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Abstract

A wide spectrum language is presented, which is designed to facilitate the proof of the cor-
rectness of refinements and transformations. Two different proof methods are introduced and
used to prove some fundamental transformations, including a general induction rule (Lemma 3.9)
which enables transformations of recursive and iterative programs to be proved by induction
on their finite truncations. A theorem for proving the correctness of recursive implementa-
tions is presented (Theorem 3.21), which provides a method for introducing a loop, without
requiring the user to provide a loop invariant. A powerful, general purpose, transformation for
removing or introducing recursion is described and used in a case study (Section 5) in which
we take a small, but highly complex, program and apply formal transformations in order to
uncover an abstract specification of the behaviour of the program. The transformation theory
supports a transformation system, called FermaT, in which the applicability conditions of each
transformation (and hence the correctness of the result) are mechanically verified. These results
together considerably simplify the construction of viable program transformation tools; practical
consequences are briefly discussed.

KEYWORDS: program transformation, refinement, reverse engineering, formal methods, wide
spectrum language, specification statement.

1 Introduction

There has been much research in recent years on the formal development of programs by refining
a specification to an executable program via a sequence of intermediate stages, where each stage
is proved to be equivalent to the previous one, and hence the final program is a correct imple-
mentation of the specification. However, there has been very little work on applying program
transformations to reverse-engineering and program understanding. This may be because of the
considerable technical difficulties involved: in particular, a refinement method has total control
over the structure and organisation of the final program, while a reverse-engineering method has
to cope with any code that gets thrown at it: including unstructured (“spaghetti”) code, poor
documentation, misuse of data structures, programming “tricks”, and undiscovered errors. Any
practical program transformation method cannot afford to ignore this problem, because it cannot
ignore the huge body of source code currently in use, and it cannot ignore the inevitable need for
maintenance, enhancement and modification of the programs developed using formal refinement.
A particular problem with most refinement methods is that the introduction of a loop construct
requires the user to determine a suitable invariant for the loop, together with a variant expression,
and to prove:
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1. That the invariant is preserved by the body of the loop;

2. The variant function is decreased by the body of the loop;

3. The invariant plus terminating condition are sufficient to implement the specification.

To use this method for reverse engineering would require the user to determine the invariants for
arbitrary (possibly large and complex) loop statements. This is extremely difficult to do for all but
the smallest “toy” programs. Therefore, a different approach to reverse engineering is required: the
approach presented in this paper does not require the use of loop invariants to deal with arbitrary
loops, although if invariants are available, the information they provide can be made use of.

Our aim in this paper is to present the foundations for a practical theory of program refine-
ment and transformation which can be applied to program development and reverse engineering,
although our primary focus will be on the latter problem. The theory is based on the concept of a
“Wide Spectrum Language”, which includes both low-level programming constructs and high-level
abstract specifications within a single language. Such a language forms an ideal tool for developing
methods for formal program development, and also for formal reverse engineering (for which we
have coined the term inverse engineering), because the proof that a program correctly implements a
specification, or that a specification correctly captures the behaviour of a program, can be achieved
by means of formal (semantic-preserving) transformations in the language.

Over the last twelve years we have been developing this wide spectrum language (called WSL), in
parallel with the development of a transformation theory and proof methods, together with methods
for program development and inverse engineering. The fundamental transformations presented in
this paper form the basic toolkit used in [War89, War92, War99] to extend the kernel WSL language
into a powerful programming and specification language, and to develop an extensive catalogue of
program transformations in the extended language.

The Refinement Calculus approach to program derivation [HHJ87, Mor94, MRG88] is super-
ficially similar to our program transformation method. It is based on a wide spectrum language,
using Morgan’s specification statement [Mor88] and Dijkstra’s guarded commands [Dij76]. How-
ever, this language has very limited programming constructs: lacking loops with multiple exits,
action systems with a “terminating” action, and side-effects. These extensions are essential if
transformations are to be used for reverse engineering. The most serious limitation is that the
transformations for introducing and manipulating loops require that any loops introduced must
be accompanied by suitable invariant conditions and variant functions. This makes the method
unsuitable for a practical reverse-engineering method. Morgan remarks (pp 166–167 of [Mor94])
that the whole development history is required for understanding the structure of the program
and making safe modifications. Unfortunately, there are many billions of lines of code in existence
for which we do not have the luxury of a complete development history! All we have is the code,
and some incomplete, inaccurate, and out of date documentation and comments. All we can rely
on is the code itself—and the refinement calculus cannot help us to understand the code, since
we need to understand it (to the extent of providing suitable invariants and variant functions for
all the loops) before we can start calculating with it. By contrast, the program transformation
approach is equally suitable for forward and reverse engineering—we give an example of reverse
engineering using formal transformations in Section 5. Starting with the source code of a program
we can apply transformations to simplify its structure and uncover a specification, without initially
understanding anything of the purpose of the program.

In developing a model based theory of semantic equivalence, we use the popular approach of
defining a core “kernel” language with denotational semantics, and permitting definitional exten-
sions in terms of the basic constructs. In contrast to other work (for example, [BMP89, Bir87,
Par84]) we do not use a purely applicative kernel; instead, the concept of state is included, using a
specification statement which also allows specifications expressed in first order logic as part of the
language, thus providing a genuine wide spectrum language.
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Fundamental to our approach is the use of infinitary first order logic (see [Kar64]) both to
express the weakest preconditions of programs [Dij76] and to define assertions and guards in the
kernel language. Engeler [Eng68] was the first to use infinitary logic to describe properties of
programs; Back [Bac80] used such a logic to express the weakest precondition of a program as a
logical formula, although his kernel language was limited to simple iterative programs. We use a
different kernel language which includes recursion and guards, so that Back’s language is a subset
of ours. We show that the introduction of infinitary logic as part of the language (rather than just
the metalanguage of weakest preconditions), together with a combination of proof methods using
both denotational semantics and weakest preconditions, is a powerful theoretical tool which allows
us to prove some general transformations and representation theorems.

The denotational semantics of the kernel language is based on the semantics of infinitary first
order logic. Kernel language statements are interpreted as functions which map an initial state to a
set of final states. This set of final states, rather than a single final state, models the nondeterminacy
in the language: for a deterministic program this set will contain a single final state. A program
S1 is a refinement of S2 if, for each initial state, the set of final states for S1 is a subset of
the final states for S2. Back and von Wright [BaW90] note that the refinement relation can be
characterised using weakest preconditions in higher order logic (where quantification over formulae
is allowed). For any two programs S1 and S2, the program S2 is a refinement of S1 if the formula
∀R.WP(S1,R)⇒WP(S2,R). This approach to refinement has two problems:

1. It has not been proved that for all programs S and formulae R, there exists a finite formula
WP(S,R) which expresses the weakest precondition of S for postcondition R. Can proof rules
justified by an appeal to WP in finitary logic be justifiably applied to arbitrary programs,
for which the appropriate finite WP(S,R) may not exist? This problem does not occur with
infinitary logic, since WP(S,R) has a simple definition for all programs S and all (infinitary
logic) formulae R;

2. Second order logic is incomplete in the sense that not all true statements are provable. So
even if the refinement is true, there is no guarantee that the refinement can be proved.

This paper presents solutions to both of these problems. Using infinitary logic allows us to give
a simple definition of the weakest precondition of any statement (including an arbitrary loop)
for any postcondition. Secondly, we show that for each pair of statements S1 and S2 there is
a single postcondition R such that S1 is a refinement of S2 iff both WP(S1,R) ⇒ WP(S2,R)
and WP(S1, true) ⇒ WP(S2, true), so no quantification over formulae or Boolean predicates is
required. Thirdly, the infinitary logic we use is complete: this means that if there is a refinement
then there is also guaranteed to be a proof of the corresponding formula—although the proof may
be infinitely long! However, it is perfectly practical to construct infinitely long proofs: in fact the
proofs of many transformations involving recursion or iteration are infinite proofs constructed by
induction (see Section 3 for example). Thus infinitary logic is both necessary and sufficient for
proving refinements and transformations.

We consider the following criteria to be important for any practical wide-spectrum language
and transformation theory:

1. General specifications in any “sufficiently precise” notation should be included in the lan-
guage. For “sufficiently precise” we will mean anything which can be expressed in terms of
mathematical logic with suitable notation. This will allow a wide range of forms of speci-
fication, for example Z specifications [Hay87] and VDM [Jon86] both use the language of
mathematical logic and set theory (in different notations) to define specifications. The “Rep-
resentation Theorem” (Theorem 3.5) proves that our specification statement is sufficient to
specify any WSL program (and therefore any computable function, since WSL is certainly
Turing complete);

2. Nondeterministic programs. Since we do not want to have to specify everything about the
program we are working with (certainly not in the first versions) we need some way of speci-
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fying that some executions will not necessarily result in a particular outcome but one of an
allowed range of outcomes. The implementor can then use this latitude to provide a more
efficient implementation which still satisfies the specification;

3. A well-developed catalogue of proven transformations which do not require the user to dis-
charge complex proof obligations before they can be applied. In particular, it should be
possible to introduce, analyse and reason about imperative and recursive constructs without
requiring loop invariants;

4. Techniques to bridge the “abstraction gap” between specifications and programs. See Sec-
tion 3.4.3 and [War93, YoW93] for examples;

5. Applicable to real programs—not just those in a “toy” programming language with few
constructs. This is achieved by the (programming) language independence and extendibility
of the notation via “definitional transformations”. See [War90, War92, War96] for examples;

6. Scalable to large programs: this implies a language which is expressive enough to allow
automatic translation from existing programming languages, together with the ability to
cope with unstructured programs and a high degree of complexity. See [WaB93] for example.

A system which meets all these requirements would have immense practical importance in the
following areas:

• Improving the maintainability (and hence extending the lifetime) of existing mission-critical
software systems;

• Translating programs to modern programming languages, for example from obsolete Assem-
bler languages to modern high-level languages;

• Developing and maintaining safety-critical applications. Such systems can be developed by
transforming high-level specifications down to efficient low level code with a very high degree
of confidence that the code correctly implements every part of the specification. When en-
hancements or modifications are required, these can be carried out at the appropriate level
of abstraction, followed by “re-running” as much of the formal development as possible. Al-
ternatively, the changes could be made at a lower level, with formal inverse engineering used
to determine the impact on the formal specification;

• Extracting reusable components from current systems, deriving their specifications and stor-
ing the specification, implementation and development strategy in a repository for subsequent
reuse. The use of the join construct (Section 4.1) as an indexing mechanism is discussed in
[War91].

1.1 Outline of the Paper

In Section 2 we describe the syntax and denotational semantics of the kernel language. We make
use of two different formulations of Dijkstra’s weakest precondition [Dij76]: the first (denoted wp)
is a function which maps the semantics of a program and a condition on the final state space to
a condition on the initial state space (a condition on a state space is simply a set of states: those
states which satisfy the condition). The second (denoted WP) is a function which maps the syntax
of a program and a formula of first order logic to another formula of first order logic. We prove that
these two definitions are equivalent, given a suitable interpretation of formulae as state conditions.

