
 86 COMPUTER Published by the IEEE Computer Society 0018-9162/14/$31.00 © 2014 IEEE

STANDARDSSOF T WARE TECHNOLOGIES

Formality, Agility, 
Security, and 
Evolution in Software 
Development 
Jonathan P. Bowen, Birmingham City University

Mike Hinchey, Lero—the Irish Software Engineering 
Research Centre, University of Limerick

Helge Janicke and Martin Ward, De Montfort University

Hussein Zedan, Applied Science University

Combining formal and agile techniques in software development has the 
potential to minimize change-related problems.  

C omplex systems have 
always been problematic 
with respect to software 
development. Simplic-

ity is desirable, but the reality of 
dealing with a customer means that 
requirements are likely to change, 
resulting in a corresponding loss of 
elegance in the solution. 

A good software engineer will 
design with the knowledge that 
the system is likely to evolve over 
time, even if the exact nature of the 
changes is unknown. Such exper-
tise only comes with experience 
and an innate aptitude, especially 
in the understanding and use of 
abstraction. Software engineering ap-
proaches such as object orientation 
and modularization—for example, 
the Z notation schema construct—
can help minimize change-related 

problems if used carefully, follow-
ing standard patterns of use. Formal 
methods have been advocated for im-
proving the correctness of software 
systems,1 and agile software develop-
ment has been promoted by the Agile 
Manifesto (http://agilemanifesto.org) 
and others for enabling adaptive de-
velopment in the face of changing 
requirements, typically introducing 
additional complexity in the process. 

FORMALITY
Although using formal methods to 
develop a software system can be 
slow and cumbersome, these meth-
ods deliver lower error rates because 
they use a mathematical approach 
from the requirements specifica-
tion onward.2 Formal methods are 
an important software engineer-
ing technique in cases when safety 

and security are central aspects of 
the system to be designed. While 
a formal approach can be used to 
derive a proof, potentially at great 
cost, a formal specification also pro-
vides a framework for undertaking 
rigorous testing, potentially with 
cost savings since the specification 
can be used to direct the tests that 
are needed.3 Without a formal speci-
fication, software testing is a much 
more haphazard affair. 

Misunderstanding the term 
“formal methods” can also be an 
issue. The relevance of the formal ap-
proach must be understood by every 
team member, even if formality won’t 
actually be used by everyone. In fact, 
teaching software engineers to read 
formal specifications is much easier 
than teaching engineers how to write 
them. Reading and understanding 



 OCTOBER 2014 87

the specification is necessary for 
most members of a software de-
velopment team—for example, 
programmers and testers—whereas 
specification writing requires the in-
volvement of a much smaller number 
of more highly trained people.

AGILITY
Agile software development pro-
vides an iterative approach where 
the requirements and the associated 
solution evolve through the collabo-
ration of team members, and rapid 
response to change is encouraged. 
This contrasts with the traditional 
view of formal methods, but modern 
tools can enable a much more agile 
approach even within formal devel-
opment. For example, the RODIN tool 
(http://rodin.cs.ncl.ac.uk) minimizes 
the amount of re-proof that is needed 
if the system is changed. Tools like 
the Alloy Analyzer (http://alloy.mit.
edu) are relatively easy for a capable 
software engineer to learn and can 
be quickly used in an agile manner.4

The concept of agile formal meth-
ods first appeared in the literature 
in the mid-2000s, with events such 
as the Formal Methods and Agile 
Methods (FM+AM) Workshop explic-
itly addressing the issue.5 In 2009, a 
position paper on formal methods 
and agile software development was 
published in Computer to highlight 
the debate.4

While we don’t really hold the 
view that agility may be used by 
“unscrupulous” developers, in 
general we do believe that agile de-
velopers could benefit from some 
training on formal methods, at least 
in reading formal specifications, 
even if developers don’t apply the 
approach rigorously.

SECURITY
Can agile methods produce secure 
software, perhaps in cases in which 
the security properties have been 
formalized? Opinions regarding 
this question remain split. While 
agile methodologies such as Scrum 

and XP continue their advance into 
mainstream software development, 
with sometimes impressive results, 
there are still reservations in areas 
where security is a paramount 
concern to stakeholders. Until rela-
tively recently there was little focus 
on how to integrate security best 

practices into agile development, 
although these shortcomings have 
existed for at least a decade.

To address this problem, it’s 
important to make security re-
quirements explicit and to include 
security concerns in the product 
backlog with adequate priority, so 
that the concerns continue to be ad-
dressed by the development team 
during the iterations. Agile methods 
strive to satisfy the customer, which 
frequently prioritizes the develop-
ment of functionality that produces 
the primary business value. Secu-
rity, on the other hand—because it’s 
concerned with managing risk and 
preventing the developed function-
ality from being misused—is often 
unfortunately not as highly valued 
and therefore isn’t addressed in 
early sprints. Consequently, it’s nec-
essary to integrate security activities 
in the agile development process 
and its practices.

