
Assembler to C Migration using the FermaT Transformation System

M. P. Ward
Software Migrations Ltd.

Mountjoy Research Centre
Stockton Rd.
Durham, UK

Martin.Ward@durham.ac.uk
Phone: 44+(0)191 386 0420
Fax: 44+(0)191 374 0936

Abstract

The FermaT transformation system, based on re-

search carried out over the last twelve years at

Durham University and Software Migrations Ltd., is an

industrial-strength formal transformation engine with

many applications in program comprehension and lan-

guage migration. This paper describes one application

of the system: the migration of IBM 370 Assembler

code to equivalent, maintainable C code. We present

an example of using the tool to migrate a small, but

complex, assembler module to C with no manual inter-

vention required. We briefly discuss a mass migration

exercise where 1,925 assembler modules were sucess-

fully migrated to C code.

Keywords: Assembler, Migration, Comprehension,
Formal Methods, WSL, Wide Spectrum Language,
Program Transformation, Legacy Systems, Restructur-
ing.

1 Introduction

There is a vast collection of operational software sys-
tems which are vitally important to their users, yet are
becoming increasingly difficult to maintain, enhance
and keep up to date with rapidly changing require-
ments. For many of these so called legacy systems the
option of throwing the system away and re-writing it
from scratch is not economically viable. Methods are
therefore urgently required which enable these systems
to evolve in a controlled manner. In particular, leg-
acy assembler systems have high maintenance costs,
and migrating such systems to a different environment
(eg. a client-server architecture) is much more difficult

than for C or COBOL systems. The FermaT trans-
formation system uses formal proven program trans-
formations, which preserve or refine the semantics of
a program while changing its form. These transforma-
tions are applied to restructure and simplify the legacy
systems and to extract higher-level representations.
This paper describes one application of the system: the
migration of IBM 370 Assembler code to equivalent,
maintainable C code.

By using an appropriate sequence of transforma-
tions, the extracted representation is guaranteed to
be equivalent to the original code logic. The method
is based on a formal wide spectrum language, called
WSL, with accompanying formal method. Over the
last ten years we have developed a large catalogue
of proven transformations, together with mechanically
verifiable applicability conditions. These have been ap-
plied to many software development, reverse engineer-
ing and maintenance problems. In this paper, we focus
on the results of using this approach in the migration
of IBM Assembler to C. (The same techniques are also
being applied to migration to COBOL). We conclude
that formal methods have an important practical role
in program comprehension and software migration.

2 Theoretical Foundation

The theoretical work on which FermaT is based origin-
ated not in software maintenance, but in research on
the development of a language in which proofs of equi-
valence for program transformations could be achieved
as easily as possible for a wide range of constructs.

WSL is the “Wide Spectrum Language” used in our
program transformation work, which includes low-level

programming constructs and high-level abstract spe-
cifications within a single language. This has the ad-
vantage that one does not need to differentiate between
programming and specification languages: the entire
transformational development of a program from ab-
stract specification to detailed implementation can be
carried out in a single language. Conversely, the entire
reverse-engineering process, from a transliteration of
the source program to a high-level specification, can
also be carried out in the same language. During
either of these processes, different parts of the program
may be expressed at different levels of abstraction.
So a wide-spectrum language forms an ideal tool for
developing methods for formal program development
and also for formal reverse engineering (for which we
have coined the term inverse engineering).

A program transformation is an operation which
modifies a program into a different form which has
the same external behaviour (i.e. it is equivalent un-
der a precisely defined denotational semantics). Since
both programs and specifications are part of the same
language, transformations can be used to demonstrate
that a given program is a correct implementation of a
given specification.

A refinement is an operation which modifies a pro-
gram to make its behaviour more defined and/or more
deterministic. Typically, the author of a specification
will allow some latitude to the implementor, by re-
stricting the initial states for which the specification
is defined, or by defining a nondeterministic behaviour
(for example, the program is specified to calculate a
root of an equation, but is allowed to choose which
of several roots it returns). In this case, a typical
implementation will be a refinement of the specifica-
tion rather than a strict equivalence. The opposite of
refinement is abstraction: we say that a specification is
an abstraction of a program which implements it. See
[5,6] and [1] for a description of refinement.

The syntax and semantics of WSL are described in
[8,9,10,13] so will not be discussed in detail here. Most
of the constructs in WSL, for example if statements,
while loops, procedures and functions, are common
to many programming languages. However there are
some features relating to the “specification level” of
the language which are unusual. Expressions and con-
ditions (formulae) in WSL are taken directly from first
order logic: in fact, an infinitary first order logic is
used (see [4] for details), which allows countably infinite
disjunctions and conjunctions, but this is not essential
for understanding this paper. This use of first order

logic means that statements in WSL can include ex-
istential and universal quantification over infinite sets,
and similar (non-executable) operations.