In Section 3 we develop some basic proof rules for proving the correctness of transformations.
These enable us to prove a “Representation Theorem” (Theorem 3.5) which shows that any program
can be automatically transformed into an equivalent specification. We also develop a fundamental
transformation for the recursive implementation of specifications, and a proof rule for proving
termination of recursive programs. These results make the connection between abstract, recursively-
defined specifications and the recursive and iterative procedures which implement them.
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In Section 4 we present the first set of extensions to the kernel language. We also introduce
a join construct: the join of two programs or specifications is a program which simultaneously
meets all the specifications which either of its components can meet. Equivalently, the join of
two programs is the weakest program which refines both components. This is a powerful tool for
specifying complex programs in that different aspects of the program can be specified separately
(for example: mainline code and error cases) and then joined together. We have also recently
started using join as a form of parallel operator for programs with shared memory (see [YoW93]).
Finally, in Section 5 we give an example of a powerful transformation for both forward and reverse
engineering and its application to a reverse engineering problem.

2 Syntax and Semantics of the Kernel Language

2.1 Syntax

Our kernel language consists of four primitive statements, two of which contain formulae of infinitary
first order logic, and three compound statements. Let P and Q be any formulae, and x and y be
any non-empty sequences of variables. The following are primitive statements:

1. Assertion: {P} is an assertion statement which acts as a partial skip statement. If the
formula P is true then the statement terminates immediately without changing any variables,
otherwise it aborts (we treat abnormal termination and non-termination as equivalent, so a
program which aborts is equivalent to one which never terminates);

2. Guard: [Q] is a guard statement. It always terminates, and enforces Q to be true at this point
in the program without changing the values of any variables. It has the effect of restricting
previous nondeterminism to those cases which will cause Q to be true at this point. If this
cannot be ensured then the set of possible final states is empty, and therefore all the final
states will satisfy any desired condition (including Q);

3. Add variables: add(x) adds the variables in x to the state space (if they are not already
present) and assigns arbitrary values to them. The arbitrary values may of course be restricted
to particular values by a subsequent guard;

4. Remove variables: remove(y) removes the variables in y from the state space (if they are
present).

There is a rather pleasing duality between the assertion and guard statements, and the add and
remove statements.

For any kernel language statements S1 and S2, the following are also kernel language statements:

1. Sequence: (S1; S2) executes S1 followed by S2;

2. Nondeterministic choice: (S1 ⊓ S2) choses one of S1 or S2 for execution, the choice being
made nondeterministically;

3. Recursion: (µX.S1) where X is a statement variable (a symbol taken from a suitable set of
symbols). The statement S1 may contain occurrences of X as one or more of its component
statements. These represent recursive calls to the procedure whose body is S1.

This very simple kernel language is all we need to construct our wide spectrum language,
for example an assignment such as x := 1 is constructed by adding x and restricting its value:
(add(〈x〉); [x = 1]). For an assignment such as x := x + 1 we need to record the new value of
x in a new variable, x′ say, before copying it into x. So we can construct x := x + 1 as follows:
(add(〈x′〉); ([x′ = x+ 1]; (add(〈x〉); ([x = x′]; remove(x′)))))

Three fundamental statements can be defined immediately:

abort =
DF
{false} null =

DF
[false] skip =

DF
{true}

where true and false are universally true and universally false formulae, defined: true =
DF
∀x. (x =

x) and false =
DF
¬∀x. (x = x).
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A statement whose set of final states may be empty is called a “null statement”, an example is
the guard, [false], which is a “correct refinement” of any specification whatsoever (see the definition
of refinement in Section 2.4). Clearly, any null statement, and guard statements in general cannot
be directly implemented, but they are nonetheless a useful theoretical tool. Since it is only null-
free statements which are implementable, it is important to be able to distinguish easily which
statements are null-free. This is the motivation for the definition of our specification statement in
the next section.

The kernel language statements have been described as “The quarks of programming” — mys-
terious objects which are (in the case of the guard at least) are not implementable in isolation, but
which in combination, form the familiar “atomic” operations of assignment, if statements etc.

2.2 The Specification Statement

We define the notation x := x′.Q where x is a sequence of variables and x′ the corresponding
sequence of “primed variables”, and Q is any formula. This assigns new values to the variables in
x so that the formula Q is true where (within Q) x represents the old values and x′ represents
the new values. If there are no new values for x which satisfy Q then the statement aborts. The
formal definition is:

x := x′.Q =
DF

({∃x′.Q}; (add(x′); ([Q]; (add(x); ([x = x′]; remove(x′))))))

An important property of this specification statement is that it is guaranteed null-free. A simple
example is the assignment 〈x〉 := 〈x′〉.(x′ = x+ 1) which increments the value of x by one, without
affecting any other variable. For a more interesting example, we can specify a program to sort the
array A using a single specification statement:

A := A′.(sorted(A′) ∧ permutation of(A′, A))

This says “assign a new value A′ to A which is a sorted array and a permutation of the original
value of A”, it precisely describes what we want our sorting program to do without saying how it is
to be achieved. In other words, it is not biased towards a particular sorting algorithm. In [War90]
we take this specification as our starting point for the “derivation by formal transformation” of
several efficient sorting algorithms, including insertion sort, quicksort and a hybrid sort.

Morgan and others [Mor88, Mor94, MoR87, MoV93] use a different specification statement,
written x : [Pre,Post] where x is a sequence of variables and Pre and Post are formulae of finitary
first-order logic. This statement is guaranteed to terminate for all initial states which satisfy Pre

and will terminate in a state which satisfies Post, while only assigning to variables in the list x. In
our notation an equivalent statement is ({Pre}; (add(x); [Post])). The disadvantage with Morgan’s
notation is that it makes the user responsible for ensuring that he never refines a specification into
an (unimplementable) null statement.

2.3 Conditional Statements

Conditional statements are defined using a combination of guards and nondeterministic choice, for
example: if B then S1 else S2 fi can be expressed in the kernel language as:

(

([B]; S1) ⊓ ([¬B]; S2)
)

while a two-way guarded command [Dij76] such as: if B1 → S1 ⊓⊔ B2 → S2 fi can be expressed
as

(

{B1 ∨ B2};
(

([B1]; S1) ⊓ ([B2]; S2)
))

Note that the statement will abort if neither B1 nor B2 is true. This will be extended to an n-way
guarded command in the obvious way, see Section 4 for the first set of extensions to the kernel
language.
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2.4 Semantics of the Kernel Language

In this section we will describe the denotational semantics [Ten76] of kernel statements in terms
of mathematical objects which we call “state transformations”. Unlike the CIP project [BB85,
BMP89, BaT87, BaT87] and others (eg [BaW82, Bir87]) our kernel language will have state in-
troduced right from the start so that it can cope easily with imperative programs. We also use a
constructive rather than algebraic style of specification, since Majester [Maj77] has shown some fun-
damental limits with purely algebraic specification methods. Our experience is that an imperative
kernel language with functional extensions is more tractable than a functional kernel language with
imperative extensions. Unlike Bird [Bir87] we did not want to be restricted to a purely functional
language since this is incompatible with the aims of a true wide spectrum language.

A proper state is a function which gives values to a particular (finite, non-empty) collection of
variables. There is also a special state ⊥ which indicates nontermination or error. As discussed
above, the semantics of statements are based on the semantics of infinitary logic. A structure for
the logic is a set of values and a function which maps the constant symbols, predicate symbols
and function symbols of the logic to elements, predicates and functions on the set of values. Such
a structure defines an interpretation of formulae as state predicates (sets of proper states) and
statements as state transformations (functions from a state to a set of states). If ⊥ ∈ f(s) for state
transformation f and initial state s, then f(s) includes all possible final states. See [War89] for the
details of the interpretation of statements. If V and W are finite non-empty sets of variables, and
S is a statement, then we write S : V → W (a trinary relation) if V and W are consistent input
and output state spaces for S. For example, the program add(x) must include x in its output state
space, while remove(x) must not. The program (add(x) ⊓ remove(x)) has no consistent input and
output state spaces.

The refinement relation for state transformations is very simple: state transformation f1 is
refined by state transformation f2, written f1 ≤ f2, if and only if they have the same initial and
final state spaces, and for each initial state s, f2(s) ⊆ f1(s).

We define three functions for composing state transformations: sequential composition, choice
and join:

(f1; f2)(s) =
DF

⋃

{

f2(s
′)

∣

∣ s′ ∈ f1(s)
}

(f1 ⊓ f2)(s) =
DF

f1(s) ∪ f2(s)

(f1 ⊔ f2)(s) =
DF

f1(s) ∩ f2(s)

Sequencing and choice correspond with the first two compound statement types in the kernel
language. The join construct is not included in the kernel language because it is expressable in
terms of the existing kernel language constructs. The interpretation of join is that any specification
satisfied by either f1 or f2 will also be satisfied by (f1 ⊔ f2). Compare this with choice where only
those specifications satisfied by both f1 and f2 will be satisfied by (f1 ⊓ f2). If one of f1 and f2

does not terminate then the join acts the same as the terminating state transformation. If f1 and
f2 are inconsistent on s (i.e. f1(s) and f2(s) have no states in common) then the result of the join
will be null on s.

Let V and W be finite non-empty sets of variables, and H be a non-empty set of values. We
write VH for the set of states {⊥} ∪ HV and EH(V ) for the set of state predicates ℘(HV ) (the set
of all sets of proper states), and FH(V,W ) for the set of state transformations from V to W . These
are the functions f : VH → ℘(WH) such that ⊥ ∈ F (⊥) and ∀s ∈ VH.⊥ ∈ f(s) ⇒ f(s) = WH.
Given a structure M for the infinitary logic, the function intM maps a statement and an initial
state space to the interpretation of the statement as a state transformation. If S is any statement
and V and W are finite, non-empty sets of variables where S : V → W , then intM (S, V ) is the
state transformation which gives the meaning of S. (Note that we don’t need to include W as a
parameter to intM since it is uniquely defined by S and V ).
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Three fundamental state transformations in FH(V, V ) are: Ω,Θ and Λ. These give the semantics
of the statements abort, null and skip. For each proper s ∈ VH:

Ω(s) =
DF

VH Θ(s) =
DF

∅ Λ(s) =
DF
{s}

Thus Ω is nowhere defined and never terminates, Λ is everywhere defined and non-null and always
terminates in the same state it is started in, and Θ is everywhere defined and everywhere null.

With these definitions we see that 〈FH(V,W ), ≤ 〉 forms a lattice structure [DaP90] with Θ as
the top element, Ω as the bottom element, ⊓ as the lattice meet operator, and ⊔ as the lattice join
operator. If for every F ⊆ FH(V,W ) we define

⊔

F and
d
F by (

⊔

F )(s) =
DF

⋂

{ f(s) | f ∈ F }
and (

d
F )(s) =

DF

⋃

{ f(s) | f ∈ F } then we have a complete lattice structure (see [DaP90]). It
is order isomorphic to a sublattice of 〈℘(VHWH),⊆〉 whose meet is ∩ and join is ∪, the embedding
ψ is defined:

For f ∈ FH(V,W ): ψ(f) = { 〈s, t〉 | s ∈ VH ∧ t ∈ f(s) }

ψ is join and meet preserving and is a 1–1 map so it is a 1–1 lattice homomorphism (see [DaP90]).
The inverse function φ : ℘(VHWH)→ FH(V,W ) defined for ρ ⊆ VHWH by:

φ(ρ)(s) =
DF

{

WH if s = ⊥
{ t ∈WH | 〈s, t〉 ∈ ρ } otherwise

φ is an onto lattice homomorphism which is also join and meet preserving.

The operator in 〈℘(VHWH),⊆〉 which corresponds to sequential composition of state transfor-
mations in 〈FH(V,W ), ≤ 〉 is relational composition, which is defined as follows. For relations ρ
and σ and elements s and t:

〈s, t〉 ∈ (ρ ◦ σ) ⇐⇒ ∃s′. 〈s, s′〉 ∈ ρ ∧ 〈s′, t〉 ∈ σ

The embedding ψ maps (· ; ·) to (· ◦ ·). From these remarks it is clear that we could have chosen
a relation on states to represent the semantics of a program: instead we choose the more intuitive
state transformations.

