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Abstract

In this paper we present a case study in deriving an algorithm from a formal specification
via FermaT transformations. The general method (which is presented in a separate paper)
is extended to a method for deriving an implementation of a program transformation from a
specification of the program transformation. We use program slicing as an example transfor-
mation, since this is of interest outside the program transformation community. We develop a
formal specification for program slicing, in the form of a WSL specification statement, which
is refined into a simple slicing algorithm by applying a sequence of general purpose program
transformations and refinements. Finally, we show how the same methods can be used to
derive an algorithm for semantic slicing. The main novel contributions of this paper are: (1)
Developing a formal specification for slicing. (2) Expressing the definition of slicing in terms of
a WSL specification statement. (3) By applying correctness preserving transformations to the
specification we can derive a simple slicing algorithm.

1 Introduction

The wide spectrum language WSL includes high-level, abstract specifications and low-level pro-
gramming constructs within a single language. The FermaT transformation theory, [49,63] which
is based on WSL, is therefore capable of deriving complex algorithms from specifications [38,59],
reverse engineering from programs to specifications [58,63,74], and migrating from assembler to
high-level languages [53,60].

In this paper we present a case study in the derivation of an algorithm from a formal speci-
fication. The general derivation method is presented in a separate paper: in this paper we show
how the method can be applied to deriving an implementation of a program transformation from a
specification of the program transformation. This process is called metatransformation [65] since the
program which is being transformed is the source code for another transformation. Previous work
by the authors [66] has shown that program slicing, can be formalised as a program transformation.
Slicing is of interest outside the field of program transformations so in this paper we will use
slicing as a case study in the derivation of a transformation from a specification. We will develop
a formal specification for program slicing and use transformations to refine this specification into
an implementation. The WSL language and transformation theory is based on infinitary logic:
an extension of normal first order logic which allows infinitely long formulae. The application of
infinitary logic to specifications and weakest preconditions is central to the method.

The main novel contribution of the paper is the derivation of a slicing algorithm from a formal
specification. This requires:

1. Developing a formal specification for slicing. The mathematical framework on which the
definition of slicing is based differs from the “Amorphous slicing” framework of Binkley,
Harman, Danicic et al. The two frameworks are compared and contrasted, particularly with
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the aid of two novel theorems: one proves that any equivalence relation which partially defines
a truncating slicing relation on a potentially divergent language and semantics, is the universal
equivalence relation. The other proves that any semantic relation which partially defines a
truncating slicing relation on a potentially divergent language and semantics must allow any
statement as a valid slice of an abort. These results justify the use of semi-refinement in the
formal definition of slicing.

2. Expressing the definition of slicing in terms of a WSL specification statement. The fact that
WSL is based on infinitary logic makes this task much easier than it would be otherwise.

3. Applying various correctness-preserving transformation rules to turn the formal specification
for slicing into an implementation of a slicing algorithm. The implementation is therefore
guaranteed to be correct by construction. In previous work, transformations have been used
to derive programs: in this paper we show that the same methods can be extended to derive
metaprograms (programs which take programs as data and produce programs as output).
Again, the foundation in infinitary logic is key to this extension.

2 Formal Program Development Methods

2.1 Program Verification

The program verification approach to ensuring the correctness of a program starts with a formal
specification and a proposed implementation and uses formal methods to attempt to prove that
the program is a correct implementation of the specification [16]. One obvious difficulty with this
approach is that if the implementation happens to be incorrect (i.e. the program has a bug), then
the attempt at a proof is doomed to failure. One way to avoid this problem is to attempt to develop
the program and the correctness proof in parallel, in such a way that, provided the development
succeeds, the correctness proof will also succeed. A more serious problem with verification is that
the correctness proof has to consider the total behaviour of the program as a whole: for a large
and complex program, this can involve a great deal of tedious work in developing and proving
verification conditions. For example, the introduction of a loop requires the following steps (not
necessarily in the given order):

1. Determine the loop termination condition;

2. Determine the loop body;

3. Determine a suitable loop invariant;

4. Prove that the loop invariant is preserved by the loop body;

5. Determine a variant function for the loop;

6. Prove that the variant function is reduced by the loop body (thereby proving termination of
the loop);

7. Prove that the combination of the invariant plus the termination condition satisfies the
specification for the loop.

Even with the aid of an automated proof assistant, there may still be several hundred remaining
“proof obligations” to discharge (these are theorems which need to be proved in order to verify the
correctness of the development) [7,24,34]

2.2 Algorithm Derivation

Algorithm derivation is the process of deriving an efficient executable program from a high-level
abstract specification by means of a series of program refinement and transformation steps, each
of which has been proved to refine or preserve the semantics of the program [15,22,31,33,49]. The
resulting program is therefore guaranteed to be a correct implementation of the specification.
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The Refinement Calculus approach [22,31,33] which appears at first sight to be a program
derivation, rather than verification method, is based on Morgan’s specification statement [30] and
Dijkstra’s guarded commands [17]. This language has very limited programming constructs: lacking
loops with multiple exits, action systems with a “terminating” action, and side-effects. The most
serious limitation in the method is that the transformations for introducing and manipulating
loops require that any loops introduced must be accompanied by suitable invariant conditions
and variant functions. Morgan says: “The refinement law for iteration relies on capturing the
potentially unbounded repetition in a single formula, the invariant”, ([31] p. 60, our emphasis). So,
in order to refine a statement to a loop, the developer still has to carry out all the steps 1–7 listed
above for verifying the correctness of a loop.

Calculational programming [14] is a methodology for constructing programs, based on category
theory. Starting with a program which may be highly inefficient but is assumed to be correct,
the developer improves its efficiency by applying calculation rules, such as fusion and tupling.
Applications include optimisation problems and dynamic programming.

In contrast, our starting point is a specification statement expressed in infinitary logic. This
does not have to be a deterministic specification, or even an executable specification: it is simply
a precise description of the relationship between the initial state and the desired final state, or
allowed final states. The basic transformation rules given in this and other papers enable the
developer to derive a program from this formal specification by means of a sequence of general
purpose correctness preserving refinements and transformations, without needing to introduce loop
invariants. Variant functions (which may be based on any well-founded partial order relation) may
be needed for the introduction of recursion, but these are much easier to discover than invariants.

3 The WSL Language and Transformation Theory

The WSL approach to program derivation and reverse engineering starts with a formally defined
wide spectrum language, called WSL, which covers a wide spectrum of constructs from high-level,
abstract, formal specifications to low-level programming constructs within a single language. This
means that the process of deriving a program from a specification, or the reverse engineering process
of deriving the specification of a given program, can be carried out as a transformation process
within a single language. The FermaT transformation theory, and its associated industrial strength
supporting tools, provides two different methods of proving the correctness of a refinement:

1. Semantic Refinement is defined in terms of the denotational semantics of WSL programs:
Program S2 is a refinement of S1 if and only if the semantic function for S2 is more defined

and more deterministic (giving set of final states for each initial state which is no larger)
than the semantic function for S1. “More defined” means that the semantic function for
S2 is defined over an initial set of states which is at least as large as that for S1. “More

deterministic” means that for each initial state, the semantic function for S2 gives a set of
possible final states which is no larger than that for S1.

2. Proof Theoretic Refinement is defined in terms of weakest preconditions [17], expressed in
infinitary logic [25]. The weakest precondition for a given program and postcondition is the
weakest condition on the initial state such that the program is guaranteed to terminate in a
state satisfying the postcondition. In the WSL transformation theory a weakest precondition
is a simple formula of infinitary logic, and it is sufficient to analyse the weakest preconditions
for two special postconditions in order to prove the correctness of a refinement [49,63,73].

Using both proof methods we have developed a large catalogue of general purpose transformations
and refinements, many of which are implemented in the FermaT transformation system.

WSL is constructed by starting with a small, tractable kernel language which is then built up
into a powerful programming language by defining new constructs in terms of existing language
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constructs via definitional transformations. For example, the while loop is defined in terms of an
equivalent recursive construct.