Over the last twelve years we have been developing
the WSL language, in parallel with the development
of a transformation theory and proof methods. Over
this time the language has developed from a simple
and tractable kernel language [9,10] to a complete and
powerful programming language. At the “low-level”
end of the language there exists automatic translators
from IBM Assembler into WSL, and from a subset of
WSL into C. At the “high-level” end it is possible to
write abstract specifications, similar to Z and VDM.

The WSL language includes constructs for loops
with multiple exits, action systems, side-effects, etc.
and the transformation theory includes a large cata-
logue of proven transformations for manipulating these
constructs. Many of the transformations have been
implemented in the FermaT transformation engine de-
veloped by Software Migrations Ltd. [11,15,16].

In [12,14] program transformations are used to de-
rive a variety of efficient algorithms from abstract
specifications. In [12,13,14] the same transformations
are used in the reverse direction: using transformations
to derive a concise abstract representation of the spe-
cification for several challenging programs.

Our aim in this paper is to describe how the trans-
formation theory has been sucessfully applied to the
very challenging task of migrating from assembler lan-
guage to modular and maintainable C code. As far
as we know, none of the other researchers in program
transformations (for example, [2,7]) have attempted to
apply their methods to assembler code.

3 The FermaT Workbench

The FermaT Workbench consists of a collection of tools
and databases based around the core technology of
program transformations in the WSL language. The
objectives of the FermaT Workbench are:

1. Increase the comprehension of legacy code to:

(a) Improve maintenance productivity and hence
reduce maintenance costs;

(b) Improve the quality of maintenance by
properly understanding the impact of code
changes;

(c) Enable business enhancements to be de-
livered faster;

(d) Support the analysis of existing legacy sys-
tems; and

2. Support the re-engineering of legacy code to:

(a) Arrive at better structured programs, and
hence increase code quality and subsequent
maintainability;

(b) Ease the burden of code conversion tasks
(eg Year 2000, EMU, Product Codes, etc.);
through the provision of code change assess-
ment and semi-automated conversion facilit-
ies;

(c) Allow legacy code to be automatically mi-
grated to more mainstream higher-level lan-
guages and hence extend the life of existing
systems.

The major components in the Workbench are:

• Inventory Gatherer: This contains tools to enable
the user to scan, select and collect an inventory of
files to create a “project” and populate the FermaT
repository;

• Inventory Navigator: These tools provide the user
with an overall view of the project and select
modules for further processing. The tools include
call graph and structure chart generators;

• Program Analysis Environment: This contains
tools to display an interactive program flow chart
which is linked to an integrated text editor, to
determine the impact of changing one or more data
fields (this is also used for Year 2000 and EMU
analysis) and to display the structure of the data
declarations;

• Repository: This stores and controls all input,
working, database and output files related to a
project. Project files may be at different stages of
FermaT processing:

Level 0 Collected and scanned code;
Level 1 Current Physical: parsed code and data

and unstructured WSL;
Level 2 Restructured Physical: restructured

WSL code and structured data;
Level 3 Abstracted Business: interactively

transformed or verified WSL code and data
structures;

Level 4 Generated Physical: target language
source code.

• Code Parsers: include Assembler to WSL trans-
lator and a COBOL parser. (The COBOL parser
is under development);

• Transformation Engine: This is the heart of the
FermaT workbench. The Engine contains an ex-
tensive library of proven WSL program transform-
ations, developed over the past twelve years of re-
search, together with heuristics for applying trans-
formations to achieve different goals. For example,

there are heuristics for restructuring translated
assembler code, removing dispatch calls and con-
dition code references. The transformation engine
also handles WSL to target language translation
and data flow analysis;

• Data Transformer: analyses data layouts (lengths,
types and offsets) to generate structured data de-
clarations;

• Code Generators: take the transformed WSL code
and restructured data layouts and generate target
language source code and data declarations. These
are customisable to meet varying coding standards
and the need to trade efficiency and maintainabil-
ity;

• Document Generators: produce flowcharts, data
catalogues, call graphs, structure charts, program
listings and CASE tool export files.

4 Modelling Assembler in WSL

Constructing a useful scientific model necessarily in-
volves throwing away some information: in other
words, to be useful a model must be inaccurate, or
at least idealised, to a certain extent. For example
“ideal gases”, “incompressible fluids” and “billiard ball
molecules” are all useful models which gain their utility
by abstracting away some details of the real world. In
the case of modelling a programming language, such as
Assembler, it is theoretically possible to have a perfect
model of the language which correctly captures the
behaviour of all assembler programs. Certain features
of Assembler, such as branching to register addresses,
self-modifying code and so on, would imply that such
a model would have to record the entire state of the
machine, including all registers, memory, disk space,
and external devices, and “interpret” this state as each
instruction is executed. (Consider the effect of loading
some data from a disk file into memory, performing
arithmetic at arbitrary places in the data, and then
branching to the start of the data block!) Unfortu-
nately, such a model is useless for reverse engineering
or migration purposes.

