
The FermaT Assembler Re-engineering Workbench

M. P. Ward

Software Technology Research Lab

De Montfort University

The Gateway,

Leicester LE1 9BH, UK

Martin.Ward@durham.ac.uk

Abstract

Research into the working practices of software
engineers has shown the need for integrated browsing
and searching tools which include graphical visualisa-
tions linked back to the source code under investiga-
tion. In addition, for assembler maintenance and re-
engineering there is an even greater need for sophist-
icated control flow analysis, data flow analysis, slicing
and migration technology. All these technologies are
provided by the FermaT Workbench: an industrial-
strength assembler re-engineering workbench consist-
ing of a number of integrated tools for program com-
prehension, migration and re-engineering. The vari-
ous program analysis and migrations tools are based
on research carried out over the last sixteen years
at Durham University, De Montfort University and
Software Migrations Ltd., and make extensive use of
program transformation theory.

Keywords

Assembler, Re-engineering, Reverse Engineering
Migration, Comprehension, Formal Methods, WSL,
Wide Spectrum Language, Program Transformation,
Legacy Systems, Restructuring.

1 Introduction

Recent research into the activities of software en-
gineers [10] has shown the need for tools capable of
both semantic-based searching and browsing through
hierarchical structures. Other studies [3,6,9] provide
strong evidence that software engineers desire tools
to help them explore software. They use such
tools heavily already and want improvements (the
main search tools currently in use are text editors
and regular expression search utilities such as grep).

Top-down program comprehension requires browsing,
while bottom-up comprehension required searching:
and programmers use both strategies, and frequently
switch between them. The four most common search
targets are: function definitions, all uses of a function,
variable definitions, and all uses of a variable. The
most common search motivations are: defect repair,
code reuse, program understanding, feature addition,
and impact analysis [9].
In [8] a “design browser” tool is described, for flex-

ible browsing of a system’s design level representation
and for information exchange with a suite of program
comprehension tools, complemented with a “retriever”
supporting full-text and structural searching. Source
code is parsed to an intermediate ASCII representa-
tion, imported into a repository based on the UML
metamodel, and accessed through an OO database
management system (Poet 6.0). The elements in the
database can be accessed like normal Java objects
and used to build graphical representations in form
of diagrams (information views).
The FermaT Workbench is an industrial-strength

assembler re-engineering workbench consisting of a
number of integrated tools for program comprehen-
sion, migration and re-engineering. It differs from
these other tools in that FermaT is capable of a much
deeper semantic analysis of the assembler source code.

2 Theoretical Foundation

The core of the FermaT Workbench is the FermaT
transformation engine. This is based on a “Wide
Spectrum Language” (called WSL) which includes
both high-level abstract specifications and low-level
programming constructs within the same language.
The language has been developed over the last six-
teen years in parallel with the development of the



transformation theory: the catalogue of proven trans-
formations and transformation techniques which form
the basis for both forward and reverse engineering.
All the transformations have been proved correct and
have mechanically checkable applicability conditions.
This makes it possible to “encapsulate” the mathem-
atics in a transformation system: the user does not
need to understand how to prove the correctness of a
transformation, and with the FermaT Workbench, it
is not even essential for the user to be able to read
and understand WSL. Since each step in the reverse
engineering process consists of the application of a
proven transformation, whose applicability condition
has been mechanically checked, the transformed pro-
gram is guaranteed to be a correct representation of
the original program.
The syntax and semantics of WSL are described

in [7,11,12,17] so will not be discussed in detail here.
Most of the constructs in WSL, for example if state-
ments, while loops, procedures and functions, are com-
mon to many programming languages. However there
are some features relating to the “specification level”
of the language which are unusual. Expressions and
conditions (formulae) in WSL are taken directly from
first order logic: in fact, an infinitary first order logic
is used (see [4] for details), which allows countably
infinite disjunctions and conjunctions. This use of
first order logic means that statements in WSL can
include existential and universal quantification over
infinite sets, and similar (non-executable) operations.
In [14,19] program transformations are used to de-

rive a variety of efficient algorithms from abstract
specifications. In [14,17,19] the same transformations
are used in the reverse direction: using transforma-
tions to derive a concise abstract representation of the
specification for several challenging programs.
In [15] program transformations in WSL are used

to migrate from assembler to C. In [16] an assembler
module is transformed into an equivalent high-level
abstract specification in WSL.