The kernel language is based on infinitary first order logic, originally developed by Carol
Karp [25]. Infinitary logic is an extension of ordinary first order logic which allows conjunction and
disjunction over (countably) infinite lists of formulae, but quantification over finite lists of variables,
see [66] for a description of the syntax and semantics of the kernel language. The kernel language
includes, among others, the following three primitive statements (where P is any infinitary logical
formula and x and y are finite lists of variables):

1. Assertion: {P} is an assertion statement which acts as a partial skip statement. If the
formula P is true then the statement terminates immediately without changing any variables,
otherwise it aborts (we treat abnormal termination and non-termination as equivalent, so a
program which aborts is equivalent to one which never terminates);

2. Add variables: add(x) ensures that the variables in x are in the state space (by adding
them if necessary) and assigns arbitrary values to the variables in x;

3. Remove variables: remove(y) ensures that the variables in y are not present in the state
space (by removing them if necessary).

See [63,66] for a description of the syntax and semantics of the full kernel language.

The first level of WSL (defined directly from the kernel) contains assertions, sequencing, recur-
sion, and nondeterministic choice, specification statements (see Section 3.1), assignments and local
variables. In addition if statements, while loops, Dijkstra’s guarded commands [17] and for loops
are included.

We define a trinary relation on S, V and W , denoted S : V → W , which is true if and only if
S is a WSL statement, V and W are finite sets of variables, and W is a valid final state space for
S with initial state space V . For two or more statements, we write S1,S2 : V → W as shorthand
for: (S1 : V → W ) ∧ (S2 : V → W ).

The details of WSL syntax and semantics and the transformation theory have been presented
in earlier papers [51,52,55,57] and the book “Successful Evolution of Software Systems” [73] so will
not be given here. Instead we will give an informal description of specification statements and the
main transformations used in deriving algorithms from specifications. The main novel contributions
of this paper are:

1. To demonstrate that by using specifications with infinitary logic we can give an abstract
specification of a program transformation and a slicing algorithm; and

2. By applying correctness preserving transformations to the specification we can derive a simple
slicing algorithm.

In the final section, we outline the derivation of a more powerful semantic slicing algorithm which
is capable of computing high level abstractions of low-level programs.

3.1 The Specification Statement

For our transformation theory to be useful for both forward and reverse engineering it is important
to be able to represent abstract specifications as part of the language, and this motivates the
definition of the Specification statement. Then the refinement of a specification into an executable
program, or the reverse process of abstracting a specification from executable code, can both be
carried out within a single language. Specification statements are also used in semantic slicing [61,
66].

Informally, a specification describes what a program does without defining exactly how the
program is to work. This can be formalised by defining a specification as a list of variables (the
variables whose values are allowed to change) and a formula defining the relationship between the
old values of the variables, the new values, and any other required variables.

4



With this in mind, we define the notation x := x′.Q where x is a sequence of variables and x′

the corresponding sequence of “primed variables”, and Q is any formula. This assigns new values
to the variables in x so that the formula Q is true where (within Q) x represents the old values and
x′ represents the new values. If there are no new values for x which satisfy Q then the statement
aborts.

An ordinary assignment statement, such as x := x+1 is equivalent to the specification statement:
x := x′.(x′ = x + 1). A specification of an “integer square root” program can be written as:

r := r′.(r′ ∈ N ∧ r′2 6 x < (r′ + 1)2)

If x is negative, then this specification will abort. A slight modification produces a non-deterministic
specification statement which will compute either the positive or negative root:

r := r′.(r′ ∈ Z ∧ r′2 6 x < (|r′| + 1)2)

3.2 Weakest Preconditions

Given any statement S and any formula R whose free variables are all in the final state space
for S, we define the weakest precondition WP(S,R) to be the weakest condition on the initial
states for S such that if S is started in any state which satisfies WP(S,R) then it is guaranteed to
terminate in a state which satisfies R. By using an infinitary logic, we can give a simple definition
of WP(S,R) for all kernel language programs S : V → W and all (infinitary logic) formulae R

such that vars(R) ⊆ W :

For the specification statement x := x′.Q we have:

WP(x := x′.Q,R) ⇐⇒ ∃x′.Q ∧ ∀x′. (Q ⇒ R[x′/x])

The weakest precondition of an if statement is calculated as:

WP(if B then S1 else S2 fi,R)

⇐⇒ (B ⇒ WP(S1,R)) ∧ (¬B ⇒ WP(S2,R))

The weakest precondition of a while loop is defined a the infinite disjunction of the weakest
preconditions of all the “truncations” of the loop. The truncations of a while loop are defined:

while B do S od0 =
DF

abort

while B do S odn+1 =
DF

if B then S; while B do S odn fi

The weakest precondition for the whole loop is simply:

WP(while B do S od,R) =
DF

∨

n<ω

WP(while B do S odn,R)

3.3 Proof-Theoretic Refinement

We could attempt to define a notion of refinement using weakest preconditions as follows: S1 is
refined by S2 if and only if the formula

WP(S1,R) ⇒ WP(S2,R)

can be proved for every formula R. Back and von Wright [5] and Morgan [31,32] use a second order
logic to carry out this proof. In a second order logic we can quantify over boolean predicates, so
the formula to be proved is:

∀R.WP(S1,R) ⇒ WP(S2,R)
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This approach has a serious drawback: second order logic is incomplete which means that there
is not necessarily a proof for every valid transformation. Back [3,4] gets round this difficulty by
extending the logic with a new predicate symbol GW to represent the postcondition and carrying
out the proof of the formula

WP(S1, GW ) ⇒ WP(S2, GW )

in the extended first order logic.

However, it turns out that these exotic logics and extensions are not necessary because there
already exist two simple postconditions which completely characterise the refinement relation. We
can define a refinement relation using weakest preconditions on these two postconditions:

Definition 3.1 Let S1,S2 : V → W and let x be a list of all the variables in W . Let x′′ be a list
of new variables (not appearing in S1, S2, V or W ) which is the same length as x. Let ∆ be a set
of sentences (formulae with no free variables). If the formulae WP(S1,x 6= x′′) ⇒ WP(S2,x 6= x′′)
and WP(S1, true) ⇒ WP(S2, true) are provable from ∆, then we say that S1 is refined by S2 and
write: ∆ ⊢ S1 ≤ S2.

(Note: the formula x 6= x′′ above comparing two lists of values, so it is true whenever they differ in
any position, i.e. whenever the value of any variable in x differs from the value of the corresponding
variable in x′′).

As a simple example, let S1 be the nondeterministic choice (x := 1 ⊓ x := 2) and let S2 be the
simple assignment x := 1. We claim that S2 is a refinement of S1. Clearly:

WP(S1, true) ⇐⇒ true ⇐⇒ WP(S2, true)

Now:

WP(S1, x 6= x′) ⇐⇒ WP(x := 1, x 6= x′) ∧ WP(x := 2, x 6= x′) ⇐⇒ 1 6= x′ ∧ 2 6= x′

while:
WP(S2, x 6= x′) ⇐⇒ 1 6= x′

So WP(S1, x 6= x′) ⇒ WP(S2, x 6= x′) and the refinement is proved.

If both ∆ ⊢ S1 ≤ S2 and ∆ ⊢ S2 ≤ S1 then we say that S1 and S2 are equivalent, and write
∆ ⊢ S1 ≈ S2. A transformation is any operation which takes a statement S1 and transforms it
into an equivalent statement S2. In this case, the set ∆ is called the set of applicability conditions

for the transformation.