What we need is a practical model for assembler
programs which is suitable for reverse engineering, and
is accurate enough to deal with all the programming
constructs which are likely to be encountered.

4.1 Assembler to WSL Translation

The assembler to WSL translator works from a listing
file, rather than a source file, in order to make as much
information available as possible. For example: the
listing will usually contain macro expansions, it will

show the base and index registers determined for each
instruction, it will list the offset of each instruction and
data item, and any conditional assembly instructions
will have been expanded already. The translator makes
use of all this information, so while it would be possible
to write a translator which works from source files,
such a translator would have to duplicate much of the
functionality of an assembler. The translator generates
two output files:

<file>.wsl contains the WSL translation of all the
executable code;

<file>.dat contains information about each symbol
declared or referenced in the listing: the length,
offset, type, initial value, and the DSECT or
CSECT to which it belongs. Separate programs
will restructure the data file into hierarchical
structures and unions. Other programs generate
C header files or COBOL data divisions.

The assembler to WSL translator includes the fol-
lowing features:

• Standard opcodes: Each assembler instruction is
translated into WSL statements which capture
all the effects of the instruction. The machine
registers and memory are modelled as arrays, and
the condition code as a variable. Thus, at the
translation stage we don’t attempt to recognise “if
statements” as such, we translate into statements
which assign to cc (the condition code variable),
and statements which test cc.

• Standard system macros for file handling etc.
When translating a GET macro, for example, the
system determines the error label (if any) and
end of file condition label (by searching for the
data control block declaration) and inserts the
appropriate tests and branches.

• User macros can be added to the translation table,
with an appropriate WSL translation. If a macro
is found which is not in the translation table, then
the macro expansion is translated. If there is no
macro expansion, then a suitable procedure call is
generated.

• All structured macros are handled by simply trans-
lating the macro expansion: this replaces the
structure by equivalent branches and labels, but
our restructuring transformations are powerful
enough to recover the original structure in each
case.

• The condition code is implemented as a variable
(cc): this is because when a condition code is set
it is not always obvious exactly where it will be

tested, and it may be tested more than once. Spe-
cialised transformations convert conditional as-
signments to cc followed by tests of cc into simple
conditional statements.

• BAL/BAS (Branch and Save), and branch to re-
gister: this is handled by attempting to determine
all possible targets of any branch to register in-
struction by determining all the places where a
return address could be saved, or where a modified
return address could end up at. Each label is
turned into a separate action with an associated
value (the relative address). A “store return ad-
dress” instruction stores the relative address in the
register. A “branch to register” instruction passes
the relative address to a “dispatch” action which
tests the value against the set of recorded values,
and jumps to the appropriate label. This can deal
with simple cases of address arithmetic (including
jump tables) but may theoretically be defeated if
more complex address manipulations are carried
out before a branch to register instruction is ex-
ecuted.

• Simple external branches (external subroutine
calls) are detected.

• Simple jump tables are detected: the code for
detecting jump tables can be customised and ex-
tended as necessary.

• EXecute statements are detected and generate
the appropriate code (the executed statement is
translated and then modified appropriately). The
“Execute” (EX) instruction in IBM assembler is a
form of self-modifying code: it takes two paramet-
ers, a register number and an address of the actual
instruction to be executed. If the register number
is non-zero, then the actual instruction is modified
by the register contents before being executed.
Execute instructions are typically used to create
a variable-length move or compare operation (by
overwriting the length field of a normal move or
compare instruction).

• Data Declarations: all assembler data (EQUates,
DS, DC, DCB etc.) are parsed and restructured
into C unions and structs, where appropriate.

• DSECTs are converted into pointers to structs
(whenever the DSECT’s base register is modified,
the appropriate pointer is modified to keep it in
step).

• EQUates are translated as #defines, apart from:
(a) “EQU *” in a data area, which is translated
as an appropriate data element, and (b) “FOO
EQU BAR” which is recorded as declaring FOO as

a synonym for BAR. (If the C translation of BAR is
baz.bar, for example, then the C translation for
FOO will be baz.foo).

• Self-modifying code: cases where a NOP or branch
is modified into a branch or NOP are detected and
translated correctly (using a generated flag).

• C header files are generated automatically: one
for the main program and separate header files for
each DSECT referenced.

• Structured and unstructured CICS calls (eg
HANDLE AID, HANDLE CONDITION) are translated
into the appropriate code. Unstructured CICS
calls are translated into equivalent structured code
through a mechanism which can be extended to
other macro packages, eg databases, SQL, etc.

The aim of the assembler to WSL translator is to
generate WSL code which models as accurately as pos-
sible the behaviour of the original assembler module:
without worrying too much about the size, efficiency
or complexity of the resulting code. Typically, the
raw WSL translation of an assembler module will be
three to five times bigger than the source file and have
a very high McCabe cyclomatic complexity (typically
in the hundreds, often in the thousands). This is, in
part, because every “branch to register” instruction
branches to the dispatch routine, which in turn con-
tains branches to every possible return point.