3 Previous Transformation Tools

The first tool to be developed as a result of the au-
thor’s work on WSL and program transformation the-
ory, was the “Maintainer’s Assistant” (MA). This was
a joint project involving the University of Durham,
the Centre for Software Maintenance Ltd., and IBM
United Kingdom Laboratories Ltd. MA is implemen-
ted in Lisp and includes an X windows based front
end (xma) which displays formatted WSL code. The
user can select any point in the program and see a list

of all the transformations that are applicable at that
point. The user can then select a transformation fro
the list and see the result immediately.
MA includes a large number of transformations, but

is very much an “academic prototype” whose aim was
to test the ideas rather than be a practical tool. In
particular, little attention was paid to the time and
space efficiency of the implementation. Despite these
drawbacks, the tool proved to be highly successful
and capable of reverse-engineering moderately sized
assembler modules into equivalent high-level language
programs.
The next tool, GREET (Generic REverse Engineer-

ing Tool) [1] was a complete reimplementation of the
transformation engine using Lisp and a commercial
CASE tool builder. The transformations in GREET
are implemented in METAWSL, an extension of WSL
which includes high-level features for writing program
transformations [12,13,18]. The extensions include
an abstract data type for representing programs as
tree structures and constructs for pattern matching,
pattern filling and iterating over components of a
program structure. The “transformation engine” of
GREET is implemented entirely in METAWSL. The
implementation of METAWSL involves a translator
fromMETAWSL to LISP, a small LISP runtime library
(for the main abstract data types) and a WSL runtime
library (for the high-level METAWSL constructs such
as ifmatch, foreach, fill etc.).
GREET contains parsers for IBM 370 Assembler

and JOVIAL and can generate JOVIAL and C code
as well as WSL. The user interface is similar to MA
in that the user is presented with formatted WSL
code and can click on a section of code and apply
transformations.
One of the claims made in [13] is that implementing

a large system in a very high level domain-specific
language (such as METAWSL) will greatly simplify
maintenance and portability. This has proved to be
the case with GREET: the entire transformation en-
gine was ported to a very different version of Lisp
(Scheme) by a single programmer in a few weeks.
Several factors prompted this porting exercise:

• The transformation technology had reached such
a level of maturity that the whole transform-
ation process, from the “raw” WSL generated
directly from the parsed assembler to high-level
WSL suitable for translation to C or COBOL,
could be carried out automatically with no human
intervention;

• As a result, we could do away with the CASE tool
technology on which GREET was built and so



avoid the maintenance overhead, and the memory
consumption, at the same time vastly improving
portability;

• Transferring from the proprietary Lisp to Scheme
meant that we could port the transformation en-
gine from Solaris to AIX, Linux and Windows 95
in a matter of days;

• Eliminating the user interface meant that we
could “hide” WSL from the maintenance pro-
grammer: no longer is training in WSL and
transformation theory a prerequisite for using the
tool. Although programmers could see the util-
ity of GREET, there was some resistance to its
deployment due to the (perceived) steep learning
curve involved in gaining familiarity with WSL
and the transformation technology.

The new transformation engine is called FermaT and
forms a central component of the FermaT Workbench.

4 Analysing IBM Assembler Code

Assembler code presents a number of unique chal-
lenges to automated (and human!) analysis. The code
is typically completely unstructured with branches
and labels allowed in arbitrary positions. Even where
“structured macros” are in use (IF. . . THEN. . . ELSE,
WHILE. . . DO etc.) there are no restrictions on
branching into or out of structures: so the apparent
“surface structure” provided by the macros cannot
be relied upon. Subroutines are called by storing a
return address in a register and then branching to
the start of the subroutine. A subroutine returns by
loading the register and branching to the address is
contains: but there is nothing to stop the programmer
from overwriting or modifying the return address, or
branching from the middle of one subroutine to the
middle of another, or branching directly back to the
main program or any number of other practices. As
a result, even determining the boundaries of a sub-
routine body can be a challenge! Jump tables are
yet another problem: the program carries out some
computation and then treats the result as an address
and branches to it. Self-modifying code is commonly
used in legacy assembler code: rather than “wasting”
a byte by using a flag, clever programmers would over-
write a branch instruction with a NOP instruction, or
vice versa. The IBM 370 architecture also includes an
“execute” instruction (EX): this contains the address
of an instruction elsewhere in the program and a