An example of an “applicability condition” is a property of the function or relation symbols
which a particular transformation depends on. For example, the statements x := a⊕b and x := b⊕a
are equivalent when ⊕ is a commutative operation. We can write this transformation as:

{∀a, b. a ⊕ b = b ⊕ a} ⊢ x := a ⊕ b ≈ x := b ⊕ a

For the remainder of this paper we will fix on a countable list of variables V = 〈v1, v2, . . . 〉 from
which all initial and final state spaces and WSL program variables will be taken. The corresponding
list of primed variables V ′ = 〈v′1, v

′
2, . . . 〉 will be reserved for use in specification statements and

the list of double primed variables V ′′ = 〈v′′1 , v′′2 , . . . 〉 will be reserved for generating the special

postcondition needed for Definition 3.1. If W is a finite set of variables, then define
−→
W to be the

list of variables in W in the order in which they appear in V. Define
−→
W ′ to be the corresponding

list of primed variables and
−→
W ′′ the list of double primed variables. For example, if W is the set

{v3, v7, v2} then
−→
W = 〈v2, v3, v7〉,

−→
W ′ = 〈v′2, v

′
3, v

′
7〉 and

−→
W ′′ = 〈v′′2 , v′′3 , v′′7 〉. The formula

−→
W 6=

−→
W ′′

is:
v2 6= v′′2 ∧ v3 6= v′′3 ∧ v7 6= v′′7
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Then we can write Definition 3.1 as follows:

If S1 : V → W and S2 : V → W then for any set ∆ of sentences, ∆ ⊢ S1 ≤ S2 if and only if:

∆ ⊢ WP(S1, true) ⇒ WP(S2, true) and ∆ ⊢ WP(S1,
−→
W 6=

−→
W ′′) ⇒ WP(S2,

−→
W 6=

−→
W ′′)

For program equivalence, we have:

Theorem 3.2 For any S1,S2 : V → W , ∆ ⊢ S1 ≈ S2 if and only if:

∆ ⊢ WP(S1, true) ⇐⇒ WP(S2, true) and ∆ ⊢ WP(S1,
−→
W 6=

−→
W ′′) ⇐⇒ WP(S2,

−→
W 6=

−→
W ′′)

3.4 Some Basic Transformations

In this section we prove some fundamental transformations which are useful for deriving programs
from specifications.

An important property for any notion of refinement is the replacement property: if any com-
ponent of a statement is replaced by any refinement then the resulting statement is a refinement
of the original one.

Transformation 1 General Replacement: If S′ is formed from S by replacing any selection of
components by refinements of those components, then ∆ ⊢ S ≤ S′.

The next theorem shows that any program can be translated into an equivalent specification
statement:

Transformation 2 The Representation Theorem: Let S : V → W , be any WSL program. Let

x =
−→
W and x′ =

−→
W ′. Then for any ∆ we have:

∆ ⊢ S ≈ x := x′.(¬WP(S,x 6= x′) ∧ WP(S, true)); remove(
−−−−→
V \ W )

Proof: See [63] for the proof. �

This theorem shows that the specification statement is sufficiently powerful to specify any

computer program we may choose to develop. It would also appear to solve all reverse engineering
problems at a stroke, and therefore be a great aid to software maintenance and reverse engineering.
However, for programs which contain loops or recursion, the specification given by this theorem
will include infinite formulae: and this limits its practical application. The theorem is still very
useful when combined with the Replacement Property and applied to fragments of programs which
do not contain loops or recursion. See [66] for applications to semantic slicing. It also has practical
applications in analysing commercial assembler systems. One study [67] found that over 40% of all
commercial assembler modules contained no loops or recursion.

The FermaT transformation system [62,63] includes two transformations which are forwards and
backwards implementations of Transformation 2 for non-iterative, non-recursive statements. The
transformation Prog To Spec converts any statement which does not use loops, gotos or procedures
into an equivalent specification statement. For example, the program:

y := 2 ∗ y;
if y > 0 then x := x + z fi

is transformed to the equivalent specification:

〈x, y〉 := 〈x′, y′〉.(((x′ = x ∨ y > 0) ∧ x′ = x + z ∨ x′ = x ∧ y 6 0) ∧ y′ = 2 ∗ y)

while the program:

r := q + 1;
if p = q

then z := r − 1; x := z + 3; y := 10
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elsif p 6= r − 1
then y := 10; x := r + y − 8
else x := q fi

is transformed to the equivalent specification:

〈r, x, y, z〉 := 〈r′, x′, y′, z′〉.((z′ = q ∧ p = q ∨ z′ = z ∧ p 6= q)
∧ r′ = q + 1 ∧ x′ = q + 3 ∧ y′ = 10)

The other transformation, Refine Spec, takes a specification statement and refines it into a program
containing assertions, if statements, simple assignments and simpler specification statements as
necessary. For example, the specification above is refined into the equivalent program:

if p = q then z := q fi;
〈r := q + 1, x := q + 3, y := 10〉

This process of abstraction followed by refinement is particularly useful for implementing condi-
tioned semantic slicing, see [61] for examples.

Our next transformation is a key step in the derivation of an algorithm from a specification.
This transformation, together with the others in this section, can be used to implement recursive
specifications as recursive procedures, to introduce recursion into an abstract program to get a
“more concrete” program (i.e. closer to a programming language implementation), and to transform
a given recursive procedure into a different form.

Suppose we have a statement S which we wish to transform into the recursive procedure (µX.S′).
We claim that this is possible whenever:

1. The statement S is refined by the (non-recursive) statement S′[S/X]. This denotes S′ with all
occurrences of X replaced by S. In other words, if we replace each recursive call in the body
of the procedure by a copy of the specification then we get a refinement of the specification;

2. We can find an expression t (called the variant function) whose value is reduced before each
occurrence of S in S′[S/X].

The expression t need not be integer valued: any set Γ which has a well-founded order P is
suitable. To prove that the value of t is reduced it is sufficient to prove that if t P t0 initially,
then the assertion {t ⊳ t0} can be inserted before each occurrence of S′ in S[S′/X]. The theorem
combines these two requirements into a single condition:

Transformation 3 Recursive Implementation: If P is a well-founded partial order on some set Γ
and t is a term giving values in Γ and t0 is a variable which does not occur in S or S′ then if

∆ ⊢ {t P t0}; S ≤ S′[{t ⊳ t0}; S/X]

then ∆ ⊢ S ≤ (µX.S′)

Proof: See [49]. �

The proposed body of the recursive procedure (S above) does not have to be “pulled out of thin
air”, followed by a tedious verification of the refinement ∆ ⊢ S ≤ S′[S/X] Instead, we can derive
S′[S/X] from S by applying a sequence of transformations, with the aim of ensuring that ultimately
we will be able to insert the assertion {t ⊳ t0} before each copy of S. The next few transformations
are particularly useful for this derivation process:

Transformation 4 Splitting A Tautology: We can convert any statement to a conditional state-
ment with identical branches. For any statement S : V → W and any condition B whose free
variables are in V :

∆ ⊢ S ≈ if B then S else S fi

Transformation 5 Move Assertion: If B ∧ WP(S, true) ⇐⇒ WP(S,B) then ∆ ⊢ S; {B} ≈
{B}; S
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Transformation 6 Swap Statements

If no variable modified in S1 is used in S2 and no variable modified in S2 is used in S1 then:

∆ ⊢ S1; S2 ≈ S2; S1

The proof is by an induction on the recursion nesting and the structure of S2 using Transformation
5 as one of the base cases.

4 Slicing

Weiser [68] defined a program slice S as a reduced, executable program obtained from a program P

by removing statements, such that S replicates part of the behaviour of P. Weiser’s algorithm for
slicing is based on propagating control and data dependencies. His algorithm does not take into
account the “calling context” of a procedure call, in particular: (a) if a slice includes one call-site
on a procedure then the slice includes all call-sites on the procedure, and (b) if a slice includes one
parameter, it must include all parameters. Horwitz et. al. [23] present an algorithm for computing
slices based on tracking control and data dependencies in the system dependence graph. Binkley
[9] presents an improved algorithm which accounts for the calling context of each procedure call.

Reps and Yang [41] and Reps [40] define a program slice in terms of transitive control and data
dependencies in the program dependence graph.

Venkatesh [48] defines a slice in terms of the denotational semantics, but modified the semantics
to propagate “contamination” through the program in a way which is analogous to data dependency.

Rodrigues and Barbosa [42] proposed a slicing approach for functional programs based on a
projection or a hiding function which, once composed with the original program, leads to the
identification of the intended slice. It is unclear whether this approach will scale to real, complex
examples.

Survey articles by Binkley and Gallagher [13], Tip [46] and Binkley and Harman [11] include
extensive bibliographies.

4.1 Slicing Relations defined by Semantic Equivalence

The concept of an Amorphous Slice was first introduced in 1997 by Harman and Danicic [20] as
a combination of a computable partial order and an (otherwise unspecified) semantic equivalence
relation. Given that the partial order is required to be a computable function, it cannot be a
function on the program semantics: for example, it cannot be refinement since semantic refinement
is not a computable relation. (A program which computes the refinement relation could be used
to solve the Halting Problem, which is known to be impossible [47]). So, the partial order must be
a purely syntactic relation: although this fact is not made explicit in the paper.