However, the FermaT transformation engine in-
cludes some very powerful transformations for sim-
plifying WSL code, removing redundancies, tracking
dispatch codes, and so on. In most cases FermaT
can automatically unscramble the tangle of “branch
and save” and “branch to register” code to extract
self-contained, single-entry single-exit procedures and
so eliminate the dispatch procedure. In addition,
FermaT can nearly always eliminate the cc variable by
constructing appropriate conditional statements.

5 The Sample Program

Our sample program was taken from “A Guided Tour
of Program Design Methodologies”, by G. D. Bergland
[3] who in turn took it from a story called “Getting it
Wrong” that has been related by Michael Jackson on
numerous occasions:

proc Management Report ≡

var SW1 := 0,SW2 := 0 :
Produce Heading;
read(stuff);
while NOT eof(stuff) do
if First Record In Group

then if SW1 = 1

then Process End Of Previous Group

fi;
SW1 := 1;
Process Start Of New Group;
Process Record;
SW2 := 1

else

Process Record; SW2 := 1
fi;
read(stuff)

od;
if SW2 = 1 then Process End Of Last Group

fi;
Produce Summary

end.

The program is a simple report generator which reads
a sorted transaction file: each transaction contains the
name of an item and the amount received or distributed
from the warehouse. The program generates a report
showing the net change in inventory for each item in
the transaction file.

Our resident assembler guru was given the above
pseudocode and asked to write an assembler imple-
mentation which uses as many “features” of assembler
as possible. The result is given in Section 11 (I should
like to point out on his behalf that this is not his normal
coding style!) The program includes self-modifying
code (the “first time through switch” SW1 is imple-
mented by modifying the branch labelled LAAA to a
NOP in the instruction labelled LAB), and an EXecute
statement has been used to get a variable length move.

The following is an extract of the “raw” WSL code
generated by the assembler to WSL translator:

LAAA ≡

if F LAAA = 1 then call LAB fi;
call A 00006C end

A 00006C ≡

r10 := 108 + 4; call ENDGROUP;
call LAB end

LAB ≡

F LAAA := 0;
call A 000074 end

A 000074 ≡

!P mvc(a[db(WRITEM, r3), 3 + 1]
var a[db(WLAST, r3), 3 + 1]);

call A 00007A end

A 00007A ≡

a[db(WNET, r3), 3 + 1] :=!XF zap(!XF p lit(1, 1, “0”));
if !XC dec eq(a[db(WNET, r3), 3 + 1], 0)
then cc := 0

elsif !XC dec less(a[db(WNET, r3), 3 + 1], 0)
then cc := 1

else cc := 2 fi;
call A 000080 end

A 000080 ≡

r10 := 128 + 4; call PROCGRP;
call A 000084 end

A 000084 ≡

a[db(XSW1, r3), 1] :=!XF x lit(1, 1, “FF”);
call A 000088 end

A 000088 ≡

if true then call LAA fi;
call LAC end

LAC ≡

r10 := 140 + 4; call PROCGRP;
call A 000090 end

A 000090 ≡

a[db(XSW1, r3), 1] :=!XF x lit(1, 1, “FF”);
call A 000094 end

Note that each instruction expands into several WSL
statements. Each symbol reference is implemented
as an array access with the base register plus offset.
The modified branch instruction has been implemented
as a conditional branch on a machine generated flag
(F LAAA). A BAL instruction is implemented by storing
the return address in a register and branching to the
label. A branch to register (for example, to return from
a subroutine) is implemented by loading the special
variable destination with the value in the register, and
branching to a special dispatch routine. dispatch is
generated automatically by the WSL translator and
looks, in part, like this:

dispatch ≡

if destination = 0
then call Z

. . .

elsif destination = 112
then call LAB

elsif destination = 132
then call A 000084

elsif destination = 144
then call A 000090

. . .

else !P external branch(var a); call Z fi end

Figure 5 lists the metrics for the raw WSL transla-
tion and after automatic restructuring and simplifying
transformations have been applied. The meaning of
these metrics is as follows:

Statements total number of WSL statements, includ-
ing compound statements;

Expressions total number of WSL expressions, in-
cluding compound expressions (these two actually
count the number of nodes in the parse tree);

Metric Raw WSL Structured WSL

Statements 561 106
Expressions 1,589 210
McCabe 184 17
Control/Data Flow 520 156
Branch–Loop 145 17
Structural 6,685 751

Figure 1. Metrics Before and After Transform-
ation

McCabe Cyclomatic Complexity measures the
complexity of a module’s decision structure. It is
the number of linearly independent paths through
the program;

Control/Data Flow total number of variable ac-
cesses and updates plus procedure calls and
branches;

Branch–Loop total number of loops (do . . . od,
while and for loops) plus procedure calls and
branches;

Structural a “weighted sum” over the parse tree
where nodes are given weights ranging from 1 (for
simple expressions) to 10 (for branches).