One way to address security 
early in an agile development con-
text is by using evil stories. This is 
an agile adoption of misuse cases to 
describe the functionality that an at-
tacker would be able to exploit. The 
development then takes on two di-
mensions: to implement user stories 
and to avoid implementing evil sto-
ries. Another practice that integrates 
security principles in agile develop-
ment is a technique called protection 
poker, in which security risks are 
quantified by the agile team. This 

process is similar to the widely 
known agile technique planning 
poker, which is used to establish 
effort estimates for user stories.

The recent adaptation of Micro-
soft’s Secure Development Lifecycle 
(SDL) to integrate with agile prod-
ucts shows that security is a major 

concern for companies employing 
agile methodologies. The key prob-
lem addressed by Bryan Sullivan 
is how activities from the SDL can 
be integrated effectively into the 
short-release cycles that charac-
terize agile development projects.6 
This approach divides SDL activi-
ties into three categories: every 
sprint, such as running automated 
security-analysis tools and updating 
the threat model; bucket require-
ments consisting of verification 
tasks, design review activities, and 
response planning; and one-time 
requirements such as the develop-
ment of a baseline threat model.

So, while efforts to integrate 
security practices in agile method-
ologies are well underway, there 
is a risk that many actual devel-
opment efforts will ignore these 
efforts or that development teams 
lack the knowledge and training to 
actually create secure products in 
the short term. However, agile prin-
ciples such as communication and 
practices such as pair programming 
may help disseminate knowledge 
throughout the development team. 
Certification remains a potential 
issue, as it requires detailed and 
sometimes formal documentation. 
The approach discussed in Sulli-
van’s article6 can help by mandating 
activities that need to be included 
in every sprint and by requiring 
a (scope-reduced) final security 
review at the end of each sprint.

It’s necessary to integrate security activities in the 
agile development process and its practices.



 88 COMPUTER

SOF T WARE TECHNOLOGIES

EVOLUTION
Real software systems continually 
evolve. Their evolution is often in 
response to the evolution of their 
environments: new functionalities 
are added and/or existing ones are 
removed due to the need to address 
changes in business requirements 
and/or economic forces, and new 
platforms are developed and/or new 
technologies are introduced. This 
necessitates a paradigm shift in 
the way software systems are and 
will be developed, in which agility 
(without sacrificing trustworthi-
ness) is required.

Software migration, especially as-
sembler migration, is an important 
type of evolution. More than 70 per-
cent of all business-critical software 
currently runs on mainframes, and 
more than 10 percent of all code cur-
rently in operation is implemented in 
assembler, which totals around 140–
220 billion lines.

However, the pool of experienced 
assembler programmers is decreas-
ing rapidly. As a result, there is 
increasing pressure to move away 
from assembler, including moving 
fewer critical systems away from 
the mainframe platform, so the 
legacy assembler problem is likely to 
become increasingly severe.

Analyzing assembler code is 
significantly more difficult than 
analyzing high-level language code, 

so if a large body of assembler code 
can be replaced by a smaller amount 
of high-level language code— 
preserving its correctness without 
seriously affecting performance—
then the potential savings in the 
form of software and hardware 
maintenance costs are very large.

A sound agile approach to soft-
ware evolution that is based on 
transformation theory and associ-
ated with the industrial-strength 
FermaT program transformation 
system has been developed. The ap-
proach to agility and evolution via 
transformation involves four stages:

• Translate the assembler to Wide 
Spectrum Language (WSL).

• Translate and restructure data 
declarations.

• Apply generic semantics-
preserving WSL to WSL 
transformations.

• Apply task-specific operations 
for migration (translate the 
high-level WSL to the target 
language) and analysis (apply 
slicing or abstraction operations 
to the WSL to raise the abstrac-
tion level even further).

Martin P. Ward and Hussein Ze-
dan’s “Deriving a Slicing Algorithm 
via FermaT Transformations” fully 
explains WSL, the transformation 
theory, and how program slicing 
can be defined as a transformation 
within the theory.7 This approach 
enables a formal agile methodology 
to be applied to real software, aiding 
the software evolution process. 

As Figure 1 shows, the transfor-
mational programming method of 
algorithm derivation8 starts with a 
formal specification of the result to 
be achieved, together with some in-
formal ideas as to which techniques 
will be used in the implementation. 
The formal specification is then 
transformed into an implementation 
by means of correctness- preserving 
refinement and transformation 
steps, guided by the informal ideas. 

The transformation process will typ-
ically include the following stages:

• formal specification;
• elaboration of the specification;
• dividing and conquering to 

handle the general case;
• recursion introduction;
• recursion removal, if an itera-

tive solution is desired; and
• optimization, if required.

Subspecifications can be ex-
tracted and transformed separately 
at any stage in the process. The 
main difference between this ap-
proach and the invariant-based 
programming approach (and similar 
stepwise refinement methods) is that 
loops can be introduced and manip-
ulated while maintaining program 
correctness with no need to derive 
loop invariants. Another difference 
is that at every stage in the process, 
we’re working with a correct pro-
gram: there’s no need for a separate 
“verification” step. These factors 
help ensure that the method is capa-
ble of scaling up to the development 
of large, complex software systems.