register which is used to modify the target instruction
before executing the modified instruction.
These difficulties also show why assembler, espe-

cially legacy assembler, is so much more difficult and
costly to maintain, compared to modern high-level
languages. All of these complications need to be
addressed by any commercial tool for assembler re-
engineering. In addition, the need for comprehensive
semantic analysis tools is much greater for assembler
than for high-level languages. For example: a crude
form of data flow analysis is possible in COBOL simply
by searching for names of variables. If a variable FOO
is referenced in one statement, then a search for all
assignments to FOO will quickly enable the program-
mer to determine where FOO gets its value. But the
heavy use of registers and work areas in Assembler,
and the lack of data type enforcement, combined with
the lack of control flow structure, make these scanner
based techniques much less useful. A search for all
references to R3 might return hundreds of hits, almost
all of which are irrelevant. But is very difficult to
determine if there is an execution path from one line
of assembler to another distant line. What is required
is a detailed and thorough data flow analysis of the
whole program. Such an analysis will also require
a detailed and thorough control flow analysis of the
whole program: for example to determine all possible
return points for a subroutine call.
Data flow analysis is needed for:

1. Debugging: search backwards through data flow
from the point where the value of an item is
known to be invalid in order to find the code
which sets the value; and

2. Enhancement: search forward from an area of
code which is about to be changed in order to
determine the impact of the proposed change.

These are some of the considerations which led to
the development of the FermaT Workbench.

5 The FermaT Workbench

The various tools comprising the FermaT Work-
bench are accessed via a toolbar and consist of:

• Function Catalogue;

• Function Call Graph;

• Text Editor;

• Program Flowchart;



Figure 1: The FermaT Workbench Toolbar

Figure 2: The Function Catalogue

• Data Catalogue;

• Control Flow Analyser;

• Data Flow Analyser;

• Program Slicer;

• Migration Tools;

Each tool is an independent executable, or set of
executables, which communicate with the “thin cli-
ent” workbench toolbar via TCP/IP connections and
shared data files (see Figure 1. This design has several
advantages:

• The tools do not all need to run on the same
machine: for example, the processor-intensive
analysis tools can run on a separate high power
workstation and communicate with the work-
bench across a local network (or even across the
Internet);

• One tool will not “freeze” the whole workbench
while carrying out a time-consuming activity.
The user can switch to another tool and carry on
working while waiting for output from the first
tool;

• Tools can be tested independently of the rest of
the workbench via a direct TCP connection (such
as telnet). This also provides a simple way to
automate regression testing.

Source files in FermaT are organised into directories
called Projects. Each FermaT project consists of a col-
lection of assembler source files, typically representing
an assembler program or sub-system. The project
also contains all the working files produced by the
Workbench. A new project can be created at any time
and source files can be imported to the project via a
simple list selection.

5.1 The Function Catalogue

A module is either a source file, a macro file or
a copybook file. Modules are grouped into functions

and functions can be nested inside other functions.
The Function Catalogue shows a hierarchical view of
the function tree, with modules as the leaves of the
tree, plus a detailed view of the currently selected
function. The detailed view shows which functions
call this function, plus which functions are called by
this function (including external modules: ie calls to
modules which are not available in the current project
or macro or copybook library).

Figure 3: The Function Call Graph



5.2 The Function Call Graph

The function call graph provides a graphical view of
the calling relationships between modules. Copybooks
and macros can be included or excluded from the
graph for clarity.

Figure 4: The Text Editor

5.3 The Text Editor

The text editor is a fully-featured assembler-aware
editor which is closely integrated with the other tools
in the workbench. Comments are shown in green
and other lines may be highlighted in different colours
to show the result of a search or other action. The
text editor parses each line of assembler and knows
which symbols are data items (variables, constants,
data structures etc.) and which are not. Any data
item can be selected for tracking via the data tracker.
The Data Tracking facilities in the text editor allow

the user to select any data item, search for and mark
all lines containing that data item and browse through
the list of marked lines.