6 Formal Program Transformation

The first stage in the transformation process is Data
Translation. This transformation uses the restructured
data file to change the data representation in the
program. Initially all data is accessed directly from
memory (represented as the byte array a) by adding
the base register to the displacement to get an address.
The restructured data file gives the layout of all data
in memory, so by making some reasonable assumptions
about non-overlapping DSECTS etc., FermaT is able
to transform the program into an equivalent program
where the data is accessed directly through variables
and structures. For example, the “raw WSL” state-
ment:

!P mvc(a[db(WRITEM, r3), 3 + 1]
var a[db(WLAST, r3), 3 + 1]);

is transformed into the simple assignment:

WLAST :=WREC.WRITEM;

In the case of our simple program, there is only one
structure to uncover: the WREC print record which
contains fields WRITEM, WRTYPE and WRQTY plus
some unnamed fillers. See the generated C header file
in Section 12.

The next stage is control flow restructuring: elim-
inating non-essential labels and branches, introducing
loops. This is carried out in a series of passes through
the program, at each iteration the program is searched
for points where a simplifying transformation (such as
loop insertion or branch merging) can be applied. The
iteration is continued until no further improvement can
be achieved.

The system then analyses the remaining actions to
determine which actions may form the body of a simple
procedure. To do this it uses both control flow and
data flow analysis. If it determines that a collection
of actions form a procedure, then these actions are
extracted out as a sub-action system in the body of
the procedure.

After control flow restructuring we have data flow
analysis: in particular an extended form of constant
propagation which can propagate return addresses
through procedure calls. If a dispatch call is en-
countered with a known destination value, then it can
be unfolded and simplified. The same transformation
also deals with conditional assignments to the condi-
tion code (cc) in order to remove references to cc where
possible.

FermaT was able to extract a collection of actions
to form the ENDGROUP procedure, so that action
A 00006C becomes:

A 00006C ≡

r10 := 112; ENDGROUP(); call dispatch end

FermaT determines that the value in r10 will be copied
into destination by the body of ENDGROUP, so this
call dispatch can be replaced by call LAB.

The control flow and data flow restructuring trans-
formations are iterated until no further improvement
is possible. The result is typically a dramatic im-
provement in all the metrics, for our sample program
Figure 5 compares the before and after values of the
metrics. This order of magnitude improvement in
most of the metrics is typical for all sizes of assembler
module.

A fundamental attribute of the FermaT workbench
is that its transformations are all mathematically
proven to preserve the semantics of the subject pro-
gram. The programmer can be confident that the WSL
program after transformation is functionally equival-
ent to its original form. Redundant code and vari-
ables can safely be removed, “spaghetti” code can be
straightened out, and the program simplified and its
maintainability improved. Given the large number
of transformations applied in the migration process

(typically in the hundreds if not thousands), confidence
in the correctness of each transformation is essential.

7 WSL to C Translation

The final step is to generate C code from the struc-
tured WSL. This may involve further transformations
to eliminate WSL features which cannot be directly
implemented in C, or to meet customers’ requirements
on the C layout or features used. For example, some
customers dislike break statements. These are intro-
duced to implement the exit from the middle of a
do . . . od loop. If they are not required, then a trans-
formation can be applied to transform the do . . . od

loop to an equivalent while loop, if necessary with an
associated flag. These transformations also implement
assignments and conditions as memmove and memcmp

calls where necessary and converted some function calls
to procedure calls which return the result via a pointer
passed as a parameter.

See Section 13 for the C code of our example. It
should be emphasized at this point that the C code in
Section 13 was generated directly from the assembler,
with no manual intervention required.

Note that two procedures (void functions) have been
extracted: endgroup_p and writeone_p. Their names
are derived from the original assembler labels. FermaT
has been able to restructure the code so that there
is only one place where the flag xsw1 is set (which
represents the flag SW2 in the pseudocode), and one
place where the code to process a record is called.
Hence there was no need to create a C function for the
assembler subroutine PROCGRP. Note that the dispatch
routine has been eliminated, as has the cc variable. All
branches have been eliminated and replaced by struc-
tured code. Many register operations (such as saving
and restoring return addresses) and other redundant
operations have been removed.

Other features of the generated C code which are
important for maintainability:

• gotos are eliminated where possible, without in-
creasing the complexity of the code. If required
by the customer, any remaining gotos can also
be eliminated automatically by introducing extra
variables or function calls.

• Data is accessed by simple operations (with casts
added where necessary), more complex data oper-
ations are implemented as memmove/memcmp calls.

• C control structures are used wherever appropriate
(if statements, while and repeat loops etc.)

• The module is automatically restructured into a
collection of procedures, where each procedure has
a single entry point and a single exit point. Each
procedure always returns to the call site: non-
standard termination of a procedure is indicated
by setting an exit flag variable.