We next define a general recursion primitive which is sufficiently powerful to express all the
usual recursive and iterative programming constructs. A program containing calls to a procedure
whose definition is not provided can be thought of as a function from state transformations to state
transformations; since the “incomplete” program can be completed by filling in the body of the
procedure. For a recursive procedure call, we “fill in” the procedure body with copies of itself, so
the result of the “fill in” is still incomplete (but “nearer” to completion in some sense which we will
make precise). A recursive procedure can be considered as the “limit” formed by joining together
the results of infinite sequence of such filling-in operations. More formally:

Definition 2.1 Recursion: Suppose we have a continuous function F (a function with bounded
nondeterminism) which maps the set of state transformations FH(V, V ) to itself. We want to define
a recursive state transformation from F as the limit of the sequence of state transformations F(Ω),
F(F(Ω)), F(F(F(Ω))), . . . With the definition of state transformation given above, this limit
(µ.F) has a particularly simple and elegant definition:

(µ.F) =
DF

⊔

n<ω

Fn(Ω) i.e., for each s ∈ VH (µ.F)(s) =
⋂

n<ω

Fn(Ω)(s)

From this definition we see that F((µ.F)) = (µ.F). So the state transformation (µ.F) is a fixed
point for the function F ; it is easily shown to be the least fixed point.

We say Fn(Ω) is the “nth truncation” of (µ.F): as n increases the truncations get closer
to (µ.F). The larger truncations provide more information about (µ.F)—more initial states for
which it terminates and a restricted set of final states. The

⊔

operation collects together all this
information to form (µ.F).
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2.5 Weakest Preconditions of Statements

We define the weakest precondition, wp(f, e) of a state transformation f and a condition on the final
state e to be the weakest condition on the initial state space such that if s satisfies this condition then
all elements of f(s) satisfy e. So the weakest precondition is a function wp: FH(V,W )EH(W ) →
EH(V ) where wp(f, e) =

DF
{ s ∈ VH | f(s) ⊆ e }. Note that since ⊥ ∈ f(⊥) for any f , we have

f(⊥) * e, so ⊥ /∈ wp(f, e) for any f and e, so wp(f, e) is indeed in EH(V ).

The next theorem shows how refinement can be characterised using weakest preconditions:

Theorem 2.2 For any state transformations f1, f2 ∈ FH(V,W ):

f1 ≤ f2 ⇐⇒ ∀e ∈ EH(W ).wp(f1, e) ⊆ wp(f2, e)

Proof: Assume f1 ≤ f2 and let e ∈ EH(W ). Let s ∈ wp(f1, e). Then f1(s) ⊆ e. Therefore
f2(s) ⊆ e by the definition of refinement. So s ∈ wp(f2, e). But this is true for any s ∈ wp(f1, e),
hence wp(f1, e) ⊆ wp(f2, e).

Conversely, suppose wp(f1, e) ⊆ wp(f2, e) for any e ∈ EH(W ). Let s ∈ VH be such that ⊥ /∈
f1(s), then f1(s) ∈ EH(W ). So put e = f1(s). Now, s ∈ wp(f1, f1(s)) trivially, so s ∈ wp(f2, f1(s)).
Hence f2(s) ⊆ f1(s). But this is true for every s such that ⊥ /∈ f(s). If ⊥ ∈ f(s) then f(s) = WH

by definition, so f2(s) ⊆ f1(s) trivially. So f1 ≤ f2 as required. �

The fact that refinement can be defined directly from the weakest precondition will later prove
to be vitally important. A similar theorem to this one was used in [Bac80], our next result im-
proves on this by showing that there is one particular postcondition which (together with the true
postcondition) is sufficient to characterise refinement of state transformations. This allows us to
eliminate the quantification over state conditions in Theorem 2.2. Later on, when we are interpret-
ing formulae of first order logic as state conditions, this result will avoid the need for second order
logic (i.e. quantification over formulae), or the “trick” of extending the logic with a new predicate
symbol (which represents the unrestricted postcondition).

Theorem 2.3 Let f1, f2 be any state transformations in FH(V,W ) and let x be any list of variables
containing all the variables whose values may be changed by either of f1 or f2. Let x′ be a list of new
variables, of the same length as x. We may assume, without loss of generality, that the variables
in x′ are in both V and W , and that f1 and f2 are independent of x′ (i.e. the final value of x is
not dependent on the initial value of x′). Let e be the state condition in EH(W ) defined by:

e =
{

s ∈ EH(W ) | s 6= ⊥ ∧ ∀x ∈ x̃. s(x) 6= s(x′)
}

so e is the interpretation of the formula x 6= x′. Let etrue = EH(W )\{⊥} which is the interpretation
of the formula true. Then:

f1 ≤ f2 ⇐⇒
(

wp(f1, e) ⊆ wp(f2, e)
)

∧
(

wp(f1, etrue) ⊆ wp(f2, etrue)
)

Proof: The forward implication follows directly from Theorem 2.2, so suppose we have wp(f1, e) ⊆
wp(f2, e) and wp(f1, etrue) ⊆ wp(f2, etrue).

• Let s be any element of VH and t any element of f2(s), we need to prove t ∈ f1(s). If t = ⊥
then s /∈ wp(f2, etrue) so s /∈ wp(f1, etrue) and ⊥ ∈ f1(s) as required;

• If t 6= ⊥ then t assigns some values (d say) to the variables in x, the values of all other
variables in t must be the same as in s;

• Let t′ and s′ be formed from t and s by changing the values of x′ to equal d;

• Then since f2 is independent of x′ we must have t′ ∈ f2(s
′). t′ satisfies the interpretation of

x = x′ so t′ /∈ e so f2(s
′) 6⊆ e;

• This means that s′ /∈ wp(f2, e) so from the premise we must have s′ /∈ wp(f1, e);
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• So there exists t′′ ∈ f1(s
′) which is not in e;

• t′′ 6= ⊥ since ⊥ /∈ f1(s) and s and s′ only differ on x′ and f1 is independent of x′;

• So t′′ is a proper state which is not in e, i.e. x = x′ is interpreted as true in t′′;

• This means t′′ assigns values to x which match x′. So these values must be the values d;

• But these are the same values t′ assigns to x and as f1 and f2 can only change the values of
variables in x we must have t′ = t′′.

Thus t′ ∈ f1(s
′) and as f1 is independent of x′ this means t ∈ f1(s) as required. �

We will define a weakest precondition for statements (the WP discussed in Section 1.1) as a
formula of infinitary logic. The weakest precondition “captures” the semantics of a program in
the sense that, for any two programs S1 : V → W and S2 : V → W , the statement S2 is a correct
refinement of S1 if and only if the formula

(

WP(S1,x 6= x′)⇒WP(S2,x 6= x′)
)

∧
(

WP(S1, true)⇒WP(S2, true)
)

is a theorem of first order logic, where x is a list of all variables assigned to by either S1 or
S2, and x′ is a list of new variable. This means that proving a refinement or implementation or
equivalence amounts to proving a theorem of first order logic. Back [Bac80, Bac88] and Morgan
[Mor94, MoR87] both use weakest preconditions in this way, but Back has to extend the logic with
a new predicate symbol to represent the postcondition, and Morgan has to use second order logic
with quantification over Boolean predicates.

Hence WP is a function which takes a statement (a syntactic object) and a formula from L
(another syntactic object) and returns another formula in L.

Definition 2.4 For any kernel language statement S : V →W , and formula R whose free variables
are all in W , we define WP(S,R) as follows:

1. WP({P},R) =
DF

P ∧ R

2. WP([Q],R) =
DF

Q⇒ R

3. WP(add(x),R) =
DF
∀x.R

4. WP(remove(x),R) =
DF

R

5. WP((S1; S2),R) =
DF

WP(S1,WP(S2,R))

6. WP((S1 ⊓ S2),R) =
DF

WP(S1,R) ∧ WP(S2,R)

7. WP((µX.S),R) =
DF

∨

n<ω WP((µX.S)n,R)

where (µX.S)0 = abort and (µX.S)n+1 = S[(µX.S)n/X] which is S with all occurrences of X
replaced by (µX.S)n. (In general, for statements S, T and T′, the notation S[T′/T] means “S
with T′ instead of each T′′).

For the fundamental statements we have: WP(abort,R) = false, WP(skip,R) = R and
WP(null,R) = true.

For the specification statement x := x′.Q we have:

WP(x := x′.Q,R) ⇐⇒ WP(({∃x′.Q}; (add(x′); ([Q]; (add(x); ([x = x′]; remove(x′)))))),R)

⇐⇒ ∃x′Q ∧ ∀x′. (Q⇒ ∀x. (x = x′ ⇒ R))

⇐⇒ ∃x′Q ∧ ∀x′. (Q⇒ R[x′/x])

(recall that since the variables x′ have been removed, they cannot occur free in R).

For Morgan’s specification statement x : [Pre,Post] we have:

WP(x : [Pre,Post],R) ⇐⇒ Pre ∧ ∀x. (Post⇒ R)

10



The Hoare predicate (defining partial correctness): {Pre}S{Post} is true if whenever S termi-
nates after starting in an initial state which satisfies Pre then the final state will satisfy Post. We
can express this is terms of WP as the formula: Pre ∧ (WP(S, true)⇒WP(S,Post)).

For the if statement discussed in Section 2.3:

WP(if B then S1 else S2 fi,R) ⇐⇒ WP((([B]; S1) ⊓ ([¬B]; S2)),R)

⇐⇒ WP(([B]; S1),R) ∧ WP(([¬B]; S2),R)

⇐⇒ WP([B],WP(S1,R)) ∧ WP([¬B],WP(S2,R))

⇐⇒ (B⇒WP(S1,R)) ∧ (¬B⇒WP(S2,R))

Similarly, for the Dijkstra guarded command:

WP(if B1 → S1 ⊓⊔ B2 → S2 fi,R) ⇐⇒ (B1 ∨B2) ∧ (B1 ⇒WP(S1,R)) ∧ (B2 ⇒WP(S2,R))

A fundamental result, first proved by Back [Bac80] for his kernel language, which also holds for
our kernel language, is that these two forms of weakest precondition are equivalent:

Theorem 2.5 Let S be any statement and R be any postcondition for S. If S is interpreted in some
structure of L as the state transformation f and R as the state predicate e, then the interpretation
of the formula WP(S,R) is the state predicate wp(f, e). Hence, the formula WP(S,R) captures
the essential properties of S for refinement purposes. More formally:

intM (WP(S,R), V ) = wp(intM (S, V ), intM (R,W ))

Proof: By induction on the structure of S and the depth of recursion nesting. �

3 Proof Rules and Basic Transformations

Semantic refinement between statements is defined in the obvious way, as the refinement of the
interpretations:

Definition 3.1 Semantic Refinement of statements: If S,S′ : V → W have no free statement
variables and intM (S, V ) ≤ intM (S′, V ) for a structure M of L then we say that S is refined by
S′ under M and write S ≤M S′. If ∆ is a set of sentences in L (formulae with no free variables)
and S ≤M S′ is true for every structure M in which each sentence in ∆ is true then we write
∆ |= S ≤ S′. A structure in which every element of a set ∆ of sentences is true is called a model
for ∆.