5.4 The Program Flowchart

The flowchart tool depicts the control flow of a
module in a familiar graphical form. The user can
jump from a selected line in the editor to the cor-
responding node in the flowchart and vice versa. In
addition, a block of code can be selected in the ed-
itor and highlighted, and the corresponding flowchart
nodes will be highlighted. A set of nodes in the

Figure 5: Flowchart (whole program)

Figure 6: Flowchart (zooming in on part of the pro-
gram)



flowchart can be highlighted and the corresponding
lines in the editor will be highlighted.
Assembler-specific features in the flowcharter in-

clude:

• EX instructions: the executed instruction is
found and copied in after the line containing the
EX instruction;

• Relative branches are computed and the branch
target determined where possible;

• Jump tables are detected automatically and con-
verted to a list of conditional branches;

• Subroutines (internal and external) are detected
automatically and highlighted;

• Data declarations are ignored in the flowchart;

• Structured macros are interpreted directly.

The user can add their own macros, (including struc-
tured macros and subroutine call macros) to the mac-
ros table and these will be correctly interpreted by the
flowchart tool.
Any block of code in either the editor or flowchart

can be highlighted and annotated. The annotation
might be a reminder to do something, a warning to a
fellow programmer, or a way of documenting a piece
of code. In the latter case, the block of code may be
“collapsed” to a single node in the flowchart. This is
used for incremental redocumentation of the source.

Figure 7: The Data Catalogue

5.5 The Data Catalogue

Like the Function Catalogue, the Data Catalogue
shows a hierarchical view of the data layout for

the current module, showing which data items are
structures containing other data items and which are
atomic data elements. If the relevant macros and
copybooks have been imported to the project, or are
present in a library, then the Data Catalogue can also
show the data structures which are external to the
current module. The Data Catalogue also displays
the details of the currently selected data items.
Any data item selected in the text editor can be

made the current item in the data catalogue.

5.6 Analysis Tools

The next four tools (control flow analysis, data flow
analysis, slicing and migration) require a much more
detailed semantic analysis of the assembler. Because
of this, these tools require an assembler listing file as
input, (rather than just the source file) since the list-
ing contains macro expansions, copybook expansions,
relative addresses for all code and data labels, and
other important information. For our tools to derive
all this information directly from the source files they
would need to replicate much of the functionality of an
assembler: so it makes better sense to reuse existing
technology.
The Analysis tools make use of the FermaT trans-

formation engine: assembler code is translated into
WSL, then a sequence of transformations is applied
to restructure and simplify the WSL code and remove
low-level assembler features. The resulting high-level
WSL code is then analysed for control flow and data
flow and is sufficiently high level that it can be trans-
lated directly into C or COBOL. See [15] for a case
study of the automated migration of IBM assembler
to efficient and maintainable C code. The high-level
WSL also forms the basis for a transformation reverse
engineering to an abstract specification in [16].
The assembler to WSL translator includes the fol-

lowing features:

• Standard opcodes: Each assembler instruction is
translated into WSL statements which capture
all the effects of the instruction. The machine
registers and memory are modelled as arrays, and
the condition code as a variable. Thus, at the
translation stage we don’t attempt to recognise “if
statements” as such, we translate into statements
which assign to cc (the condition code variable),
and statements which test cc.

• Standard system macros for file handling etc.
When translating a GET macro, for example, the
system determines the error label (if any) and



end of file condition label (by searching for the
data control block declaration) and inserts the
appropriate tests and branches.

• User macros can be added to the translation
table, with an appropriate WSL translation. If
a macro is found which is not in the translation
table, then the macro expansion is translated.
If there is no macro expansion, then a suitable
procedure call is generated.

• All structured macros are handled by simply
translating the macro expansion: this replaces the
structure by equivalent branches and labels, but
our restructuring transformations are powerful
enough to recover the original structure in each
case.

• The condition code is implemented as a variable
(cc): this is because when a condition code is
set it is not always obvious exactly where it will
be tested, and it may be tested more than once.
Specialised transformations convert conditional
assignments to cc followed by tests of cc into
simple conditional statements.