• A “translation report” is generated for each mod-
ule listing metrics for each function, dead code
candidates, variables which are accessed outside
their declared size (these accesses may fail to work
if the data structures are reordered), and other
useful information.

• EXEC CICS calls are translated into the appropriate
C code.

• Appropriate C code can be generated for user and
system macros (in the case where the system does
not simply translate the macro expansion)

• Pointer addressing, casting and dereferencing op-
erators are added automatically: this ensures that
the C code will compile correctly with no errors or
warnings. For example, if we add 3 to register 4
and load the fullword stored at that address, the
C code will read: *(FWORD *)(regs.r4 + 3), i.e.
add 3 to register 4, cast the result to a fullword
pointer, and dereference it. On the other hand,
if savearea is declared as an array of fullwords
and the assembler loads bytes 9 to 12 inclusive of
savearea into register 5 then the C code will read
regs.r5 = savearea[2].

• Fields in a DSECT are accessed via the appropri-
ate DSECT pointer, eg foo->bar.baz

8 A Mass Migration Exercise

As an experiment to test the scalability of the trans-
formation approach to industrial code we selected at
random, 1,925 assembler listing files for a mass mi-
gration exercise. Apart from a handful of test files,
these are all live code taken from more than a dozen
large commercial assembler systems, mostly from large
financial institutions. The files contained containing a
total of 5,884,620 lines, of which 3,090,548 were source,
copybook or macro expansion lines and the remainder
were page and file headers and cross reference tables.

The files were processed automatically by a control
program which used two 200MHz Sparc processors to
translate each module to WSL, apply transformations
to the WSL code and translate the WSL to C. The
experiment completed successfully after 4 days and 18
hours of elapsed time. Every module was successfully
migrated to C, and every generated C file compiled

with no warnings or errors. We did not, however,
manually check the semantics of each generated file
against the original assembler!

The generated C files would still require some work
regarding file handling etc., depending on whether the
customer wanted to migrate to a different environment.
Much of this work can be automated. In addition,
the user needs to check for FIXME comments in the
generated C code which indicate areas where the trans-
lated code may be incorrect (for example, an EXecute
instruction where FermaT cannot determine at compile
time which instruction will be executed).

The overall performance was about 600 KLOC/day
per CPU, or about 7 minutes CPU time per assembler
module. Note however that processing times vary
widely, depending on the file contents. Short files and
files consisting mostly of data declarations can take
less than a minute each, while larger files with lots of
executable code can take an hour or more. In our case,
the times ranged from 2 seconds to 20,473 seconds (5
hours 41 minutes) with an average of 398 seconds (6
minutes 40 seconds).

A total of 1,132,278 lines of C code were generated,
of which 179,138 lines are data initialisation code,
plus a further 1,232,156 lines of header files in 7,793
C header files. Each assembler module generated a
header file for local data plus header files for each of
the DSECTs it referenced.

9 Conclusion

This work clearly show that Assembler to C migration
using the FermaT Workbench is a practical solution to
the high costs and skills shortage in assembler mainten-
ance and to the problem of migrating legacy systems
away from the mainframe environment.

10 References

[1] R. J. R. Back, Correctness Preserving Program
Refinements, Mathematical Centre Tracts#131,
Mathematisch Centrum, Amsterdam, 1980.

[2] F. L. Bauer, B. Moller, H. Partsch & P. Pepper,
“Formal Construction by Transformation—Computer
Aided Intuition Guided Programming,” IEEE Trans.

Software Eng. 15 (Feb., 1989).

[3] G. D. Bergland, “A Guided Tour of Program Design
Methodologies,” Computer 14 (Oct., 1981), 18–37.

[4] C. R. Karp, Languages with Expressions of Infinite

Length, North-Holland, Amsterdam, 1964.

[5] C. C. Morgan, Programming from Specifications,
Prentice-Hall, Englewood Cliffs, NJ, 1994, Second
Edition.

[6] C. C. Morgan, K. Robinson & Paul Gardiner, “On the
Refinement Calculus,” Oxford University, Technical
Monograph PRG-70, Oct., 1988.

[7] H. Partsch, Specification and Transformation of

Programs, Springer-Verlag, London, 1990.

[8] H. A. Priestley & M. Ward, “A Multipurpose
Backtracking Algorithm,” J. Symb. Comput. 18 (1994),
1–40, 〈http://www.dur.ac.uk/∼dcs0mpw/martin/
papers/backtr-t.ps.gz〉.

[9] M. Ward, “Proving Program Refinements and
Transformations,” Oxford University, DPhil Thesis,
1989.

[10] M. Ward, “Foundations for a Practical Theory of
Program Refinement and Transformation,” Durham
University, Technical Report, 1994, 〈http://www.dur.
ac.uk/∼dcs0mpw/martin/papers/
foundation2-t.ps.gz〉.