Proof theoretic refinement is defined from the weakest precondition formula WP, applied to a
particular postcondition:

Definition 3.2 Proof Theoretic Refinement: If S,S′ : V → W have no free statement variables
and x is a sequence of all variables assigned to in either S or S′, and the formulae WP(S,x 6= x′)⇒
WP(S′,x 6= x′) and WP(S, true) ⇒ WP(S′, true) are provable from the set ∆ of sentences, then
we say that S is refined by S′ and write: ∆ ⊢ S ≤ S′.

The next theorem shows that, for countable sets ∆, these two notions of refinement are equiv-
alent:

Theorem 3.3 If S,S′ : V → W have no free statement variables and ∆ is any countable set of
sentences of L then:

∆ |= S ≤ S′ if and only if ∆ ⊢ S ≤ S′

Proof: Omitted �
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This theorem provides two different methods for proving a refinement. More importantly
though, it proves the connection between the intuitive model of a program as something which
starts in one state and terminates (if at all) in some other state, and the weakest preconditions
WP(S,x 6= x′) and WP(S, true). For a nondeterministic program there may be several possible
final states for each initial state. This idea is precisely captured by the state transformation model
of programs and refinement. In the “predicate transformer” model of programs, which forms the
foundation for [Mor94] and others, the meaning of a program S is defined to be a function which
maps a postcondition R to the weakest precondition WP(S,R). This model certainly does not
“correspond closely with the way that computers operate” ([Mor94], P.180), although it does have
the advantage that weakest preconditions are generally easier to reason about than state trans-
formations. So a theorem which proves the equivalence of the two models allows us to prove
refinements using weakest preconditions, while doing justice to the more intuitive model.

The theorem also illustrates the importance of using Lω1ω rather than a higher-order logic, or
indeed a larger infinitary logic. Back and von Wright [BaW90] describe an implementation of the re-
finement calculus, based on (finitary) higher-order logic using the refinement rule ∀R.WP(S1,R)⇒
WP(S2,R) where the quantification is over all predicates (boolean state functions). However, the
completeness theorem fails for all higher-order logics: Karp [Kar64] proved that the completeness
theorem holds for Lω1ω and fails for all infinitary logics larger than Lω1ω. Finitary logic is not
sufficient since it is difficult to determine a finite formula giving the weakest precondition for an
arbitrary recursive or iterative statement. Using Lω1ω (the smallest infinitary logic) we simply
form the infinite disjunction of the weakest preconditions of all finite truncations of the recursion
or iteration. We avoid the need for quantification over formulae because with our proof theoretic
refinement method the two postconditions x 6= x′ and true are sufficient. Thus we can be confident
that the proof method is both consistent and complete, in the sense that:

1. If
(

WP(S1,x 6= x′) ⇒ WP(S2,x 6= x′)
)

∧
(

WP(S1, true) ⇒ WP(S2, true)
)

can be proved,
for statement S1 and S2, then S2 is certainly a refinement of S1, and

2. If S1 is refined by S2 then there certainly exists a proof the corresponding WP formula.

Basing our transformation theory on any other logic would not provide this completeness result.

Definition 3.4 Statement Equivalence: If ∆ ⊢ S ≤ S′ and ∆ ⊢ S′ ≤ S then we say that
statements S and S′ are equivalent and write: ∆ ⊢ S ≈ S′. Similarly, if ∆ |= S ≤ S′ and
∆ ⊢ S ≤ S′ then we write ∆ ⊢ S ≈ S′. From Theorem 3.3 we have: ∆ |= S ≈ S′ iff
∆ ⊢ S ≈ S′.

3.1 Expressing a Statement as a Specification

The formulae WP(S,x 6= x′) and WP(S, true) tell us everything we need to know about S in order
to determine whether a given statement is equivalent to it. In fact, as the next theorem shows, if
we also know WP(S, false) (which is always false for null-free programs) then we can construct a
specification statement equivalent to S. Although this would seem to solve all reverse engineering
problems at a stroke, and therefore be a great aid to software maintenance and reverse engineering,
the theorem has fairly limited value for practical programs: especially those which contain loops
or recursion. This is partly because there are many different possible representations of the spec-
ification of a program, only some of which are useful for software maintenance. In particular the
maintainer wants a short, high-level, abstract version of the program, rather than a mechanical
translation into an equivalent specification (see [War95] for a discussion on defining different levels
of abstraction). In practice, a number of techniques are needed including a combination of auto-
matic processes and human guidance to form a practical program analysis system. An example of
such a system is the Maintainer’s Assistant [Bul90, WaB93, WCM89] which uses transformations
developed from the theoretical foundations presented here.

The theorem is of considerable theoretical value however in showing the power of the specifi-
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cation statement: in particular it tells us that the specification statement is certainly sufficiently
expressive for writing the specification of any computer program whatsoever. Secondly, we will use
the theorem in Section 4.1 to add a join construct to the language and derive its weakest precon-
dition. This means that we can use join to write programs and specifications, without needing to
extend the kernel language. Thirdly, we use it in Section 4.2 to add arbitrary (countable) join and
choice operators to the language, again without needing to extend the kernel language.

Theorem 3.5 The Representation Theorem: Let S : V → V , be any kernel language statement
and let x be a list of all the variables assigned to by S. Then for any countable set ∆ of sentences:

∆ ⊢ S ≈ [¬WP(S, false)]; x := x′.(¬WP(S,x 6= x′) ∧ WP(S, true))

Proof: Without loss of generality we may assume x̃ ⊆ V . Let V ′ = V ∪ x̃′, let M be any model
for ∆, and let f = intM (S, V ) and f ′ = intM (S, V ′).

Now, f ′ is the program f with its initial and final state spaces extended to include x′, hence
if s is any state in VH and t ∈ f(s) and s′ is any extension of the state s to x′ then there exists
t′ ∈ f ′(s′), the corresponding extension of t, with t′(z) = s′(z) for every z ∈ x̃′ and t′(z) = t(z) for
every z /∈ x̃′.

If S is null for some initial state then WP(S, false) is true for that state, hence the guard is false
and the specification is also null. If S is undefined then WP(S, true) is false, and the specification
statement is also undefined. So we only need to consider initial states for which S is both defined
and non-null. Fix s as any element of VH such that f(s) is non-empty and ⊥ /∈ f(s). Then for any
extension s′ of s, f ′(s′) is non-empty and ⊥ /∈ f ′(s′). Let:

g = intM (add(x′); [¬WP(S,x 6= x′)], V )

For each t ∈ VH we define st ∈ V
′
H to be the extension of s which assigns to x′ the same values

which t assigns to x. We will prove the following Lemma:

Lemma 3.6 For every t ∈ f(s) there is a corresponding st ∈ g(s) and every element of g(s) is of
the form st for some t ∈ f(s).

Proof: Let t be any element of f(s). t gives a value to each variable in x and therefore can be
used to define an extension st ∈ V

′
H of s where the values assigned to x′ by st are the same values

which t assigns to x. (The values given to any other variables are the same in s, t, and st since S

can only affect the values of variables in x.) Then we claim:

st /∈ intM (WP(S,x 6= x′), V ′)

To prove this we note that a possible final state for f ′ on initial state st is the extension t′ ∈ V ′
H

of the state t, where t′ gives the same values to x′ as st (the initial state). But these values are
the same as the values t (and hence t′) gives to x, so t′ does not satisfy the condition intM (x 6=
x′, V ′). So not all final states for f ′ on initial state st satisfy the condition, so st does not satisfy
intM (WP(S,x 6= x′), V ′). Hence:

st ∈ intM (¬WP(S,x 6= x′), V ′)

and hence st ∈ g(s).

Conversely, every final state t′ ∈ g(s) leaves the values of x the same as in s and assigns values
to x′ such that t′ /∈ wp(f ′, intM (x 6= x′, V ′)) is satisfied. For each such t′ we can define a state
t ∈ VH which assigns to x the values t′ assigns to x′. Then t′ = st where st is as defined above.
Suppose t /∈ f(s), then every terminal state in f(s) must have values assigned to x which differ
from those st assigns to x′. But then every terminal state of f ′(st) would satisfy intM (x 6= x′, V ′)
and hence st, and therefore t′, would satisfy wp(f ′, intM (x 6= x′, V ′)) which is a contradiction. So
t ∈ f(s) as required. This completes the proof of the Lemma. �
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To complete the main proof, we note that the state transformation g′ = intM (add(x); [x =
x′],W ) maps each st to the set {t}. Hence f(s) = (g; g′)(s) and this holds for all initial states s
on which S is defined and determinate. Hence S is equivalent to the given specification. �

For a general statement S : V →W we have the corollary:

Corollary 3.7 Let S : V → W , be any kernel language statement and let x be a list of all the
variables assigned to by S. Without loss of generality we may assume that W ⊆ V (Any variables
added by S are already in the initial state space). Let y be a list of the variables removed by S, so
x̃ ∩ ỹ = ∅. Then for any countable set ∆ of sentences:

∆ ⊢ S ≈ [¬WP(S, false)]; x := x′.(¬WP(S,x 6= x′) ∧ WP(S, true)); remove(y)

This theorem gives us an alternative representation for the weakest precondition of a statement:

Corollary 3.8 For any statement S:

WP(S,R) ⇐⇒

WP(S, false) ∨
(

∃x′.¬WP(S,x 6= x′) ∧ WP(S, true) ∧ ∀x′. (¬WP(S,x 6= x′)⇒ R[x′/x])
)

(1)

where x is the variables assigned to by S as above.

Proof: Convert S to its specification equivalent using Theorem 3.5, take the weakest precondition
for R and simplify the result. �

This corollary is useful in that it expresses the weakest precondition of a statement for any post-
condition as a simple formula involving the postcondition itself and weakest preconditions of fixed
formulae.

3.2 Some Basic Transformations

In this section we prove some fundamental transformations of recursive programs. The general
induction rule shows how the truncations of a recursion capture the semantics of the full recursion—
each truncation contains some information about the recursion, and the set of all truncations is
sufficient for proving refinement and equivalence. This induction rule proves to be an essential tool
in the development of a transformation catalogue: we will use it almost immediately in the proof
of a fold/unfold transformation (Lemma 3.12).

Lemma 3.9 The Induction Rule for Recursion: If ∆ is any countable set of sentences and the
statements S,S′ : V → V have the same initial and final state spaces, then:

(i) ∆ ⊢ (µX.S)k ≤ (µX.S) for every k < ω;

(ii) If ∆ ⊢ (µX.S)n ≤ S′ for all n < ω then ∆ ⊢ (µX.S) ≤ S′.

An important property for any notion of refinement is the replacement property: if any com-
ponent of a statement is replaced by any refinement then the resulting statement is a refinement of
the original one. This is easily proved by our usual induction on the structure of statements. The
induction steps use the following Lemma:

Lemma 3.10 Replacement: if ∆ ⊢ S1 ≤ S′
1 and ∆ ⊢ S2 ≤ S′

2 then:

1. ∆ ⊢ (S1; S2) ≤ (S′
1; S′

2);

2. ∆ ⊢ (S1 ⊓ S2) ≤ (S′
1 ⊓ S′

2);

3. ∆ ⊢ (µX.S1) ≤ (µX.S′
1).

Proof: Cases (1) and (2) follow by considering the corresponding weakest preconditions. For
case (3) use the induction hypothesis to show that for all n < ω: (µX.S1)

n ≤ (µX.S′
1)

n (since
(µX.S1)

n has a lower depth of recursion nesting than (µX.S1)) and then apply the induction rule
for recursion. �
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We can use these lemmas to prove a much more useful induction rule which is not limited
to a single recursive procedure, but can be used on statements containing one or more recursive
components (including nested recursion). For any statement S, define Sn to be S with each recursive
statement replaced by its nth truncation.