The algorithm derivation method 
has been applied to the derivation of 
the “polynomial addition” problem de-
scribed by Donald Knuth, which is a 
complex linked list algorithm that uses 
four-way linked lists.9,10 The derived 
source code turned out to be more 
than twice as fast as Knuth’s code.

This method was also used to 
derive a polynomial multiplication 
algorithm using the same data struc-
tures. It started with a trivial change 
to the formal specification (replace 
“+” with “*”), and the transforma-
tional derivation was guided by the 
same informal ideas as the addition 
algorithm. The result was an effi-
cient implementation of polynomial 
multiplication, which worked the 
first time. Another paper uses this 
method to derive an implementation 
of program slicing from the formal 
definition of slicing, defined as a 
program transformation.8

Formal
program

speci�cation

Program 1

Program n

Informal
implementation

ideas

Figure 1. Transformational 
programming method of algorithm 
derivation.



 OCTOBER 2014 89

We believe that a com-
bination of formal 
and agile approaches 

is a worthwhile goal in the appli-
cation of software engineering 
methodologies to real computer-
based systems. Of course, a note 
of caution is in order.5 The use of 
heavyweight formal methods with 
full program proving is likely to be 
difficult and not worthwhile in a 
typical agile setting. On the other 
hand, this is a rare approach, largely 
due to scaling problems and the dif-
ficulty of using the available tools. A 
lighter touch with the use of formal 
specification is much more typical 
when applying formal methods to 
improve early understanding, guide 
the programmer, and perhaps aid 
proper testing. In this context, com-
bined use with agile development 
is more likely to succeed, if applied 
judiciously with experienced engi-
neering judgment.

There are additional issues to 
consider in areas such as safety or 
security-related systems, but the 
combination of formal and agile 
techniques has potential even in 
these cases. An agile approach is 
especially applicable in response 
to evolving systems; for example, 
where the software may need to 
be completely upgraded to a new 
language. By adding a formal foun-
dation, agile evolution can be 
applied in a sound manner to large 
software systems with suitable for-
malized transformation rules. 

Acknowledgments
Jonathan Bowen thanks Museophile Lim-

ited for financial support. Mike Hinchey 

acknowledges support from Science Foun-

dation Ireland under grant 10/CE/I1855.

References
1. J.P. Bowen and M.G. Hinchey, 

“Ten Commandments of Formal 
Methods…Ten Years Later,” 
Computer, vol. 39, no. 1, 2006,  
pp. 40–48.

2. J.P. Bowen and M.G. Hinchey, 
“Formal Methods,” Computing 
Handbook, 2nd ed., vol. 1, CRC 
Press, 2014, pp. 1–25. 

3. R.M. Hierons et al., “Using 
Formal Specifications to Support 
Testing,” ACM Computing 
Surveys, vol. 41, no. 2, 2009; 
doi:10.1145/1459352.1459354.

4.  S. Black et al., “Formal Versus 
Agile: Survival of the Fittest,” 
Computer, vol. 42, no. 9, 2009,  
pp. 37–45.

5. P.G. Larsen, J. Fitzgerald, and 
S. Wolff, “Are Formal Methods 
Ready for Agility? A Reality 
Check,” Proc. 2nd Int’l Workshop 
Formal Methods and Agile 
Methods (FM+AM 10), vol. P-179, 
2010, pp. 13–25. 

6. B. Sullivan, “Streamline Security 
Practices for Agile Development,” 
MSDN Mag., vol. 23, no. 12, 2008, 
pp. 52–55.

7. M.P. Ward and H. Zedan, 
“Deriving a Slicing Algorithm via 
FermaT Transformations,” IEEE 
Trans. Software Eng., vol. 37, no. 1, 
2011, pp. 24–47.

8. M.P. Ward and H. Zedan, 
“Provably Correct Derivation 
of Algorithms using FermaT,” 
Formal Aspects of Computing,  
vol. 26, no. 5, 2013, pp. 993–1031. 

9. D. Knuth, The Art of Computer 
Programming, Vol. 1: 
Fundamental Algorithms, 3rd ed., 

Addison-Wesley, 1997. 
10. M. Ward and H. Zedan, “Provably 

Correct Derivation of Algorithms 
Using FermaT,” Formal Aspects of 
Computing, vol. 26, no. 5, 2014, 
pp. 993–1031.

Jonathan P. Bowen is a professor 
of computer science at Birmingham 
City University, UK. Contact him at 
jonathan.bowen@bcu.ac.uk. 

Mike Hinchey is director at 
Lero—the Irish Software Research 
Centre and a professor of software 
engineering at the University of Lim-
erick, Ireland. Contact him at mike.
hinchey@lero.ie. 

Helge Janicke is a reader in com-
puter science and head of the 
Software Technology Research Labo-
ratory at De Montfort University, 
UK. Contact him at heljanic@dmu.
ac.uk. 

Martin Ward is a reader in the Soft-
ware Engineering Department at De 
Montfort University, UK and CTO of 
Software Migrations Ltd. Contact 
him at martin@gkc.org.uk. 

Hussein Zedan is Dean of Graduate 
Studies & Research at the Applied 
Science University, Bahrain. Contact 
him at hussein.zedan@gmail.com.