In 2000 Hatcliff [21] pointed out that: “In many cases in the slicing literature, the desired
correspondence between the source program and the slice is not formalized because the emphasis
is often on applications rather than foundations, and this also leads to subtle differences between
presentations.” They give a formal definition of a slice as any program whose projected execution
trace is identical to the projected execution trace of the original program.

In 2001 one of the present authors [56] defined a slice in WSL as a combination of statement
deletion plus WSL semantic equivalence on the variables of interest. A “semantic slice” was
defined purely in terms of semantic equivalence, by dropping the syntactic requirement. This
flawed definition was later modified, using the concept of semi-refinement (see Section 4.2).

In 2003 Binkley, Harman et al [12] redefined an “Amorphous slice” to be as a combination of a
syntactic ordering and a semantic equivalence relation using a “lazy semantics”: where the slice of
a terminating program may be a non-terminating program, and vice-versa.
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In 2006 the same authors [10] defined all forms of slicing as a combination of a pre-order on the
syntax of the programs and an equivalence relation on the semantics. While this might appear to
provide a huge number of potential candidates for useful slicing relations, it turns out that there is
no semantic equivalence relation which is suitable for defining a useful program slice! See [64] for
the proof.

In [64] we define a set of properties of slicing definitions and examine various published defini-
tions against this set of properties. We prove that two of the most basic and fundamental properties
of slicing, together with a basic property of the programming language semantics, are sufficient to
completely characterise the semantics of the slicing relation: in the sense that there is only one
possible slicing relation which meets all the requirements. The two properties are:

1. Behaviour Preservation: If the original program terminates on some initial state, then the
slice must also terminate on that state and give the same values to the variables of interest;

2. Truncation: A statement at the very end of the program which does not assign to any variable
of interest can be deleted, and the result is a valid slice.

This semantic relation for slicing is called semi-refinement.

4.2 Semi-Refinement

Definition 4.1 Let S1,S2 : V → W . Statement S2 is a semi-refinement of S1, denoted ∆ ⊢ S1 4

S2, if and only if:
∆ ⊢ S1 ≈ {WP(S1, true)}; S2

For initial states on which S1 terminates, then S2 must be equivalent to S1. Otherwise (i.e. when
S1 does not terminate), S2 can do anything at all.

A semi-refinement can be characterised in terms of the weakest preconditions using Theorem 3.2:

∆ ⊢ S1 4 S2 iff ∆ ⊢ WP(S1, true) ⇒ WP(S2, true)

and ∆ ⊢ WP(S1,
−→
W 6=

−→
W ′′) ⇔ (WP(S1, true) ∧ WP(S2,

−→
W 6=

−→
W ′′))

If ∆ ⊢ S1 4 S2 then ∆ ⊢ S1 ≤ S2 (since deleting an assertion is a valid refinement): so any
semi-refinement is also a refinement. The the converse does not hold: for example x := 1 is a valid
refinement of the nondeterministic choice (x := 1 ⊓ x := 2), but not a valid semi-refinement.
Clearly, any equivalence is also a semi-refinement, so the semi-refinement relation lies strictly
between a refinement and an equivalence.

An example of a semi-refinement is deleting an assertion:

Lemma 4.2 For any formula Q: ∆ ⊢ {Q} 4 skip

Proof: WP({Q}, true) = Q so: {Q} is equivalent to {WP({Q}, true)}; skip �

In particular, abort which is defined as {false} can be semi-refined to skip.

As with refinement, semi-refinement satisfies the replacement property : if any component of a
program is replaced by a semi-refinement then the result is a semi-refinement of the whole program.
Putting these two results together, we see that deleting an assertion anywhere in a program gives
a valid semi-refinement.

Ranganath et. al. [39] carefully distinguishes between non-terminating preserving slicing defi-
nitions and those which are not required to preserve non-termination. They introduce new notions
of control dependence which are non-termination sensitive and others which are non-termination
insensitive.

Amtoft [2] also address the issue of slicing away non-terminating code by defining a slice in
terms of weak simulation where the slice is required to perform all observable actions of the original
program, but not necessarily vice-versa.

10



4.3 Reduction

In [66] we present a unified mathematical framework for program slicing which places all slicing
work, for sequential programs, in a sound theoretical framework. This mathematical approach has
many advantages: not least of which is that it is not tied to a particular representation. In fact the
mathematics provides a sound basis for any sequential program representation and any program
slicing technique.

The framework uses of semi-refinement as the semantic relation, combined with a syntactic
relation (called reduction) and WSL’s add and remove statements. Within this framework we can
give mathematical definitions for backwards slicing, conditioned slicing, static and dynamic slicing
and semantic slicing as program transformations in the WSL transformation theory.

The reduction relation defines the result of replacing certain statements in a program by skip

statements. We define the relation S1 ⊑ S2, read “S1 is a reduction of S2”, on WSL programs as
follows:

S ⊑ S for any program S

skip ⊑ S for any program S

If S′
1 ⊑ S1 and S′

2 ⊑ S2 then:

if B then S′
1 else S′

2 fi ⊑ if B then S1 else S2 fi

If S′ ⊑ S then:
while B do S′ od ⊑ while B do S od

var 〈v := e〉 : S′ end ⊑ var 〈v := e〉 : S end

var 〈v := ⊥〉 : S′ end ⊑ var 〈v := e〉 : S end

This last case will be used when the variable v is used in S, but the initial value e of v is not used
(because v is overwritten before it is read).

If S′
i ⊑ Si for 1 6 i 6 n then:

S′
1; S′

2; . . . ; S′
n ⊑ S1; S2; . . . ; Sn

Note that the reduction relation does not allow actual deletion of statements: only replacing a
statement by a skip. This makes it easier to match up the original program with the reduced version:
the position of each statement in the reduced program is the same as that of the corresponding
statement in the original program. Deleting the extra skips is a trivial step. Ranganath et. al.
[39] and Amtoft [2] both a similar technique (replacing deleted statements by skip statements) to
remove statements from a control flow graph while preserving the structure of the graph, in order
to facilitate correctness proofs.

4.4 Slicing Relation

In this section we will define a relation on WSL programs and state spaces which captures the
concept of syntactic slicing.

We define a slice of S on X to be any reduction of S which is also a semi-refinement. The
following definition is an extension of the definition in [66] in that it also defines a subset of the
initial state space, for which the values of all variables outside this subset are not required.

Definition 4.3 A Syntactic Slice of S : V → W on a set X ⊆ W is any program S′ : V → W and
set X ′ ⊆ V such that S′ ⊑ S and

∆ ⊢ S; remove(W \ X) 4 add(V \ X ′); S′; remove(W \ X)

and
∆ ⊢ add(V \ Y ); S′; remove(W \ X) ≈ S′; remove(W \ X)
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The syntactic slice defined in [66] is the special case of this relation where Y = V .

We define the slicing relation |6 as follows:

Definition 4.4 Slicing Relation: If S,S′ : V → W and Y ⊆ V and X ⊆ W , then:

∆ ⊢ S′
Y |6X S iff S′ ⊑ S and

∆ ⊢ S; remove(W \ X) 4 add(V \ Y ); S′; remove(W \ X) ≈ S′; remove(W \ X)

(The vertical bar in the slicing relation is intended to connote “slicing” rather than “negation”.)

As a simple example, let S be z := 4; x := y + 1 and let S′ be skip; x := y + 1. Let
V = W = {x, y, z}. We claim that:

skip; x := y + 1 {y} |6{x} z := 4; x := y + 1

It is trivial that S′ ⊑ S. For the semantic part of the definition:

z := 4; x := y + 1; remove(W \ X) = z := 4; x := y + 1; remove({y, z})

≈ z := 4; remove({z}); x := y + 1; remove({y, z})

≈ skip; remove({z}); x := y + 1; remove({y, z})

≈ skip; x := y + 1; remove({y, z})

so the slice is valid.