Lemma 3.11 The General Induction Rule for Recursion: If S is any statement with bounded
nondeterminacy, and S′ is another statement such that ∆ ⊢ Sn ≤ S′ for all n < ω, then ∆ ⊢
S ≤ S′.

Proof: Omitted. �

The next lemma uses the general induction rule to prove a transformation for folding (and
unfolding) a recursive procedure by replacing all occurrences of the call by copies of the procedure.
In [War89] we generalise this transformation to a “partial unfolding” where selected recursive calls
may be conditionally unfolded or replaced by a copy of the procedure body.

Lemma 3.12 Fold/Unfold: For any S : V → V :

∆ ⊢ (µX.S) ≈ S[(µX.S)/X]

Proof:

WP((µX.S),R) ⇐⇒
∨

n<ω

WP((µX.S)n,R)

⇐⇒
∨

n<ω

WP(S[(µX.Sn−1)/X],R)

⇐⇒
∨

n<ω

WP(S[(µX.Sn)/X],R)

⇐⇒ WP(S[(µX.S)/X],R)

by the general induction rule for recursion. �

3.3 Proving Termination of Recursive Statements

In this section we prove some important theorems which show how the termination of a recursive
statement can be proved, with the aid of a well-founded order relation on the state. First we have
a lemma on the maintenance of invariants:

Lemma 3.13 Invariant Maintenance

(i) If for any statement S1 we can prove: ∆ ⊢ {P}; S[S1/X] ≤ S[{P}; S1/X] then
∆ ⊢ {P}; (µX.S) ≤ (µX.{P}; S)

(ii) If in addition ∆ ⊢ {P}; S1 ≤ S1; {P} implies ∆ ⊢ {P}; S[S1/X] ≤ S[S1/X]; {P} then
∆ ⊢ {P}; (µX.S) ≤ (µX.S); {P}.

Our next theorem will prove that if we can find a well-founded order on some part of the
state, and a term t which is reduced under this order before each recursive call, then the recursive
procedure will terminate. This generalises the termination rule in [Dij76] which uses the usual
order on the natural numbers and is restricted to deterministic programs. (This generalisation has
been discovered by several authors independently). By generalising this to any well-founded order
we can simplify termination proofs: for example a lexical order for a bounded sequence of positive
integer state variables or array elements is well-founded, but not order-isomorphic to the natural
numbers.

Definition 3.14 A partial order 4 on some set Γ is well-founded if every non-empty subset of Γ
has a minimal element under 4, i.e.:

∀Γ′ ⊆ Γ. (Γ′ 6= ∅⇒ ∃ζ ∈ Γ′.∀λ ∈ Γ′. (ζ 4 λ))

15



We write ζ ≺ λ if (ζ 4 λ ∧ ζ 6= λ). We also define minimal(ζ) to mean “ζ is a minimal element
in Γ”, i.e.:

minimal(ζ) =
DF
∀ζ ′ ∈ Γ. (ζ ′ 4 ζ ⇒ ζ ′ = ζ)

Theorem 3.15 Proving Termination: If 4 is a well-founded partial order on some set Γ and t is
a term giving values in Γ and t0 is a variable which does not occur in S then if

∀t0. ((P ∧ t 4 t0)⇒WP(S[{P ∧ t ≺ t0}/X], true)) (2)

then P⇒WP((µX.S), true).

Proof: Omitted. �

Let tmin be the least element of { t0 ∈ Γ | WP(S[{t ≺ t0}/X], true) } if this set is non-empty.
If tmin exists and tmin 4 t initially then any calls of X in the execution of S must be started in a
state in which t is smaller than in the initial state, because the smallest bound greater than any
possible value of t at a call of X is less than or equal to the initial value of t.

We write the predicate tmin 4 t as WdecX(S, t), it is false if there is no t0 such that
WP(S[{t ≺ t0}/X], true) holds, so we define Wdec as follows:

WdecX(S, t) =
DF
∃t0.WP(S[{t ≺ t0}/X].true)

∧ ∀tmin.
((

WP(S[{t ≺ tmin}/X], true)
∧ ∀t0. (WP(S[{t ≺ t0}/X], true)⇒ tmin 4 t0)

)

⇒ tmin 4 t
)

Theorem 3.16 With this definition of Wdec we have:

∀t0. (t 4 t0 ⇒WP(S[{t ≺ t0}/X], true)) ⇐⇒ WdecX(S, t) (3)

Putting these results together we have:

Corollary 3.17 Weakest preconditions of recursive procedures. If

(i) P⇒WP(S[{P}/X], true) and

(ii) For any S1: ∆ ⊢ {P}; S1 ≤ S1; {P} =⇒ ∆ ⊢ {P}; S[S1/X] ≤ S[S1/X]; {P} and

(iii) For any S1: ∆ ⊢ {P}; S[S1/X] ≤ S[{P}; S1/X] and

(iv) For some term t taking values in Γ on which 4 is well-founded: P⇒WdecX(S, t)

then P⇒WP((µX.S),P).

The second premise states that if all recursive calls of S in (µX.S) were replaced by any state-
ment which preserved P then the statement so formed would preserve P.

3.4 Proof Rules for Implementations

In this section we will develop two general proof rules. The first is for proving the correctness
of an potential implementation S, of a specification expressed in the form {P}; x := x′.Q. The
second is for proving that a given recursive procedure statement is a correct implementation of a
given statement. This latter rule is very important in the process of transforming a specification,
probably expressed using recursion, into a recursive procedure which implements that specification.
Note that theorem is also useful in deriving iterative implementations of specifications, since very
often the most convenient derivation is via a recursive formulation. In [War89, War91a, War92,
War99] techniques are presented for transforming recursive procedures into various iterative forms.
See also Section 5.1.
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3.4.1 Implementation of Specifications

The first proof rule is based on a proof rule in Back [Bac80], we have extended this to include
recursion and guard statements. This proof rule provides a means of proving that a statement
S is a correct implementation of a specification {P}; x := x′.Q. Note that, for example, any Z

specification can be cast into this form.

Theorem 3.18 Let ∆ be a countable set of sentences of L. Let V be a finite nonempty set of
variables and S : V →W a statement. Let y be a list of all the variables in V −x̃ which are “assigned
to” somewhere in S. Let x0, y0 be lists of distinct variables not in S or V with ℓ(x0) = ℓ(x) and
ℓ(y0) = ℓ(y).

If ∆ ⊢ (P ∧ x = x0 ∧ y = y0)⇒WP(S,Q[x0/x,x/x
′] ∧ y = y0)

then ∆ ⊢ {P}; x := x′.Q ≤ S

The premise states that if x0 and y0 contain the initial values of x and y then S preserves the
value of y and sets x to a value x′ such that the relationship between the initial value of x and x′

satisfies Q. This was proved in [Bac80] for iterative statements, the extension to include recursive
statements and guards is straightforward.

Corollary 3.19 By the same assumptions as above we have:

∆ ⊢ (∃x′.Q ∧ x = x0 ∧ y = y0)⇒WP(S,Q[x0/x,x/x
′] ∧ y = y0)

implies ∆ ⊢ x := x′.Q ≤ S

Corollary 3.20 For the assignment x := t we have:

∆ ⊢ (P ∧ x = x0 ∧ y = y0)⇒WP(S,x = t[x0/x] ∧ y = y0)

implies ∆ ⊢ {P}; x := t ≤ S

This theorem is really only useful for simple implementations of a single specification statement.
More complex specifications will be implemented as recursive or iterative procedures: in either case
we can use the following theorem to develop a recursive implementation as the first stage. This can
be transformed into an iterative program (if required) using the techniques on recursion removal
in [War89, War90, War91a, War92, War99, War96].

3.4.2 Recursive Implementation of General Statements

In this section we present an important theorem on the recursive implementation of statements.
We use it to develop a method for transforming a general specification into an equivalent recursive
statement. These transformations can be used to implement recursive specifications as recursive
procedures, to introduce recursion into an abstract program to get a “more concrete” program (i.e.
closer to a programming language implementation), and to transform a given recursive procedure
into a different form.

Suppose we have a statement S′ which we wish to transform into the recursive procedure (µX.S).
We claim that this is possible whenever:

1. The statement S′ is refined by S[S′/X] (which denotes S with all occurrences of X replaced
by S′). In other words, if we replace each recursive call in the body of the procedure by a
copy of the specification then we get a refinement of the specification;

2. We can find an expression t (called the variant function) whose value is reduced before each
occurrence of S′ in S[S′/X].

The expression t need not be integer valued: any set Γ which has a well-founded order 4 is
suitable. To prove that the value of t is reduced it is sufficient to prove that if t 4 t0 initially,
then the assertion {t ≺ t0} can be inserted before each occurrence of S′ in S[S′/X]. The theorem
combines these two requirements into a single condition:
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Theorem 3.21 If 4 is a well-founded partial order on some set Γ and t is a term giving values in
Γ and t0 is a variable which does not occur in S then if

∆ ⊢ {P ∧ t 4 t0}; S′ ≤ S[{P ∧ t ≺ t0}; S′/X]) (4)

then ∆ ⊢ {P}; S′ ≤ (µX.S)

Proof: Omitted. �

3.4.3 Algorithm Derivation

It is frequently possible to derive a suitable procedure body S from the statement S′ by applying
transformations to S′, splitting it into cases etc., until we get a statement of the form S[S′/X]
which is still defined in terms of S′. If we can find a suitable variant function for S[S′/X] then we
can apply the theorem and refine S[S′/X] to (µX.S) which is no longer defined in terms of S′.

As an example we will consider the familiar factorial function. Let S′ be the statement r := n!.
We can transform this (by appealing to the definition of factorial) to get:

∆ ⊢ S′ ≈ if n = 0 then r := 1 else r := n.(n− 1)! fi

Separate the assignment:

∆ ⊢ S′ ≈ if n = 0 then r := 1 else n := n− 1; r := n!; n := n+ 1; r := n.r fi

So we have:

∆ ⊢ S′ ≈ if n = 0 then r := 1 else n := n− 1; S′; n := n+ 1; r := n.r fi

The positive integer n is decreased before the copy of S′, so if we set t to be n, Γ to be N and 4

to be 6 (the usual order on natural numbers), and P to be true then we can prove:

n 6 t0 =⇒ S′ ≤ if n = 0 then r := 1 else n := n− 1; {n < t0}; S′; n := n+ 1; r := n.r fi

So we can apply Theorem 3.21 to get:

S′ ≤ (µX. if n = 0 then r := 1 else n := n− 1; X; n := n+ 1; r := n.r fi)

and we have derived a recursive implementation of factorial.

This theorem is a fundamental result towards the aim of a system for transforming specifications
into programs since it “bridges the gap” between a recursively defined specification and a recursive
procedure which implements it. It is of use even when the final program is iterative rather than
recursive since many algorithms may be more easily and clearly specified as recursive functions—
even if they may be more efficiently implemented as iterative procedures. This theorem may be used
by the programmer to transform the recursively defined specification into a recursive procedure or
function which can then be transformed into an iterative procedure.

