Lucia, “Conditioned
program slicing,” Information and Software
Technology Special Issue on Program Slicing 40
(1998), 595–607.

[5] E. W. Dijkstra, A Discipline of Programming ,
Prentice-Hall, Englewood Cliffs, NJ, 1976.

[6] Mark Harman & Sebastian Danicic, “Amorphous
program slicing,” 5th IEEE International Workshop
on Program Comprehesion (IWPC’97), Dearborn,
Michigan, USA (May 1997).

[7] Mark Harman, Sebastian Danicic & R. M. Hierons,
“ConSIT: A conditioned program slicer,” 9th IEEE
International Conference on Software Maintenance
(ICSM’00), San Jose, California, USA, Los Alamitos,
California, USA (Oct., 2000).

[8] Susan Horwitz, Thomas Reps & David Binkley,
“Interprocedural slicing using dependence graphs,”
Trans. Programming Lang. and Syst. 12 (Jan., 1990),
26–60.

[9] C. C. Morgan, Programming from Specifications,
Prentice-Hall, Englewood Cliffs, NJ, 1994, Second
Edition.

[10] C. C. Morgan & K. Robinson, “Specification
Statements and Refinements,” IBM J. Res. Develop.
31 (1987).

[11] M. Ward, “Proving Program Refinements and
Transformations,” Oxford University, DPhil Thesis,
1989.

[12] M. Ward, “Foundations for a Practical Theory of
Program Refinement and Transformation,” Durham
University, Technical Report, 1994, 〈http://www.
dur.ac.uk/∼dcs0mpw/martin/papers/
foundation2-t.ps.gz〉.

[13] M. Ward, “Assembler to C Migration using the
FermaT Transformation System,” International
Conference on Software Maintenance, 30th Aug–3rd
Sept 1999, Oxford, England (1999).

[14] M. Ward, “Reverse Engineering from Assembler to
Formal Specifications via Program Transformations,”
7th Working Conference on Reverse Engineering,
23-25th November, Brisbane, Queensland, Australia
(2000), 〈http://www.dur.ac.uk/∼dcs0mpw/martin/
papers/wcre2000.ps.gz〉.

[15] M. Ward, “Abstracting a Specification from Code,” J.
Software Maintenance: Research and Practice 5 (June,
1993), 101–122, 〈http://www.dur.ac.uk/∼dcs0mpw/
martin/papers/prog-spec.ps.gz〉.

[16] M. Ward, “A Definition of Abstraction,” J. Software
Maintenance: Research and Practice 7 (Nov., 1995),
443–450, 〈http://www.dur.ac.uk/∼dcs0mpw/
martin/papers/abstraction-t.ps.gz〉.

[17] M. Ward & K. H. Bennett, “Formal Methods to Aid
the Evolution of Software,” International Journal of
Software Engineering and Knowledge Engineering 5
(1995), 25–47, 〈http://www.dur.ac.uk/∼dcs0mpw/
martin/papers/evolution-t.ps.gz〉.

[18] M. Weiser, “Program slicing,” IEEE Trans. Software
Eng. 10 (July, 1984), 352–357.