The relation ∆ ⊢ S; remove(W \ X) 4 add(V \ Y ); S′; remove(W \ X) holds when:

1. ∆ ⊢ WP(S, true) ⇒ ∀
−−−→
V \ Y .WP(S′, true) and

2. ∆ ⊢ WP(S,
−→
X 6=

−→
X ′′) ⇔ (WP(S, true) ∧ ∀

−−−→
V \ Y .WP(S′,

−→
X 6=

−→
X ′′))

The relation ∆ ⊢ add(V \ Y ); S′; remove(W \ X) ≈ S′; remove(W \ X) holds when:

1. ∆ ⊢ ∀
−−−→
V \ Y .WP(S′, true) ⇔ WP(S′, true) and

2. ∆ ⊢ ∀
−−−→
V \ Y .WP(S′,

−→
X 6=

−→
X ′′) ⇔ WP(S′,

−→
X 6=

−→
X ′′)

Putting these results together, we can characterise the slicing relation in terms of weakest
preconditions.

Theorem 4.5 If S,S′ : V → W and X ⊆ W and Y ⊆ V then S′
Y |6X S if and only if:

1. S′ ⊑ S and

2. ∆ ⊢ WP(S, true) ⇒ ∀
−−−→
V \ Y .WP(S′, true) and

3. ∆ ⊢ WP(S,
−→
X 6=

−→
X ′′) ⇔ (WP(S, true) ∧ ∀

−−−→
V \ Y .WP(S′,

−→
X 6=

−→
X ′′)) and

4. ∆ ⊢ ∀
−−−→
V \ Y .WP(S′, true) ⇔ WP(S′, true) and

5. ∆ ⊢ ∀
−−−→
V \ Y .WP(S′,

−→
X 6=

−→
X ′′) ⇔ WP(S′,

−→
X 6=

−→
X ′′)

This theorem will prove to be very useful for the development of a formal specification of a
slicing program.

For our simple example where S is z := 4; x := y + 1 and S′ is skip; x := y + 1: Equation
(1) in Theorem 4.5 is trivial, equations (2) and (4) are also trivial since both statements always
terminate. For (3) we have:

WP(z := 4; x := y + 1, x 6= x′′) ⇐⇒ WP(z := 4, y + 1 6= x′′) ⇐⇒ y + 1 6= x′′
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and:

∀x, z.WP(skip; x := y + 1, x 6= x′′) ⇐⇒ ∀x, z.WP(skip; y + 1 6= x′′)

⇐⇒ ∀x, z. y + 1 6= x′′

⇐⇒ y + 1 6= x′′

Similarly, for (5) we have:

∀x, z.WP(skip; x := y + 1, x 6= x′′) ⇐⇒ y + 1 6= x′′

and:
WP(skip, y + 1 6= x′′) ⇐⇒ y + 1 6= x′′

which proves that the slice is valid.

Lemma 4.6 For any statements S1,S2 : V → W and any X ⊆ W :

∆ ⊢ S1; add(W \X) 4 S2; add(W \X) iff ∆ ⊢ S1; remove(W \X) 4 S2; remove(W \X)

Proof: First, note that:

WP(add(W \ X); remove(W \ X),R) ⇐⇒ ∀
−−−−→
W \ X.R ⇐⇒ R

since R has no free variables in W \ X, so:

WP(add(W \ X); remove(W \ X),R) ⇐⇒ WP(remove(W \ X),R)

Similarly:

WP(remove(W \ X); add(W \ X),R) ⇐⇒ ∀
−−−−→
W \ X.R ⇐⇒ WP(add(W \ X),R)

The proof now follows from the replacement property of semi-refinement. If:

∆ ⊢ S1; add(W \ X) 4 S2; add(W \ X)

then, by the replacement property

∆ ⊢ S1; add(W \ X); remove(W \ X) 4 S2; add(W \ X); remove(W \ X)

so, from the above:

∆ ⊢ S1; remove(W \ X) 4 S2; remove(W \ X)

The converse follows similarly. �

The next lemma presents some important properties of the slicing relation. These will be used
later in the derivation of an algorithm for slicing.

Lemma 4.7 Properties of the slicing relation.

1. Weaken Requirements: If X1 ⊆ X and Y ⊆ Y1 and S′
Y |6X S then S′

Y1
|6X1

S

Proof: We have: remove(W \X1) ≈ remove(W \X); remove(W \X1), and add(V \Y ) ≈
add(V \ Y1); add(V \ Y ). So:

∆ ⊢ S; remove(W \ X1) ≈ S; remove(W \ X); remove(W \ X1)

4 add(V \ Y ); S′; remove(W \ X); remove(W \ X1)

≈ add(V \ Y1); add(V \ Y ); S′; remove(W \ X1)

≈ add(V \ Y1); S′; remove(W \ X1)

and

∆ ⊢ add(V \ Y1); S′; remove(W \ X1) ≈ add(V \ Y1); add(V \ Y ); S′; remove(W \ X1)

≈ add(V \ Y ); S′; remove(W \ X1)

≈ S′; remove(W \ X1)

which completes the proof. �
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2. Strengthen Requirements: If S′
Y |6X S and variable y does not appear in S or S′, then

S′
Y ∪{y} |6X∪{y} S.

Proof: add(V \ Y ) ≈ add(〈y〉); add(V \ Y ∪ {y}) and remove(W \ X) ≈ remove(W \
X ∪ {y}); remove(〈y〉). So by the premise, we have:

add(〈y〉); add(V \ (Y ∪ {y})); S; remove(W \ X ∪ {y}); remove(〈y〉)

4 add(〈y〉); add(V \ Y ∪ {y}); S′; remove(W \ X ∪ {y}); remove(〈y〉)

≈ S′; remove(W \ (X ∪ {y})); remove(〈y〉)

Move the add(〈y〉) statements forwards using Transformation 6, and then delete the sequence
add(〈y〉); remove(〈y〉). The result follows. �

3. Identity Slice: If S : V → W and X ⊆ W then S V |6X S

Proof: Equations (1) to (5) in Theorem 4.5 are trivial when S = S′, X ⊆ W and Y = V .
�

4. Abort: abort
∅
|6X abort and skip

∅
|6X abort for any X.

Proof: Follows from the fact that abort 4 skip and abort ≈ add(x); abort; remove(y)
for any x and y. �

5. Add Variables: For any set X and list of variables x: add(x) Y |6X add(x) where Y =
X \ vars(x).

Proof: WP(add(x), true) ⇐⇒ true and:

WP (add(x),
−→
X 6=

−→
X ′′) = ∀x. (

−→
X 6=

−→
X ′′) ⇐⇒

{−→
X 6=

−→
X ′′ if X ∩ vars(x) = ∅,

false otherwise

since, if there is a variable, say y, which appears in both X and x, then ∀y. (y 6= y′′) is false.
So, equations (1) to (5) in Theorem 4.5 are trivial when X and vars(x) are not disjoint. So,
assume X ∩ vars(x) = ∅. Then Y = X and:

∀
−−−→
V \ Y .WP(add(x),

−→
X 6=

−→
X ′′) ⇐⇒ ∀

−−−→
V \ Y .∀x. (

−→
X 6=

−→
X ′′) ⇐⇒ ∀x. (

−→
X 6=

−→
X ′′)

since no variable in V \ Y occurs free in
−→
X 6=

−→
X ′′. �

6. Remove Variables: For any set X and list of variables x: remove(x) X |6X remove(x).
Note that vars(x) and X are disjoint since X must be a subset of the final state space, and
no variable in x is in the final state space.

Proof: Follows from Theorem 4.5 since all the weakest preconditions are equivalent to true.
�

7. Specification Statement: If x := x′.Q is any specification statement then x := x′.Q Y |6X

x := x′.Q where Y = (X \ vars(x)) ∪ (vars(Q) \ vars(x′)).

Proof: Let S = x := x′.Q Recall that WP(S,R) ⇐⇒ ∃x′.Q ∧ ∀x′. (Q ⇒ R[x′/x]), so the

free variables in WP(S,
−→
X 6=

−→
X ′′) are all in Y ∪X ′′. By definition, V and X ′′ are disjoint, so

∀
−−−→
V \ Y .WP(S,

−→
X 6=

−→
X ′′) ⇐⇒ WP(S,

−→
X 6=

−→
X ′′). The result follows from Theorem 4.5.

�

8. Assignment: If x := e is any assignment, then: x := e Y |6X x := e where Y = (X \ {x})∪
vars(e)

Proof: x := e ≈ 〈x〉 := 〈x′〉.(x′ = e), so the result follows from the last case. �
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9. Total Slice: If S : V → V and X ⊆ V and no variable in X is assigned in S, then:
skip X |6X S. In particular, skip X |6X skip for any X.