This approach to algorithm derivation should be contrasted with the Z refinement approach
which consists of these steps [McN89]:

1. Postulate a possible refinement for the specification;

2. Determine the proof obligations (these are the theorems which must be proved in order to
prove that the proposed refinement is valid);

3. Attempt to discharge the proof obligations, perhaps with the aid of a mechanical proof
checker.

If an error is made in step (1), the step (3) will of course fail, but in practice few if any proof
obligations are discharged. Despite the increasing availability of automatic theorem provers, the
proof for a large program is still a major activity, Sennett in [Sen90] indicates that for “real”
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sized programs it is impractical to discharge more than a tiny fraction of the proof obligations.
He presents a case study of the development of a simple algorithm, for which the implementation
of one function gave rise to over one hundred theorems which required proofs. Larger programs
will require many more proofs. In practice, since few if any of these proofs will be rigorously
carried out, what claims to be a formal method for program development turns out to be a formal
method for program specification, together with an informal development method. In contrast,
using our approach the developer is always working with a guaranteed correct implementation of the
specification. With the aid of a suitable transformation system, even the applicability conditions
of the transformations can be mechanically checked.

4 Extending the Kernel Language

The kernel language we have developed is particularly elegant and tractable but is too primitive
to form a useful wide spectrum language for the transformational development of programs. For
this purpose we need to extend the language by defining new constructs in terms of the existing
ones using “definitional transformations”. A series of new “language levels” is built up, with
the language at each level being defined in terms of the previous level: the kernel language is
the “level zero” language which forms the foundation for all the others. Each new language level
automatically inherits the transformations proved at the previous level, these form the basis of a new
transformation catalogue. Transformations of each new language construct are proved by appealing
to the definitional transformation of the construct and carrying out the actual manipulation in
the previous level language. This technique has proved extremely powerful and has led to the
development of a prototype transformation system which currently implements over six hundred
transformations, accessible through a simple user interface [Bul90]. More recently the prototype has
been completely redeveloped into a practical transformation system with fewer, but more powerful,
transformations [WaB93, WaB95]

For the last twelve years, the WSL language and transformation theory have been developed in
parallel: we have only added a new construct to the language after we have developed a sufficiently
complete set of transformations for dealing with that construct. We believe that this is one of
the reasons for the success of our language, as witnessed by the practical utility of the program
transformation tool.

The first level language consists of the following constructs:

1. Specification statement: This was discussed in Section 2:

x := x′.Q =
DF

({∃x′.Q}; (add(x′); ([Q]; (add(x); ([x = x′]; remove(x′))))))

2. Simple Assignment: If Q is of the form x′ = t where t is a list of terms which do not contain
x′ then we abbreviate the assignment as follows:

x := t =
DF

x := x′.(x′ = t)

If x contains a single variable, we write x := t for 〈x〉 := 〈t〉;

3. Sequential composition: The sequencing operator is associative so we eliminate the brackets:

S1; S2; S3; . . . ; Sn =
DF

(. . . ((S1; S2); S3); . . . ; Sn)

4. Deterministic Choice: We can use guards to turn a nondeterministic choice into a determin-
istic choice as discussed in Section 2.3:

if B then S1 else S2 fi =
DF

(([B]; S1) ⊓ ([¬B]; S2))
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5. Nondeterministic Choice: The “guarded command” of Dijkstra [Dij76]:

if B1 → S1

⊓⊔ B2 → S2

. . .
⊓⊔ Bn → Sn fi

=
DF

({B1 ∨ B2 ∨ · · · ∨ Bn};
(. . . (([B1]; S1) ⊓

([B2]; S2)) ⊓
. . .
([Bn]; Sn)))

6. Deterministic Iteration: We define a while loop using a new recursive procedure X which
does not occur free in S:

while B do S od =
DF

(µX.((([B]; S); X) ⊓ [¬B]))

7. Nondeterministic Iteration:

do B1 → S1

⊓⊔ B2 → S2

. . .
⊓⊔ Bn → Sn od

=
DF

while (B1 ∨ B2 ∨ · · · ∨ Bn) do
if B1 → S1

⊓⊔ B2 → S2

. . .
⊓⊔ Bn → Sn fi od

8. Initialised Local Variables:

begin x := t : S end =
DF

(add(x); ([x = t]; (S; remove(x))))

9. Counted Iteration. Here, the loop body S must not change i, b, f or s:

for i := b to f step s do S od =
DF

begin i := b :
while i 6 f do

S; i := i+ s od end

10. Block with procedure calls:

begin S where proc X ≡ S′. end =
DF

S[(µX.S′)/X]

One aim for the design of the first level language is that it should be easy to determine which
statements are potentially null. A guard statement such as [x = 1] is one example: if the preceding
statements do not allow 1 as a possible value for x at this point then the statement is null. The
guard [false] is another example which is always null. If a state transformation is non-null for every
initial state then it is called null-free. We claim that all first-level language statements without
explicit guard statements are null free. (This is why we do not include Morgan’s specification
statement x : [Pre,Post] in the first level language, because it cannot be guaranteed null-free. For
example the specification 〈〉 : [true, false] is equivalent to [false] which is everywhere null). So all
statements in the first level language, with no explicit guard statements, satisfy Dijkstra’s “Law of
the Excluded Miracle” [Dij76]: WP(S, false) ⇐⇒ false.

The second level language introduces multi-exit loops and Action systems (cf [Ars82, Ars79]).
The third level adds local variables and parameters to procedures, functions and expressions with
side effects. See [War89] for the definitions of these language levels.

20



4.1 Expressing JOIN in terms of the First Level Language

Recall that the join of two programs is the weakest program which meets all specifications satisfied
by either component. We can use the Representation Theorem (Theorem 3.5) to define a join
operator on statements which have identical initial and final state spaces. We first define the join
of two specification statements, then we can translate the two given statements into equivalent
specifications and join them together.

The join of the specification statements x := x′.Q1 and x := x′.Q2 is defined:

join x := x′.Q1 ⊔ x := x′.Q2 nioj =
DF

if ¬∃x′.Q1 → x := x′.Q2

⊓⊔ ¬∃x′.Q2 → x := x′.Q1

⊓⊔ ∃x′.Q1 ∧ ∃x
′.Q2 → [∃x′. (Q1 ∧ Q2)];

x := x′.(Q1 ∧ Q2) fi

Definition 4.1 The join construct: Suppose S1,S2 : V →W are two statements and x is a list of
all the variables assigned to by either statement and y a list of the variable removed from the state
space (i.e. ỹ = V −W and x̃ ⊆W ). Note that x and y are independent of the particular choice for
V and W , provided S1,S2 : V →W . Let x′ be a list of new variables, the same length as x. Then
the join of S1 and S2 is defined:

join S1 ⊔ S2 nioj =
DF

if ¬WP(S1, true) → S2

⊓⊔ ¬WP(S2, true) → S1

⊓⊔ WP(S1, true) ∧ WP(S2, true)
→ [∃x′. (¬WP(S1,x 6= x′) ∧ ¬WP(S2,x 6= x′))];

x := x′.(¬WP(S1,x 6= x′) ∧ ¬WP(S2,x 6= x′));
remove(y) fi

From this we can calculate the weakest precondition of a join construct:

WP(join S1 ⊔ S2 nioj,R)

⇐⇒ (WP(S1, true) ∨ WP(S2,R)) ∧ (WP(S2, true) ∨ WP(S1,R)) ∧

WP((S1 ⊓ S2), true)⇒ ∀x′. (WP(S1,x 6= x′) ∨ WP(S2,x 6= x′) ∨ R[x′/x])

The effect of joining two statements (or specifications) is to produce a statement which combines
all the properties of both components. For example, if S1 is {even(x)}; x := x/2 and S2 is
{odd(x)}; x := x+1 then join S1 ⊔S2 nioj is if even(x) then x := x/2 else x := x+1 fi. Compare
this with the definition of the if statement using guards (Section 2.3).

If S1 is x := x′.(2|x) which sets x to any multiple of 2, and S2 is x := x′.(3|x) which sets x to
any multiple of 3, then join S1 ⊔ S2 nioj is x := x′.(6|x) which sets x to any multiple of 6. If the
two joined statements are inconsistent (e.g. if they have no final states in common, for example
x := 1 and x := 2) then their join will be the null statement [false].

We have chosen to define join in terms of a guard and other statements. We could just as easily
have chosen to make join a primitive construct and defined a guard statement using join thus:

[Q] =
DF

if Q then skip else begin x : join x := 1 ⊔ x := 2 nioj end fi

where x is an otherwise unused variable and 1 and 2 are constant symbols representing distinct
values in H.

We chose to make the guard statement primitive because its WP is so much simpler than the
WP of the join statement.

The following theorem expresses an important (if not the most important) property of the join
construct: if a statement S is a refinement of both S1 and S2 then it is a refinement of the join
join S1 ⊔ S2 nioj. This is important because join is useful for expressing specifications but is not
directly implementable. So transformations which eliminate joins are valuable practical tools for
program derivation.
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Theorem 4.2 If ∆ ⊢ S1 ≤ S and ∆ ⊢ S2 ≤ S then ∆ ⊢ join S1 ⊔ S2 nioj ≤ S.

4.2 Arbitrary join and choice operators

The definitions of
⊔

F and
d
F for any set of state transformations F ⊆ FH(V,W ) in section 2.4

make FH(V,W ) into a complete lattice. For statements the representation theorem (Theorem 3.5)
can be used to express the join and choice of any countable sequence of statements. For the
nondeterministic choice of the countable sequence of statements 〈Sn | n < ω〉 we have:

WP(
l

n<ω

Sn,R) =
∧

n<ω

WP(Sn,R)

From this we use the representation theorem to define:
l

n<ω

Sn =
DF

[¬
∧

n<ω WP(Sn, false)];
x := x′.(¬

∧

n<ω WP(Sn,x 6= x′) ∧
∧

n<ω WP(Sn, true));
remove(y)

For the countable join
⊔

n<ω Sn we have the following weakest precondition:

WP(
⊔

n<ω

Sn,R) = ∀x′.
(

∧

n<ω

(WP(Sn, true)⇒ ¬WP(Sn,x 6= x′))⇒ R[x′/x]
)

∧
∨

n<ω

WP(Sn, true)

From this we see that:

WP(
⊔

n<ω

Sn, false) ⇐⇒ ∀x′.
∨

n<ω

WP(Sn,x 6= x′) ∧
∨

n<ω

WP(Sn, true)

WP(
⊔

n<ω

Sn, true) ⇐⇒
∨

n<ω

WP(Sn, true)

and

WP(
⊔

n<ω

Sn,x 6= x′) ⇐⇒
∨

n<ω

WP(Sn,x 6= x′)

So using the representation theorem we can define:
⊔

n<ω

Sn =
DF

[∀x′.
∨

n<ω WP(Sn,x 6= x′) ∧
∨

n<ω WP(Sn, true)];
x := x′.(¬

∨

n<ω WP(Sn,x 6= x′) ∧
∨

n<ω WP(Sn, true));
remove(y)

This result means that we could simplify the kernel language even further by removing the recursive
statement and replacing it by a definitional transformation of the form:

(µX.S) =
DF

[∀x′.
∨

n<ω WP((µX.S)n,x 6= x′) ∧
∨

n<ω WP((µX.S)n, true)];
x := x′.(¬

∨

n<ω WP((µX.S)n,x 6= x′) ∧
∨

n<ω WP((µX.S)n, true))

where (µX.S)n is the usual truncated recursion.