• BAL/BAS (Branch and Save), and branch to
register: this is handled by attempting to determ-
ine all possible targets of any branch to register
instruction by determining all the places where a
return address could be saved, or where a modi-
fied return address could end up at. Each label is
turned into a separate action with an associated
value (the relative address). A “store return
address” instruction stores the relative address in
the register. A “branch to register” instruction
passes the relative address to a “dispatch” action
which tests the value against the set of recorded
values, and jumps to the appropriate label. This
can deal with simple cases of address arithmetic
(including jump tables) but may theoretically be
defeated if more complex address manipulations
are carried out before a branch to register instruc-
tion is executed.

• Simple external branches (external subroutine
calls) are detected.

• Simple jump tables are detected: the code for
detecting jump tables can be customised and ex-
tended as necessary.

• EXecute statements are detected and generate
the appropriate code (the executed statement is
translated and then modified appropriately). The

“Execute” (EX) instruction in IBM assembler is
a form of self-modifying code: it takes two para-
meters, a register number and an address of the
actual instruction to be executed. If the register
number is non-zero, then the actual instruction
is modified by the register contents before being
executed. Execute instructions are typically used
to create a variable-length move or compare oper-
ation (by overwriting the length field of a normal
move or compare instruction).

• Data Declarations: all assembler data (EQUates,
DS, DC, DCB etc.) are parsed and restructured
into C unions and structs, where appropriate.

• DSECTs are converted into pointers to structs
(whenever the DSECT’s base register is modified,
the appropriate pointer is modified to keep it in
step).

• EQUates are translated as #defines, apart from:
(a) “EQU *” in a data area, which is translated
as an appropriate data element, and (b) “FOO
EQU BAR” which is recorded as declaring FOO as
a synonym for BAR. (If the C translation of BAR is
baz.bar, for example, then the C translation for
FOO will be baz.foo).

• Self-modifying code: cases where a NOP or
branch is modified into a branch or NOP are de-
tected and translated correctly (using a generated
flag).

• C header files are generated automatically: one
for the main program and separate header files
for each DSECT referenced.

• Structured and unstructured CICS calls (eg
HANDLE AID, HANDLE CONDITION) are translated
into the appropriate code. Unstructured CICS
calls are translated into equivalent structured
code through a mechanism which can be extended
to other macro packages, eg databases, SQL, etc.

The aim of the assembler to WSL translator is to
generate WSL code which models as accurately as pos-
sible the behaviour of the original assembler module:
without worrying too much about the size, efficiency
or complexity of the resulting code. Typically, the
raw WSL translation of an assembler module will be
three to five times bigger than the source file and have
a very high McCabe cyclomatic complexity (typically
in the hundreds, often in the thousands). This is, in
part, because every “branch to register” instruction



branches to the dispatch action, which in turn contains
branches to every possible return point.
However, the FermaT transformation engine in-

cludes some very powerful transformations for sim-
plifying WSL code, removing redundancies, tracking
dispatch codes, and so on. In most cases FermaT
can automatically unscramble the tangle of “branch
and save” and “branch to register” code to extract
self-contained, single-entry single-exit procedures and
so eliminate the dispatch action. In addition, FermaT
can nearly always eliminate the cc variable by con-
structing appropriate conditional statements.
The resulting WSL code, after automatic trans-

formation, can then be processed by several analysis
tools. Analysis of the transformed WSL code provides
much more information, and more accurate informa-
tion, than could be provided by a direct analysis of the
original assembler. For a start, there are fewer nodes
in the control flow graph for the WSL code. There
are also considerably fewer edges in the control flow
graph: for example, the raw WSL contains edges from
every “branch to register” instruction to the dispatch
procedure, which in turn has an edge to every pos-
sible return point. The transformed CFG has usually
eliminated the dispatch procedure and replaced all the
“save return address” and “branch to register” code
by a hierarchy of single-entry single-exit subroutines.
The result is much more accurate control and data
flow information.