[11] M. Ward, “Language Oriented Programming,”
Software—Concepts and Tools 15 (1994), 147–161,
〈http://www.dur.ac.uk/∼dcs0mpw/martin/papers/
middle-out-t.ps.gz〉.

[12] M. Ward, “Program Analysis by Formal
Transformation,” Comput. J. 39 (1996), 〈http://www.
dur.ac.uk/∼dcs0mpw/martin/papers/
topsort-t.ps.gz〉.

[13] M. Ward, “Abstracting a Specification from Code,” J.
Software Maintenance: Research and Practice 5 (June,
1993), 101–122, 〈http://www.dur.ac.uk/∼dcs0mpw/
martin/papers/prog-spec.ps.gz〉.

[14] M. Ward, “Derivation of Data Intensive Algorithms by
Formal Transformation,” IEEE Trans. Software Eng.

22 (Sept., 1996), 665–686, 〈http://www.dur.ac.uk/
∼dcs0mpw/martin/papers/sw-alg.ps.gz〉.

[15] M. Ward & K. H. Bennett, “Formal Methods to Aid
the Evolution of Software,” International Journal of
Software Engineering and Knowledge Engineering 5
(1995), 25–47, 〈http://www.dur.ac.uk/∼dcs0mpw/
martin/papers/evolution-t.ps.gz〉.

[16] M. Ward & K. H. Bennett, “Formal Methods for
Legacy Systems,” J. Software Maintenance: Research

and Practice 7 (May, 1995), 203–219, 〈http://www.
dur.ac.uk/∼dcs0mpw/martin/papers/legacy-t.ps.gz〉.

11 The Assembler Source

* TST004A0 SAMPLE PROGRAM (MCDONALDS) *

*

REGEQU
*
* PRINT NOGEN
TST004A0 CSECT

STM R14,R12,12(R13)
LR R3,R15
USING TST004A0,R3
ST R13,WSAVE+4
LA R14,WSAVE
ST R14,8(R13)
LA R13,WSAVE

*
OPEN (DDIN,(INPUT))
OPEN (RDSOUT,(OUTPUT))

*
MVC WPRT(17),=CL17’MANAGEMENT REPORT’
BAL R10,WRITE1
BAL R10,WRITE1
MVC WPRT(20),=CL20’ITEM NET CHANGE’
BAL R10,WRITE1
BAL R10,WRITE1

*
MVI XSW1,0

LAA EQU *
GET DDIN,WREC
CLC WRITEM,WLAST
BE LAC

LAAA B LAB
BAL R10,ENDGROUP

LAB MVI LAAA+1,0
MVC WLAST,WRITEM
ZAP WNET,=P’0’
BAL R10,PROCGRP
MVI XSW1,X’FF’
B LAA

LAC BAL R10,PROCGRP
MVI XSW1,X’FF’
B LAA

*
LAD CLI XSW1,X’FF’

BNE LADA
BAL R10,ENDGROUP

LADA EQU *
MVC WPRT(17),=CL17’NUMBER CHANGED = ’
ED WORKB,WCHANGE
LA R4,WORKB
LA R1,9

LADB CLI 0(R4),C’ ’
BNE LADC
LA R4,1(R4)
BCT R1,LADB

LADC EX R1,WMVC1
*WMVC1 MVC WPRT+17(1),0(R4)

BAL R10,WRITE1
*

CLOSE DDIN
CLOSE RDSOUT

*
L R13,WSAVE+4
LM R14,R12,12(R13)
SLR R15,R15
BR R14

*
PROCGRP EQU *

ST R10,WST10A
PACK WORKA,WRQTY
CLI WRTYPE,C’R’
BNE LBA
AP WNET,WORKA
B LBB

LBA SP WNET,WORKA
LBB L R10,WST10A

BR R10
*

ENDGROUP EQU *
ST R10,WST10A
MVC WPRT(4),WLAST
MVI WSIGN,C’+’
CP WNET,=P’0’
BNL LCA
MVI WSIGN,C’-’

LCA EQU *
MVC WPRT+7(10),=X’40206B2020206B202120’
EDMK WPRT+7(10),WNET
BCTR R1,0
MVC 0(1,R1),WSIGN
BAL R10,WRITE1
BAL R10,WRITE1
AP WCHANGE,=P’1’
L R10,WST10A
BR R10

*
WRITE1 EQU *

PUT RDSOUT,WPRT
MVC WPRT,WSPACES
BR R10

*
WMVC1 MVC WPRT+17(1),0(R4)
*
WSAVE DC 18F’0’
WST10A DS F
WREC DS 0CL80
WRITEM DS CL4

DS CL1
WRTYPE DS CL1

DS CL1
WRQTY DS CL3

DS CL70
WPRT DC CL80’ ’
WSPACES DC CL80’ ’
WLAST DC CL4’****’
WCHANGE DC PL4’0’
WNET DC PL4’0’
WORKA DC PL2’0’
WORKB DC XL10’40206B2020206B202120’
WSIGN DC CL1’ ’
XSW1 DC X’00’
*

LTORG
*
DDIN DCB DDNAME=DDIN,

DSORG=PS,
EODAD=LAD,
MACRF=GM

RDSOUT DCB DDNAME=RDSOUT,
DSORG=PS,
MACRF=PM

*
END

12 The Generated C Header File

The C header and source files are as generated by the
FermaT system, with no manual editing other than
minor reformatting to fit the page size.