For nondeterministic choice, the representation theorem provides (as a special case of countable
choice) the definitional transformation:

(S1 ⊓ S2) =
DF

[¬WP(S1, false) ∨ ¬WP(S2, false)];
x := x′.((¬WP(S1,x 6= x′) ∨ ¬WP(S2,x 6= x′))

∧ WP(S1, true) ∧ WP(S2, true));
remove(y)

This means that sequencing is the only compound construct which is actually essential in the
kernel language. All other constructs can be represented as finite sequences of atomic statements.
In practice, we have included choice and recursion in the kernel (but not join) since their weakest
preconditions are simple and easy to work with, while their representations as sequences are rather
cumbersome.
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Theorem 4.3 The sub-language of the kernel language, consisting of assert, guard, add, remove
and sequencing, is equivalent to the full kernel language.

4.3 Angelic Choice

The method used in the previous section for defining new statement constructs depends on the
representation theorem, which in turn depends on the existence of a state transformation which
correctly interprets the semantics of the new construct. A construct for which this method fails
is angelic choice (also called favourable choice) which is a duel to the nondeterministic choice (or
unfavourable choice), so called because the choice is made so as to satisfy the required postcondition,
if this is possible. The weakest precondition of the angelic choice S1 ⊕ S2 is defined as:

WP(S1 ⊕ S2,R) =
DF

WP(S1,R) ∨ WP(S2,R)

For example, (x := 1⊕x := 2) assigns either 1 or 2 to x depending on which value will be required
later on in the program. For instance: (x := 1 ⊕ x := 2); {x = 1} is equivalent to x := 1 while
(x := 1⊕ x := 2); {x = 2} is equivalent to x := 2.

If we try to use the representation theorem to define a statement equivalent to (x := 1 ⊕
x := 2) (where 1 and 2 are distinct) then the result reduces to abort. This is because there
is no state transformation which captures the semantics of (x := 1 ⊕ x := 2) since there is no
state transformation whose weakest precondition is WP(x := 1,R) ∨ WP(x := 2,R) so the
representation theorem is not valid for this construct. Such extensions to the language require a
more complicated semantic model.

5 Reverse Engineering Using Transformations

In [War89, War91b, War92, War99] the Wide Spectrum Language and transformation theory are
further developed to include:

1. Unbounded loops and exits: Statements of the form do S od, where S is a statement,
are “infinite” or “unbounded” loops which can only be terminated by the execution of a
statement of the form exit(n) (where n is an integer, not a variable or expression) which
causes the program to exit the n enclosing loops. To simplify the language we disallow exits
which leave a block or a loop other than an unbounded loop. This type of structure is
described in [Knu74] and more recently in [Tay84];

2. Action systems: An action is a parameterless procedure acting on global variables (cf
[Ars82, Ars79]). It is written in the form A ≡ S. where A is a statement variable (the name
of the action) and S is a statement (the action body). A set of (mutually recursive) actions
is called an action system. There may sometimes be a special action Z, execution of which
causes termination of the whole action system even if there are unfinished recursive calls. An
occurrence of a statement call X within the action body refers to a call of another action;

3. Procedures and functions: These may be mutually recursive and include parameters and
local variables.

In this section we will give an example of a powerful transformation which is useful for both
forward and reverse engineering. The transformation proves the equivalence of certain recursive
and iterative programs, expressed in a very general manner. In the forward direction, we use it
in the algorithm derivations of [War92, War96] and in the reverse direction we use it in [War94a,
War96].

5.1 A Recursion Removal/Introduction Theorem

Theorem 5.1 Suppose we have a recursive procedure whose body is an action system in the
following form (where a call Z in the action system will terminate only the current invocation of
the procedure):
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proc F (x) ≡
actions A1 :
A1 ≡ S1.

. . . Ai ≡ Si.

. . . Bj ≡ Sj0; F (gj1(x)); Sj1; F (gj2(x)); . . . ; F (gjnj
(x)); Sjnj

.

. . . endactions.

where Sj1, . . . ,Sjnj
preserve the value of x and no S contains a call to F (i.e. all the calls to F are

listed explicitly in the Bj actions) and only the statements Si and Sjnj
may contain action calls.

There are M +N actions in total: A1, . . . , AM , B1, . . . , BN .

We claim that this is equivalent to the following iterative procedure which uses a new local
stack L and a new local variable m:

proc F ′(x) ≡
var 〈L := 〈〉,m := 0〉 :

actions A1 :

A1 ≡ S1[call F̂ /call Z].

. . . Ai ≡ Si[call F̂ /call Z].

. . . Bj ≡ Sj0; L := 〈〈0, gj1(x)〉, 〈〈j, 1〉, x〉, 〈0, gj2(x)〉, . . . , 〈0, gjnj
(x)〉, 〈〈j, nj 〉, x〉〉 ++ L;

call F̂ .

. . . F̂ ≡ if L = 〈〉 then call Z
else 〈m,x〉 ← L;

if m = 0 → call A1

⊓⊔ . . . ⊓⊔ m = 〈j, k〉 → Sjk; call F̂
. . . fi fi. endactions end.

The proof is rather involved and too long to include here. It relies on applying various transfor-
mations which have been proved using weakest preconditions, together with multiple applications
of Lemma 3.11. By unfolding some calls to F̂ and pruning, we get the following, slightly more
efficient, version:

proc F ′(x) ≡
var 〈L := 〈〉,m := 0〉 :

actions A1 :

A1 ≡ S1[call F̂ /call Z].

. . . Ai ≡ Si[call F̂ /call Z].

. . . Bj ≡ Sj0; L := 〈〈〈j, 1〉, x〉, 〈0, gj2(x)〉, . . . , 〈0, gjnj
(x)〉, 〈〈j, nj〉, x〉〉 ++ L;

x := gj1(x); call A1.

. . . F̂ ≡ if L = 〈〉 then call Z
else 〈m,x〉 ← L;

if m = 0 → call A1

⊓⊔ . . . ⊓⊔ m = 〈j, k〉 → Sjk; call F̂
. . . fi fi. endactions end.

5.2 An Example of Inverse Engineering

Consider the following program which takes four positive integer arrays l, r, c and m and a positive
integer x and modifies some of the elements of m, where m is assumed to be initially an array of
zeros:

var 〈L := 〈〉, d := 0〉 :
do do if x 6= 0

then if m[l[x]] = 0

then L
push
←− 〈1, x〉; x := l[x]

else exit fi
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else do if L = 〈〉 then exit(3) fi;

〈d, x〉
pop
←− L;

if d = 0 → exit(2)
⊓⊔ d = 1 → exit
⊓⊔ d = 2 → skip fi od fi;

do m[x] := 1;
if m[c[x]] = 0 ∧ m[r[x]] = 1

then L
push
←− 〈2, x〉; x := c[x]; exit(2)

elsif m[c[x]] = 1 ∧ m[r[x]] = 0

then L
push
←− 〈2, x〉; x := r[x]; exit(2)

elsif m[c[x]] = 0 ∧ m[r[x]] = 0

then L
push
←− 〈2, x〉; L

push
←− 〈0, r[x]〉; x := c[x]; exit(2)

else do if L = 〈〉 then exit(4) fi;

〈d, x〉
pop
←− L;

if d = 0 → exit(3)
⊓⊔ d = 1 → exit
⊓⊔ d = 2 → skip fi od fi od od od end

Despite its small size, this program has a fairly complex control structure, with a quadruple-nested
loop and exits which terminate from the middle of one, two, three and four nested loops. Finding
suitable invariants for all the loops seems to be a difficult task, while finding a variant function is
impossible! For suppose x 6= 0, m[l[x]] = 0 and l[x] = x initially. With this initial state, it is easy to
see that the program will never terminate. Therefore there is no variant function which works over
the whole initial state space. To determine the conditions under which the program terminates,
basically involves determining the behaviour of the entire program: not a helpful requirement for
the first stage of a reverse engineering task!

There are certain features which suggest that the recursion removal theorem might be usefully
applied: in particular the presence of a local array which is used as a stack and which starts empty
and finishes empty. One problem is that there are two places in the program where L is tested and
an element popped off. However, if we restructure the program as an action system, then there
are some powerful transformations which can be used to merge the two actions which test L and
convert the program into the right structure for the recursion introduction theorem.

The first step therefore is to restructure the program as an action system. This basically
involves implementing the loops as action calls (i.e. gotos)—an unusual step in a reverse engineering
process!

var 〈L := 〈〉, d := 0〉 :
proc F (x) ≡

actions A1 :
A1 ≡ if x 6= 0 then if m[l[x]] = 0 then call B1

else call A2 fi

else call F̂1 fi.

A2 ≡ m[x] := 1;
if m[c[x]] = 0 ∧ m[r[x]] = 1

then call B2

elsif m[c[x]] = 1 ∧ m[r[x]] = 0
then call B3

elsif m[c[x]] = 0 ∧ m[r[x]] = 0
then call B4

else call F̂2 fi.

B1 ≡ L
push
←− 〈1, x〉; x := l[x]; call A1.
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B2 ≡ L
push
←− 〈2, x〉; x := c[x]; call A1.

B3 ≡ L
push
←− 〈2, x〉; x := r[x]; call A1.

B4 ≡ L
push
←− 〈2, x〉; L

push
←− 〈0, r[x]〉; x := c[x]; call A1.

F̂1 ≡ if L = 〈〉 then call Z fi;

〈d, x〉
pop
←− L;

if d = 0 → call A1

⊓⊔ d = 1 → call A2

⊓⊔ d = 2 → call F̂1 fi.

F̂2 ≡ if L = 〈〉 then call Z fi;

〈d, x〉
pop
←− L;

if d = 0 → call A1

⊓⊔ d = 1 → call A2

⊓⊔ d = 2 → call F̂2 fi. endactions. end

The actions F̂1 and F̂2 are identical (apart from calls to F̂1 and F̂2) so they can be merged using a
transformation in [War89]. The result will be in the right form for Theorem 5.1. (Incidentally, the
resulting action call graph is irreducible, but this causes no difficulties for our methods). Applying
Theorem 5.1 gives:

proc F (x) ≡
actions A1 :
A1 ≡ if x 6= 0 then if m[l[x]] = 0 then call B1

else call A2 fi
else call Z fi.

A2 ≡ m[x] := 1;
if m[c[x]] = 0 ∧ m[r[x]] = 1

then call B2

elsif m[c[x]] = 1 ∧ m[r[x]] = 0
then call B3

elsif m[c[x]] = 0 ∧ m[r[x]] = 0
then call B4

else call Z fi.

B1 ≡ F (l[x]); call A2.

B2 ≡ F (c[x]); call Z.

B3 ≡ F (r[x]); call Z.

B4 ≡ F (c[x]); F (r[x]); call Z. endactions.

Restructuring to remove the action system we get:

proc F (x) ≡
if x 6= 0

then if m[l[x]] = 0 then F (l[x]) fi;
m[x] := 1;
if m[c[x]] = 0 ∨ m[r[x]] = 1

then F (c[x])
elsif m[c[x]] = 1 ∨ m[r[x]] = 0

then F (r[x])
elsif m[c[x]] = 0 ∨ m[r[x]] = 0

then F (c[x]); F (r[x]) fi fi.

5.3 Change Data Representation

The next stage is a simple change in the data representation. We want to replace the low-level
data structures (integer arrays) by equivalent high level structures (sets and functions). Let the
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set N of nodes represent the domain of F () and of the arrays l, c, r and m. The array m[ ] consists
of 0s and 1s and is therefore equivalent to a subset of N. We define the set M of marked nodes as
follows:

M =
DF
{ x ∈ N | m[x] = 1 }

For each x ∈ N, either x = 0, or there are three other elements of N, recorded in the arrays l[x],
c[x] and r[x]. We therefore define a function D : N→ N

∗ as follows:

D(x) =
DF

{

〈〉 if x = 0

〈l[x], c[x], r[c]〉 otherwise

With this data representation our program becomes:

proc F (x) ≡
if D(x) 6= 〈〉

then if D(x)[1] /∈M then F (D(x)[1]) fi;
M := M ∪ {x};
if D(x)[2] /∈M ∧ D(x)[3] ∈M

then F (D(x)[2])
elsif D(x)[2] ∈M ∧ D(x)[3] /∈M

then F (D(x)[3])
elsif D(x)[2] /∈M ∧ D(x)[3] /∈M

then F (D(x)[2]); F (D(x)[3]) fi fi.