5.6.1 Control Flow Analysis

The Control Flow Analysis tool breaks up the struc-
tured WSL into basic blocks and uses these to con-
struct the nodes of the control flow graph. From this
graph we can calculate the dominator tree [5] and con-
trol dependence information. The “control dependen-
cies” of an instruction are those branch statements
which control whether or not the given instruction is
executed. To be precise: if one arm of the branch is
taken, then the given instruction will eventually be ex-
ecuted (provided the program terminates at all), while
if the other branch is taken then the program may
terminate without executing the given instruction.
The control dependence information is then trans-

ferred back to the assembler listing and recorded as
comments. The user can then see a graphical display
of the dominator tree and control dependence graph,
as well as displaying and browsing control dependence
information in the editor.

5.6.2 Data Flow Analysis

The dominator tree is used to compute the Static
Single Assignment (SSA) form of the WSL code [2].
From this, use-def and def-use chains can be computed
with ease. Again, this information is recorded in the
assembler source file ready for browsing via the editor
and other tools.
The user can click on any data element and in-

stantly find all the places where this data element gets
assigned (showing only those assignments which reach
the current position in the program), and all those
places where the current value of the data element gets
used. This sort of information is extremely important
for debugging and for impact analysis.

5.6.3 Program Slicer

Any instruction or data item in the program can be
selected and a “program slice” [20] computed and dis-
played. This may be either a forward slice or backward
slice.

5.6.4 Migration Tools

See [15,16] for a description of the FermaT migration
technology.
Note: at the time of writing (January 2001), the

analysis tools (apart from the migration tools) are still
being implemented and integrated with the rest of the
Workbench.

6 Results

The results from using the FermaT Workbench on
major re-engineering projects have so far been very
encouraging. The tool has recently been used success-
fully on two Euro assessment projects.

6.1 Euro Assessment

With the introduction of the Euro currency
throughout much of Europe, banks and other fin-
ancial organisations will have to make some major
enhancements to their software systems. A Euro pro-
ject involves much more than simply adding another
currency to the system: there are complex rules to
determine how to convert to and from the Euro, and
these rules are enforced by legislation. As a result, a
Euro conversion is likely to be an order of magnitude
more complex than a Y2K conversion.
The first stage in a Euro conversion project is the

Assessment Phase: where the aim is to determine



precisely which lines of code need to be changed.
Assessment involves the following steps:

1. First collect the source and run an automatic
inventory report. Depending upon how many
missing dependencies there are this may take sev-
eral passes to obtain a full inventory;

2. Then, scan the copybooks/macros for details of
all data declarations;

3. Then enter the Seek Table Utility which uses
details of the data declarations to assist the user
to dynamically (i.e. without requiring a rescan
of the source) produce a base Seek Table, based
upon comments and data types;

4. The rest of the source modules are scanned for
data declarations and this information is again
passed onto the Seek Table Utility. Where there
are distinct business areas (with few shared data
names and structures), the rest of the assessment
project can be conducted in parallel for each
business area;

5. The base Seek Table is then further tweaked for
the source modules in each business area;

6. The Seek Table Utility then exports a matched
field list for every module, to take into ac-
count fields with the same names but different
uses within different modules (e.g. work fields).
The Data Impact Scanner then reads in these
“matched field lists” and finds every instance of
every required field in every module. Reporting
information is output that can be imported into
databases/spreadsheets.

In our experience, the whole assessment process can
be completed in about five man days for a typical
500K LOC system. Larger systems do not require
proportionately more effort because there are usually
common library modules containing a large proportion
of data declarations.
To put this into perspective, one customer stated

that what was achieved in one morning using the
FermaT Workbench (producing a good quality base
seek table) had taken them several weeks of on and
off work to do manually: this is equivalent to several
days of full time work. We estimate that using the
FermaT Workbench reduces the total effort by an
order of magnitude, whilst improving the consistency
and quality of the results.

7 Availablilty

The FermaT Workbench is currently available for
both commercial and academic use. Commercial
users should contact Simon Grant of Software Migra-
tions Ltd (Simon.Grant@SMLtd.com), academic users
should contact the author (Martin.Ward@SMLtd.com).
At the time of writing (January 2001) the control
flow, data flow and slicing tools are currently being
implemented and integrated with the Workbench and
will appear in a later version.

8 References

[1] K. H. Bennett, H. Yang & T. Bull, “A
Transformation System for Maintenance—Turning
Theory into Practice,” Conference on Software
Maintenance, Orlando, Florida (1992).