Proof: If no variable in X is assigned in S, then the final value of each variable in X is the
same as the initial value. (This rather obvious fact can be formally proved by induction on
the structure of S). Then:

WP(S,
−→
X 6=

−→
X ′′) ⇐⇒

−→
X 6=

−→
X ′′ ⇐⇒ WP(skip,

−→
X 6=

−→
X ′′)

and:
∀
−−−→
V \ Y .WP(S,

−→
X 6=

−→
X ′′) ⇐⇒

−→
X 6=

−→
X ′′ ⇐⇒ WP(skip,

−→
X 6=

−→
X ′′)

The result follows from Theorem 4.5. �

10. Sequence: If S1,S
′
1 : V → V1, S2,S

′
2 : V1 → W , Y ⊆ W , X1 ⊆ V1 and X ⊆ V are such that

S′
1 Y |6X1

S1 and S′
2 X1

|6X S2 then:

(S′
1; S′

2) Y |6X (S1; S2)

Proof:

S1; S2; remove(W \ X) 4 S1; add(V1 \ Y1); S′
2; remove(W \ X)

by premise

4 S1; remove(V1 \ Y1); add(V1 \ Y1); S′
2; remove(W \ X)

by Lemma 4.6

4 add(V \ Y ); S′
1; remove(V1 \ Y1);

add(V1 \ Y1); S′
2; remove(W \ X)

by premise

4 add(V \ Y ); S′
1; add(V1 \ Y1); S′

2; remove(W \ X)

by Lemma 4.6

4 add(V \ Y ); S′
1; S′

2; remove(W \ X)

≈ add(V \ Y ); S′
1; add(V1 \ Y1); S′

2; remove(W \ X)

≈ add(V \ Y ); S′
1; remove(V1 \ Y1);

add(V1 \ Y1); S′
2; remove(W \ X)

≈ S′
1; remove(V1 \ Y1); add(V1 \ Y1); S′

2; remove(W \ X)

≈ S′
1; add(V1 \ Y1); S′

2; remove(W \ X)

≈ S′
1; S′

2; remove(W \ X)

and the result is proved. �

11. Deterministic Choice: If Si,S
′
i : V → W , for 1 6 i 6 n and X ⊆ W , Yi ⊆ V are such that

S′
i Yi

|6X Si and B1, . . . ,Bn−1 are any formulae, then:

if B1 then S′
1 elsif . . . else S′

n fi Y |6X if B1 then S1 elsif . . . else Sn fi

where Y = Y1 ∪ · · · ∪ Yn ∪ vars(B1) ∪ · · · ∪ vars(Bn−1).

Proof: We will prove the case for n = 2, the proof of the general case can then be proved
by induction on n.

if B1 then S1 else S2 fi; remove(W \ X)

≈ if B1 then S′
1; remove(W \ X) else S′

2; remove(W \ X) fi

by expanding the if statement forwards
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4 if B1 then add(V \ Y1); S′
1; remove(W \ X)

else add(V \ Y2); S′
2; remove(W \ X) fi

by premise

4 if B1 then add(V \ Y ); S′
1; remove(W \ X)

else add(V \ Y ); S′
2; remove(W \ X) fi

by Weaken Requirements, since Y1 ⊆ Y and Y2 ⊆ Y

≈ add(V \ Y ); if B1 then S′
1 else S′

2 fi; remove(W \ X) fi

by separating code out of the if statement, using the fact that no variable in B1 is assigned
in add(V \ Y ) since vars(B1) ⊆ Y

≈ if B1 then S′
1; remove(W \ X) else S′

2; remove(W \ X) fi

≈ if B1 then S′
1 else S′

2 fi; remove(W \ X)

and the result is proved. �

12. Local Variable: If S,S′ : V → W , X ⊆ W and S′
Y |6X\{x} S, then let Y1 = (Y \ {x}) ∪

({x} ∩ X) and Y2 = Y1 ∪ vars(e). Then:

var 〈x := ⊥〉 : S′ end Y1
|6X var 〈x := e〉 : S end if x /∈ Y

var 〈x := e〉 : S′ end Y2
|6X var 〈x := e〉 : S end otherwise

This ensures that the global variable x is added to the required initial set if and only if it
is in the required final set. Note that the second relation above is also true when x /∈ Y ,
but we usually want to minimise the initial set of variables, so the first relation is chosen for
preference.

Proof: Let V ′ and W ′ be the initial and final state spaces for the var statement. Note that,
by definition, we have either x ∈ V ′ and x ∈ W ′ or x /∈ V ′ and x /∈ W ′.

Let y be a new variable which does not occur in S or S′. Then:

∆ ⊢ var 〈x := e〉 : S end ≈

{
y := x; x := e; S; x := y; remove(〈y〉) if x ∈ V

x := e; S; remove(〈x〉) otherwise

and

∆ ⊢ var 〈x := ⊥〉 : S end ≈

{
y := x; add(〈x〉); S; x := y; remove(〈y〉) if x ∈ V

add(〈x〉); S; remove(〈x〉) otherwise

Suppose x ∈ Y and x /∈ X. Then X = X \ {x}. By applying cases 6, 9 and 8 of this Lemma,
working from right to left through the sequence of statements, we can deduce the following
slicing relations:

skip X |6X x := y

S′
Y |6X\{x} S

x := e (Y \{x})∪vars(e) |6Y x := e

skip (Y \{x})∪vars(e) |6(Y \{x})∪vars(e) y := x

Then case 10 of this Lemma proves the result.
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Now suppose x ∈ Y and x ∈ X. Then by applying cases 2, 6 and 8 of this Lemma, we have:

remove(〈y〉) X |6X remove(〈y〉)

x := y (X\{x})∪{y} |6X x := y

S′
Y ∪{y} |6(X\{x})∪{y} S

x := e (Y \{x})∪vars(e)∪{y} |6Y ∪{y} x := e

y := x (Y \{x})∪vars(e)∪{x} |6(Y \{x})∪vars(e)∪{y} y := x

Note that these two initial sets can both be represented as: (Y \ {x}) ∪ vars(e) ∪ ({x} ∩ X).

Now suppose x /∈ Y and x /∈ X:

skip X |6X x := y

S′
Y |6X\{x} S

skip Y |6Y x := e

Finally, if x /∈ Y and x ∈ X:

x := y (X\{x})∪{y} |6X x := y

S′
Y ∪{y} |6(X\{x})∪{y} S

skip Y ∪{y} |6Y ∪{y} x := e

y := x Y ∪{x} |6(Y ∪{y} y := x

This proves the result for the case where x ∈ V . The result is proved similarly for the case
where x /∈ V using case 5 as appropriate. �

13. While Loop: If S,S′ : V → V and Y ⊆ V are such that S′
Y |6Y S, and vars(B) ⊆ Y , then:

while B do S′ od Y |6Y while B do S od

Proof: We will prove by induction on n that:

while B do S′ odn
Y |6Y while B do S odn

for every n < ω. Suppose the result holds for n. Let DO = while B do S od and DO′ =
while B do S′ od.

DOn+1; remove(V \ Y ) = if B then S; DOn fi; remove(V \ Y )

≈ if B then S; DOn; remove(V \ Y ) else remove(V \ Y ) fi

by Expand Forwards

4 if B then S; add(V \ Y ); DO′n; remove(V \ Y )
else remove(V \ Y ) fi

by the induction hypothesis

≈ if B then S; remove(V \ Y ); add(V \ Y );
DO′n; remove(V \ Y )

else remove(V \ Y ) fi

by the induction hypothesis

≈ if B then add(V \ Y ); S′; remove(V \ Y ); add(V \ Y );
DO′n; remove(V \ Y )

else remove(V \ Y ) fi

≈ add(V \ Y ); if B then S′; DO′n fi; remove(V \ Y )

since no variable in B is assigned in add(V \ Y ), since vars(B) ⊆ Y
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= add(V \ Y ); DO′n+1; remove(V \ Y )

≈ if B then add(V \ Y ); S′; remove(V \ Y ); add(V \ Y );
DO′n; remove(V \ Y )

else remove(V \ Y ) fi

≈ if B then S′; DO′n; remove(V \ Y ) else remove(V \ Y ) fi

≈ if B then S′; DO′n fi; remove(V \ Y )

= DO′n+1; remove(V \ Y )

The result follows from the generalised induction rule for semi-refinement. �

5 Specification of a Slicing Algorithm

In this section we will show how to develop a specification statement which captures the concept
of a program slice in WSL.