#include <assem.h>

/* EQUates table */

#define laa 78
#define lada 164
#define procgrp 242
#define endgroup 282
#define lca 310
#define write1 350

/* --> CSECT: TST004A0 <-- */
static FWORD wsave[18] = {0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0};
static FWORD wst10a;
static struct { /* wrec */

BYTE writem[4];
BYTE UNNAMED001;
BYTE wrtype;
BYTE UNNAMED002;
BYTE wrqty[3];
BYTE UNNAMED003[70];

} wrec;
static BYTE wprt[80] = " \

";
static BYTE wspaces[80] = " \

";
static BYTE wlast[4] = "****";
static DECIMAL(4, wchange) = "\x00\x00\x00\x0C";
static DECIMAL(4, wnet) = "\x00\x00\x00\x0C";
static DECIMAL(2, worka) = "\x00\x0C";
static BYTE workb[10] = {0x40, 0x20, 0x6B, 0x20, 0x20,
0x20, 0x6B, 0x20, 0x21, 0x20};
static BYTE wsign = ’ ’;
static BYTE xsw1 = 0x00;

13 The Generated C Code

#include "tst004a0.h"

void endgroup_p();
void write1_p();

FILE *ddin;
FILE *rdsout;
FWORD f_laaa;

void
main()
{

regs.r3 = regs.r15;
wsave[1] = 0;
regs.r14 = (FWORD) & wsave;
regs.r13 = (FWORD) & wsave;
OPEN(ddin, input);
OPEN(rdsout, output);
memmove(wprt, "MANAGEMENT REPORT", 17);
write1_p();
write1_p();
memmove(wprt, "ITEM NET CHANGE", 20);
write1_p();
write1_p();
xsw1 = 0;
for (;;) { /* DO loop 1 */

regs.r0 = 0;
regs.r1 = 0;
regs.r15 = 0;
GET(ddin, ®s.r0, ®s.r1, ®s.r15, &wrec);
if (end_of_file(ddin)) {

break;
} else if ((*(FWORD *)wrec.writem == *(FWORD *)wlast

|| f_laaa != 1)) {

if (*(FWORD *)wrec.writem == *(FWORD *)wlast) {
} else {

endgroup_p();
f_laaa = 0;
*(FWORD *)wlast = *(FWORD *)wrec.writem;
zap(wnet, 4, "\x0C", 1);

}
} else {

f_laaa = 0;
*(FWORD *)wlast = *(FWORD *)wrec.writem;
zap(wnet, 4, "\x0C", 1);

}
wst10a = regs.r10;
pack(worka, 2, wrec.wrqty, 2);
if (wrec.wrtype != ’R’) {

sp(wnet, 4, wnet, 4, worka, 2);
} else {

ap(wnet, 4, wnet, 4, worka, 2);
}
exit_flag = 0;
xsw1 = 0xFF;

} /* OD */
if (xsw1 == 0xFF) {

endgroup_p();
}
memmove(wprt, "NUMBER CHANGED = ", 17);
ed(workb, 10, wchange, 10);
regs.r4 = (FWORD)workb;
regs.r1 = 9;
for (;;) { /* DO loop 2 */

if (*(BYTE *)regs.r4 != ’ ’) {
break;

}
regs.r4++;
regs.r1--;
if (regs.r1 == 0) {

break;
}

} /* OD */
memmove((BYTE *)((FWORD)wprt + 17), (BYTE *)regs.r4,

((regs.r1 & 0xFF) + 1));
write1_p();
CLOSE(ddin);
CLOSE(rdsout);
return;

}

void
endgroup_p()
{

wst10a = regs.r10;
*(FWORD *)wprt = *(FWORD *)wlast;
wsign = ’+’;
if (dec_less(wnet, 4, "\x0C", 1)) {

wsign = ’-’;
}
memmove((wprt + 7),

"\x40\x20\x6B\x20\x20\x20\x6B\x20\x21\x20", 10);
edmk((wprt + 7), 10, ®s.r1, wnet, 10);
regs.r1--;
*(BYTE *)regs.r1 = wsign;
write1_p();
write1_p();
ap(wchange, 4, wchange, 4, "\x1C", 1);
regs.r10 = wst10a;
exit_flag = 0;
return;

}

void
write1_p()
{

PUT(rdsout, *wprt);
memmove(wprt, wspaces, 80);
exit_flag = 0;
return;

}