[2] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman
& F. K. Zadeck, “Efficiently Computing Static Single
Assignment Form and the Control Dependance
Graph,” Trans. Programming Lang. and Syst. 13
(July, 1991), 451–490.

[3] S. Elliott, C. L. A. Clarke, R. C. Holt & A. M. Cox,
“Browsing and Searching Software Architectures.

[4] C. R. Karp, Languages with Expressions of Infinite
Length, North-Holland, Amsterdam, 1964.

[5] T. Lengauer & R. E. Tarjan, “A Fast Algorithm for
Finding Dominators in a Flowgraph,” Trans.
Programming Lang. and Syst. 1 (July, 1979), 121–141.

[6] T. C. Lethbridge & J. Singer, “Understanding
Software Maintenance Tools: Some Empirical
Research,” IEEE Workshop on Empirical Studies of
Software Maintenance (WESS’97), Bari, Italy (Oct.,
1997).

[7] H. A. Priestley & M. Ward, “A Multipurpose
Backtracking Algorithm,” J. Symb. Comput. 18
(1994), 1–40, 〈http://www.dur.ac.uk/∼dcs0mpw/
martin/papers/backtr-t.ps.gz〉.

[8] S. Robitaille, R. Schauer & R. K. Keller, “Bridging
Program Comprehension Tools by Design
Navigation,” IEEE International Conference on
Software Maintenance, San Jose, CA (Oct., 2000).

[9] S. E. Sim, C. L. A. Clarke & R. C. Holt, “Archetypal
Source Code Searches: A Survey of Software
Developers and Maintainers,” International Workshop
on Program Comprehension (1998).

[10] J. Singer, T. C. Lethbridge, N. Vinson & N. Anquetil,
“An Examination of Software Engineering Work
Practices,” Proceedings of CASCON ’97, Toronto,
Canada (1997).



[11] M. Ward, “Proving Program Refinements and
Transformations,” Oxford University, DPhil Thesis,
1989.

[12] M. Ward, “Foundations for a Practical Theory of
Program Refinement and Transformation,” Durham
University, Technical Report, 1994, 〈http://www.
dur.ac.uk/∼dcs0mpw/martin/papers/
foundation2-t.ps.gz〉.

[13] M. Ward, “Language Oriented Programming,”
Software—Concepts and Tools 15 (1994), 147–161,
〈http://www.dur.ac.uk/∼dcs0mpw/martin/papers/
middle-out-t.ps.gz〉.

[14] M. Ward, “Program Analysis by Formal
Transformation,” Comput. J. 39 (1996), 〈http://www.
dur.ac.uk/∼dcs0mpw/martin/papers/
topsort-t.ps.gz〉.

[15] M. Ward, “Assembler to C Migration using the
FermaT Transformation System,” International
Conference on Software Maintenance, 30th Aug–3rd
Sept 1999, Oxford, England (1999).

[16] M. Ward, “Reverse Engineering from Assembler to
Formal Specifications via Program Transformations,”
7th Working Conference on Reverse Engineering,
23-25th November, Brisbane, Queensland, Australia
(2000), 〈http://www.dur.ac.uk/∼dcs0mpw/martin/
papers/wcre2000.ps.gz〉.

[17] M. Ward, “Abstracting a Specification from Code,” J.
Software Maintenance: Research and Practice 5 (June,
1993), 101–122, 〈http://www.dur.ac.uk/∼dcs0mpw/
martin/papers/prog-spec.ps.gz〉.

[18] M. Ward, “Specifications from Source
Code—Alchemists’ Dream or Practical Reality?,” 4th
Reengineering Forum, September 19-21, 1994,
Victoria, Canada (Sept., 1994).

[19] M. Ward, “Derivation of Data Intensive Algorithms
by Formal Transformation,” IEEE Trans. Software
Eng. 22 (Sept., 1996), 665–686, 〈http://www.dur.ac.
uk/∼dcs0mpw/martin/papers/sw-alg.ps.gz〉.

[20] M. Weiser, “Program slicing,” IEEE Trans. Software
Eng. 10 (July, 1984), 352–357.