Recall that a syntactic slice S : V → W on a set X ⊆ W of variables is any program S′ : V → W
and set of variables Y ⊆ V such that S′ ⊑ S and S′

Y |6X S, i.e.

S′ ⊑ S and ∆ ⊢ S; remove(W \X) 4 add(V \Y ); S′; remove(W \X) 4 S′; remove(W \X)

In [66] we gave a different definition of syntactic slice, which is equivalent to setting Y = V above. In
this paper, we need to calculate a better approximation for the set of variables whose initial values
are required by the sliced program. It is impossible to define an algorithm which is guaranteed to
compute only the variables which are actually required (this is due to the non-computability of the
Halting Problem [47]) but a good approximation will allow us to slice a sequence of statements by
slicing each statement in turn, starting with the last statement in the sequence.

To convert the formal definition of program slicing into a specification statement which defines
program for slicing a subset of WSL, we need the following:

1. A way to represent a WSL program in a WSL variable;

2. A way to represent the relation ⊑ as a WSL predicate on variables containing WSL programs;

3. A way to represent the relation 4 as a WSL predicate on variables containing WSL pro-
grams.

Any algorithm can only be applied in practice to a finite amount of data, so we can restrict
consideration to finite WSL programs. A finite WSL program can be represented as a finite list
of symbols taken from a countable set of symbols. Therefore the set of all finite WSL programs is
a countable set, and we can create a countable sequence of programs which includes every finite
WSL program.

5.1 Storing a WSL program in a variable

For simplicity, in this paper we will consider the subset of the WSL language consisting of these
constructs:

• Specification Statement: x := x′.Q

• Assignment: x := e

• Add variables: add(x)

• Remove variables: remove(x)

• Skip statement: skip

• Abort statement: abort

• Assertion {Q}

18



• Sequence: S1; S2; . . . ; Sn

• Conditional statement: if B1 then S1 elsif B2 then S2 elsif . . . elsif Bn then Sn fi

• While loop: while B do S od

• Initialised local variable: var 〈x := e〉 : S end

• Uninitialised local variable: var 〈x := ⊥〉 : S end

We will represent each WSL item (statement, expression, condition etc.) as a list:

〈s, v, c1, c2, . . . , cn〉

where s is the specific type of the item (taken from a finite set of distinct types), v is the value of the
item (if any) and c1, . . . , cn are the components (if any). For example, the number 3 is represented
as a WSL item 〈Number, 3〉. The ith component of an item is therefore the element at position i+2
in the representation of the item. We use the empty sequence 〈〉 as the value for an item which has
no value. For example, the program:

if x = y then z := 1 else z := 2 fi

is represented as the sequence:

〈Cond, 〈〉,〈Guarded, 〈〉,〈Equal, 〈〉, 〈Variable, “x”〉, 〈Variable, “y”〉〉,
〈Statements, 〈〉, 〈Assignment, 〈〉, 〈Var Lvalue, “z”〉, 〈Number, 1〉〉〉〉

〈Guarded, 〈〉,〈True, 〈〉〉,
〈Statements, 〈〉, 〈Assignment, 〈〉, 〈Var Lvalue, “z”〉, 〈Number, 2〉〉〉〉〉

Each specific type has a corresponding generic type, for example While, the type of a while loop,
has generic type Statement, while Number has generic type Expression. The abstract syntax of
the internal representation is very simple: the specific type of an item constrains the generic type(s)
of its component item(s) as follows:

1. There are either a specific number of components (possibly zero), each with a given generic
type; OR

2. There are a variable number of components each of which has the same generic type.

For example, the while loop must have precisely two components: the first is of generic type
Condition and the second of type Statements. An item of type Statements must have one or
more components each of generic type Statement. Note that it is important to distinguish between
a statement sequence which is an item of type Statements and a sequence of statements which is
a sequence of items, each of type Statement.

The generic types used in the subset are: Statements, Statement, Condition, Expression,
Expressions, Lvalue, Lvalues and Guarded. An Lvalue is anything which can appear on the left
hand side of an assignment statement.

For each expression e, define e to be the internal representation of e. For example, if x is a
simple variable, then x + 1 is the item:

〈Plus, 〈〉, 〈Variable, “x”〉, 〈Number, 1〉〉

Similarly, for each finite formula B, define B as the internal representation of B, and for each
statement S in the subset of WSL given above, define S as the internal representation of S. For
statements, the internal representations are defined as follows:

• x := x′.Q =
DF

〈Spec, 〈〉,x,Q〉

• x := e =
DF

〈Assignment, 〈〉, x, e〉

• add(x) =
DF

〈Add, 〈〉,x〉

• remove(x) =
DF

〈Remove, 〈〉,x〉
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• skip =
DF

〈Skip, 〈〉〉

• abort =
DF

〈Abort, 〈〉〉

• {Q} =
DF

〈Assert, 〈〉,Q〉

• S1; S2; . . . ; Sn =
DF

〈Statements, 〈〉,S1,S2, . . . ,Sn〉

• if B1 then S1 elsif . . . elsif Bn then Sn fi =
DF

〈Cond, 〈〉, 〈Guarded, 〈〉,B1,S1〉, . . . , 〈Guarded, 〈〉,Bn,Sn〉〉

• while B do S od =
DF

〈While, 〈〉,B,S〉

• var 〈x := e〉 : S end =
DF

〈Var, 〈〉, 〈x, e,S〉

• var 〈x := ⊥〉 : S end =
DF

〈Var, 〈〉, 〈x, 〈Bottom, 〈〉〉,S〉

The conditional statement if B1 then S1 elsif . . . elsif Bn then Sn fi is represented as a sequence
of guarded items: 〈Cond, 〈〉, G1, . . . , Gn〉 where: Gi = 〈Guarded, 〈〉,Bi,Si〉. If Bn is true, then the
last clause is displayed as . . . else Sn fi, unless Sn is a single skip statement, in which case the last
clause is not displayed. So if B then S fi is represented as:

〈Cond, 〈〉, 〈Guarded, 〈〉,B,S〉, 〈Guarded, 〈〉, true, skip〉〉

If all of the conditions are false, then the statement aborts, also an empty Cond statement is defined
to be equivalent to abort.

A list of items is represented as 〈Sequence, 〈〉, . . . 〉, so for example if x is the list of variables
〈x1, . . . , xn〉 then x = 〈Sequence, 〈〉, x1, . . . , xn〉.

Conversely, if I is the internal representation of a statement, expression or condition, then let
Ĩ be the corresponding statement, expression or condition.

The following METAWSL functions are used to construct new items and extract the components
of an item. The function @ST To GT maps each specific type to the corresponding generic type. If
I has the value 〈s, v, c1, c2, . . . , cn〉 then:

• @Make(s, v, 〈c1, . . . , cn〉) = 〈s, v, c1, . . . , cn〉 = I

• @ST(I) = s

• @GT(I) = @ST To GT(@ST(I))

• @V(I) = v

• @Size(I) = n

• Iˆm = cm

• @Cs(I) = 〈c1, . . . , cn〉

Note: the internal representation of items in the current implementation of FermaT1 differs
slightly from the above (for efficiency reasons), but the semantics of the accessor and creator
functions is identical. In the FermaT implementation, identical items may have different implemen-
tations, so items must be compared via the METAWSL function @Equal? instead of =.

Since the set of finite WSL programs is countable and the set of valid initial state spaces for
each program is also countable, we can construct a countable list consisting of all pairs 〈V,S〉
where S is a finite WSL program and V is a valid initial state space for S. Fix on a particular
countable list 〈〈V1,S1〉, 〈V2,S2〉, . . . 〉 and let 〈〈v1, S1〉, 〈v2, S2〉, . . . 〉 be the corresponding list of pairs
of interpretations. For each state space V and program S, define:

Final(V,S) =
DF

{
W if S : V → W

⊥ if there is no W such that S : V → W

1Available from 〈http://www.cse.dmu.ac.uk/∼mward/fermat.html〉
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So for 0 < n < ω we have vn = Vn, Sn = Sn, Vn = ṽn, Sn = S̃n, and Final(Vn,Sn) 6= ⊥. The list
〈S1, S2, . . . 〉 will include every possible finite item of type Statement or Statements.