We can simplify the if statement by using an iteration over a sequence (see [PrW94] for the formal
definition):

proc F (x) ≡
if D(x) 6= 〈〉

then if D(x)[1] /∈M then F (D(x)[1]) fi;
M := M ∪ {x};

for y
pop
←− D(x)[2 . .] \M do F (y) od fi.

where for a sequence X and set M , the expression X \M denotes the subsequence of elements of
X which are not in M .

This version of the program can be generalised for any function D : N → N
∗, so from now on

we will ignore the “trinary” nature of the original D function. This step is an “abstraction” in the
sense that our original program will implement a special case of the specification we derive.

With the recursive and abstract version of the program it is clear that the effect of a call to
F (x) is to add certain nodes to the set M . Since all the recursive calls to F (x) ensure that x /∈M ,
we will assume that this is the case for external calls also. Hence we can assume that the assertion
x /∈ M holds at the beginning of the body of F . The arguments for the recursive calls are all
elements of D(x), so all the elements added to M will be reached by zero or more applications of
D. For any set X ⊆ N we define R(X) to be the set of nodes reachable from X via zero or more
applications of D. This is called the Transitive Closure of D:

R(X) =
DF

⋃

n<ω

Rn(X)

where
R0(X) =

DF
X and Rn+1(X) =

DF

⋃

{ set(D(y)) | y ∈ Rn(X) }

We are also interested in the nodes reachable via unmarked nodes. We defineDM (x) =
DF

D(x)\M
which is the sequence D(x) with elements of M deleted. We extend DM to its transitive closure
RM in the same way as for D and R.
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5.4 Abstraction Assumptions

To simplify the abstraction process we make two assumptions. The first is that all unmarked
reachable nodes are reachable via unmarked nodes, i.e. M ∪ R(X) = M ∪ RM (X) initially for
all X ⊆ N. Since M = ∅ initially for our original program, this assumption is in fact a further
generalisation of that program. Our second assumption is that no unmarked node is reachable
from its first daughter node, i.e. ∀x ∈ N \M. x /∈ R(D(x)[1]). This is an essential assumption
since if x ∈ R(D(x)[1]) and x /∈M , then x ∈ RM (D(x)[1]) and it is easy to see that F (x) will not
terminate.

In [War96] we prove the following Reachability Theorem:

Theorem 5.2 Let M andX be sets of nodes such that M∪R(X) = M∪RM (X) and let x ∈ X\M .
Let A and B be any subsets of RM ({x}) such that RM ({x}) \ A ⊆ RM∪A(B). Then:

M ∪RM (X) = M ∪A ∪RM∪A((X \ {x}) ∪B) = M ∪A ∪R((X \ {x}) ∪B)

Two obvious choices for A are {x} and RM ({x}). In the former case, a suitable choice for B is
D(x) \ (M ∪ {x}) and in the latter case, the only choice for B is ∅. So we have two corollaries:

Corollary 5.3 If M ∪R(X) = M ∪RM (X) and x ∈ X \M then:

M ∪RM (X) = M ∪ {x} ∪RM∪{x}(X
′) = M ∪ {x} ∪R(X ′)

where X ′ = (X \ {x}) ∪ (D(x) \ (M ∪ {x})).

Corollary 5.4 If M ∪R(X) = M ∪RM (X) and x ∈ X \M then:

M ∪RM (X) = M ∪R({x}) ∪RM∪R({x})(X \ {x}) = M ∪R({x}) ∪R(X \ {x})

5.5 The Specification

We claim that F (x) is a refinement of SPEC({x}) where for X ⊆ N:

SPEC(X) =
DF

I(X); M := M ∪R(X) where I(X) = {M ∪R(X) = M ∪RM (X)}

To prove the claim, we will use the recursive implementation theorem Theorem 3.21. First, we
replace the recursive calls in F (x) by copies of the specification and add an assertion (from the
abstraction assumptions):

S = I({x});
if D(x) 6= 〈〉

then if D(x)[1] /∈M then SPEC(D(x)[1]) fi;
M := M ∪ {x};

for y
pop
←− D(x)[2 . .] \M do SPEC(y) od

else M := M ∪ {x} fi

This expands to:

S ≈ I({x});
if D(x) 6= 〈〉

then if D(x)[1] /∈M then I({D(x)[1]}); M := M ∪R({D(x)[1]}) fi;
M := M ∪ {x};

for y
pop
←− D(x)[2 . .] \M do

I({y}); M := M ∪R({y}) od
else M := M ∪ {x} fi
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If D(x)[1] /∈M then D(x)[1] /∈ (M ∪{x}) since our abstraction assumption x /∈ R(D(x)[1]) implies
x 6= D(x)[1], so adding x to M does not affect the test. So the assignment M := M ∪ {x} can be
moved back past the preceding if statement:

S ≈ I({x});
if D(x) 6= 〈〉

then M := M ∪ {x};
if D(x)[1] /∈M \ {x} then I({D(x)[1]}); M := M ∪R({D(x)[1]}) fi;

for y
pop
←− D(x)[2 . .] \M do

I({y}); M := M ∪R({y}) od
else M := M ∪ {x} fi

Now we roll the if statement into the for loop and factor M := M∪{x} out of the outer if statement.
The test D(x) 6= 〈〉 then becomes redundant since for y

pop
←− D(x) do . . . od is equivalent to skip

when D(x) = 〈〉.
S ≈ I({x});

M := M ∪ {x};

for y
pop
←− D(x) \M do

I({y}); M := M ∪R({y}) od

By Corollary 5.4 and the general induction rule for iteration we can prove that for any X ⊆ N such
that M ∪R(X) = M ∪RM (X):

for y ∈ X \M do
I({y}); M := M ∪R({y}) od

≈ M := M ∪RM (X)

So we have:

S ≈ I({x}); M := M ∪ {x}; M := M ∪RM (D(x)) ≈ I({x}); M := M ∪ {x} ∪RM (D(x))

So by Corollary 5.3:
S ≈ SPEC({x})

Finally, note that before each copy of SPEC({x}) in S, either M has been increased (and hence
the finite set N \M reduced) from its initial value, or M remains the same, but R({x}) has been
reduced (the abstraction assumption that x /∈ R(D(x)[1]) shows that R(D(x)[1]) ⊂ R({x}). So we
can apply the recursive implementation theorem (Theorem 3.21) in reverse to prove:

SPEC({x}) ≈

begin
F (x)

where
proc F (x) ≡

if D(x) 6= 〈〉
then if D(x)[1] /∈M then F (D(x)[1]) fi;

M := M ∪ {x};

for y
pop
←− D(x)[2 . .] \M do F (y) od fi. end

So our original program is a correct implementation of SPEC({x}).

6 Conclusion

In this paper we have presented the theoretical foundation for a Wide Spectrum language which
encompasses both specifications and low-level program constructs. The language we have developed
includes general specifications expressed using first order logic and set theory and the usual iterative
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programming constructs. The advantages of the combination of set-theoretical semantics together
with infinitary-logic based proof rules are illustrated in the proof of the theorem which provides a
specification equivalent for any given program (Theorem 3.5): the proof of this and other theorems
makes use of both proof techniques. We contend that a judicious combination of the techniques and
constructions derived from these alternative viewpoints gives an economical and intuitive approach
to program transformation theory. Our definition of the wide spectrum language also makes possible
the induction rule for recursion (Lemma 3.11) which assists in the proofs of many transformations of
recursive programs, and the implementation theorem (Theorem 3.21) which crosses the “abstraction
gap” between a recursively defined specification and a recursive program which implements the
specification. Infinitary logic is also used in the proof of the termination theorem for recursive
procedures (for use with recursive procedures and loops not derived directly from a specification
using Theorem 3.21).

7 Applications of the Theory

In [War96] we derive a data-intensive algorithm, (the Schorr-Waite Graph Marking Algorithm
[ScW67]), from a formal specification by means of program transformations. This is a challenging
example, due to the intermingled data and control flow, and the use of one data structure for
two different purposes. The algorithm has been used as a “test bed” example for several program
verification techniques applied to complex data structures ([Gri79, Kow79, Mor82, Roe78, Top79,
YeD77]), all these verifications start with a statement of the algorithm and give no indications as to
how it could be developed. In [War96] we start with a formal specification, and a vague idea of the
technique to be used, and use formal transformations to derive the algorithm from the specification.

In [War90] we derive an efficient implementation of a Quicksort algorithm with “median of
three partitioning” [Hoa62, Sed88]. In [War91] the language and transformations are used as the
basis for a component repository, which enables reuse of specifications and development methods,
as well as program code. In [War93] we use program transformations to transform a small but
complex program into an equivalent, readable high-level specification. In [YoW93] we apply inverse
engineering to a simple real-time program to extract its specification and determine the timing
constraints for correct operation. In [WaB93] we describe a practical program transformation
system for reverse engineering which is based on this program transformation theory and has been
used successfully with a number of IBM Assembler modules.

The FermaT project at Software Migrations Ltd. is a complete redevelopment of the prototype
transformation system to build an industrial strength CASE tool for reverse engineering, software
maintenance and program understanding. For this implementation, we decided to extend WSL to
add domain-specific constructs, creating a language for writing program transformations. This was
called METAWSL. The extensions include an abstract data type for representing programs as tree
structures and constructs for pattern matching, pattern filling and iterating over components of a
program structure. The “transformation engine” of FermaT is implemented entirely inMETAWSL.
The implementation of METAWSL involves a parser for METAWSL (written in WSL), a WSL
to Scheme translator (written in METAWSL and bootstrapped into Scheme using a prototype of
the transformation system), a small support library of Scheme macros and functions, and a WSL
runtime library (for the high-level METAWSL constructs such as ifmatch, foreach, fill etc.). The
Scheme code [ADH98] is translated to C using the Hobbit compiler [Tam95] to generate highly
portable C code which runs on Solaris, Linux, Windows 95, Windows NT and many other systems.

One aim of using WSL as the implementation language was so that the tool could be used to
maintain its own source code: and this has already proved possible, with transformations being
applied to simplify the source code for other transformations! Another aim was to test our theories
on language oriented programming (see [War94b]): we expected to see a reduction in the total
amount of source code required to implement a more efficient, more powerful and more rugged
system. We also anticipated noticeable improvements in maintainability and portability. These
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expectations have been fulfilled, and we are achieving a high degree of functionality from a small
total amount of easily maintainable code: the current system consists of around 30,000 lines of
METAWSL and 1,000 lines of Scheme, while the previous version required over 100,000 lines of
LISP. See [War94]. The 30,000 lines of METAWSL translates into 114,000 lines of Scheme which
compiles to 125,000 lines of C code.

The METAWSL language encapsulates much of the expertise developed over the last twelve
years of research in program transformation theory and transformation systems. As a result, this
expertise is readily available to the programmers, some of whom have only recently joined the
project. Working in METAWSL, it takes only a small amount of training before new program-
mers become effective at implementing transformations and enhancing the functionality of existing
transformations.
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