For example, S3 might be the representation of the program consisting of a single skip statement,
in which case: S3 = 〈Skip, 〈〉〉, and v3 might the internal representation of the state space {b}, ie:
v3 = 〈Set, 〈〉, 〈Variable, “b”〉〉.

Note that any finite set of variables is a valid initial state space for the program skip, so the
list 〈V1, V2, . . . 〉 includes all finite sets of variables (with repetitions).

As a running example for the rest of this section, let S1 be the program {a = 1}; b := 2; c := 3
and S2 the program skip; skip; c := 3 and let V1 and V2 both be the set of variables {a, b, c} and
V3 be {c}. So:

S1 = 〈Statements, 〈〉,〈Assert, 〈〉, 〈Equal, 〈Variable, “a”〉, 〈Number, 1〉〉〉,
〈Assignment, 〈〉, 〈Variable, “b”〉, 〈Number, 2〉〉,
〈Assignment, 〈〉, 〈Variable, “c”〉, 〈Number, 3〉〉〉

and:
S2 = 〈Statements, 〈〉,〈Skip, 〈〉〉,

〈Skip, 〈〉〉,
〈Assignment, 〈〉, 〈Variable, “c”〉, 〈Number, 3〉〉〉

5.2 Definition of Reduction as a WSL Condition

Our next step is to define a WSL condition (a formula in our infinitary logic) which captures the
reduction relation for representations of WSL programs. We want a condition Red(I1, I2) with free
variables I1 and I2 which is true precisely when Ĩ1 ⊑ Ĩ2, i.e. when I1 and I2 contain statements
and I1 is a reduction of I2:

Red(I1, I2) =
DF

∨

0<n<ω

(I1 = Sn) ∧
∨

0<n<ω

(I2 = Sn) ∧
∧

0<n,m<ω

(
(I1 = Sn ∧ I2 = Sm) ⇒ Rnm

)

where:

Rnm =
DF

{
true if Sn ⊑ Sm,

false otherwise.

and: ∧

0<n,m<ω

Q is short for
∧

0<n<ω

( ∧

0<m<ω

Q
)

Note that we cannot simply define Red(I1, I2) as Ĩ1 ⊑ Ĩ2 since this is not a formula in the
infinitary logic. The relation ⊑ is not necessarily an existing relation symbol in the logic (with the
appropriate interpretation), neither is Ĩ a function symbol in the logic.

Each of the subformulae Rnm in the definition is either the formula true or the formula false,
depending on whether or not the relation Sn ⊑ Sm holds. For our running example, S2 ⊑ S1, so
R21 = true by definition. So, we have:

Red(S2, S1) ⇐⇒ S2 = S2 ∧ S1 = S1 ∧ ((S2 = S2 ∧ S1 = S1) ⇒ R21)

which is equivalent to true.

5.3 Definition of Refinement and Semi-Refinement as WSL Conditions

Now we want to define a WSL condition which captures the semi-refinement relation for repre-
sentations of WSL programs. Recall that the semi-refinement relation 4 may be expressed in
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terms of weakest preconditions where the post condition is either true or of the form x 6= x′′ for a
particular sequence of variables x.

We start by defining a WSL formula wp
t
(I) with free variable I which is true precisely when

WP(Ĩ , true) is true. As with Red, we cannot simply define wp
t
(I) as WP(Ĩ , true), since this is not

a formula. But it is the case that for each n, WP(Sn, true) is a formula. So we define:

Definition 5.1

wp
t
(I) =

DF

∨

0<n<ω

(I = Sn) ∧
∧

0<n<ω

(
I = Sn ⇒ WP(Sn, true)

)

Note that the formula contains within it a copy of the formula WP(Sn, true) for each WSL program
Sn in the countable list of all finite WSL programs. For our running example:

wp
t
(S1) ⇐⇒ a = 1 and wp

t
(S2) ⇐⇒ true

A WSL program which solves the “halting problem” for finite WSL programs is the following:

HALTS(I) =
DF

if wp
t
(I) then halts := 1 else halts := 0 fi

This will set the variable halts to 1 if the program whose representation is give in I will halt.
Otherwise it sets halts to 0. Note that this program does not contradict the noncomputability of
the halting problem [47] since HALTS(I) is an infinitely large program, and so is not one of the
programs in the list 〈S1,S2, . . . 〉. It is not a “computable function”, neither is it an algorithm in
the usual sense.

We define a WSL formula Fin(I, v, w) with free variables I, v and w which is true when w
contains the representation of Final(ṽ, Ĩ):

Fin(I, v, w) =
DF

∨

0<n<ω

(I = Sn ∧ v = vn) ∧
∨

0<m<ω

(w = vm)

∧
∧

0<n,m<ω

(
(v = vn ∧ I = Sn ∧ w = vm) ⇒ Fnm

)

where:

Fnm =
DF

{
true if Vm = Final(Vn,Sn),

false otherwise.

The formula Fin(I, v, w) captures the trinary relation S : V → W defined at the end of Section 3.

We also define a WSL formula Fins(I, v, w) with free variables I, v and w which is true when
w contains the representation of any subset of Final(ṽ, Ĩ):

Fins(I, v, w) =
DF

∨

0<n<ω

(I = Sn ∧ v = vn) ∧
∨

0<m<ω

(w = vm)

∧
∧

0<n,m<ω

(
(I = Sn ∧ v = vn ∧ w = vm) ⇒ Gnm

)

where:

Gnm =
DF

{
true if Vm ⊆ Final(Vn,Sn),

false otherwise.

Clearly, Fnm ⇒ Gnm for all n and m, and: Fin(I, v, w) ⇒ Fins(I, v, w).

For our running example: F11 = F22 = G11 = G22 = G13 = G23 = true, so we have
Fins(S1, v1, v3) ⇐⇒ true and Fins(S2, v1, v3) ⇐⇒ true.
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Next, we define a WSL formula wp 6=(I, v, w), with free variables I, v and w which is true
precisely when:

WP(Ĩ ,
−→
w̃ 6=

−→
w̃ ′′)

is true. To be more precise, I contains the representation of some statement in the list of all WSL
programs of interest, say Sn, v contains the corresponding initial state space Vn, w contains some

other state space Vm where Vm ⊆ Final(Vn,Sn), and WP(Sn,
−→
Vm 6=

−→
Vm

′′) is true.

wp 6=(I, v, w) =
DF

Fins(I, v, w) ∧
∧

0<n,m<ω

(
(I = Sn ∧ v = vn ∧ w = vm) ⇒ WP(Sn,

−→
Vm 6=

−→
Vm

′′)
)

As with wp
t
, this formula contains a copy of the formula WP(Sn,

−→
Vm 6=

−→
Vm

′′) for each WSL
program Sn in the sequence and each state space Vm where Vm ⊆ Final(Vn,Sn).

For our running example:

wp 6=(S1, v1, v3) ⇐⇒ true ∧ WP(S1, a 6= a′′ ∧ b 6= b′′ ∧ c 6= c′′)

⇐⇒ WP({a = 1}; b := 2; c := 3, a 6= a′′ ∧ b 6= b′′ ∧ c 6= c′′)

⇐⇒ a = 1 ∧ 3 6= c′′

and similarly: wp 6=(S2, v1, v3) ⇐⇒ 3 6= c′′.

Using these formulae, and Theorem 3.2 we can define a formula Refine(I1, I2) which is true
precisely when Ĩ1 is refined by Ĩ2:

Definition 5.2

Refine(I1, I2) =
DF

(wp
t
(I1) ⇒ wp

t
(I2))

∧ ∃v,w.
(
Fin(I1, v, w) ∧ Fin(I2, v, w) ∧ (wp 6=(I1, v, w) ⇒ wp 6=(I2, v, w))

)

Using this formula we can construct a specification for any program transformation. Any valid
transformation (on our finitary subset of WSL) is a refinement of the following specification:

Definition 5.3

TRANS(I) =
DF

〈I〉 := 〈I ′〉.(Refine(I, I ′) ∧ Refine(I ′, I))

To prove the correctness of the implementation of any program transformation it is sufficient to
prove that the transformation is a refinement of this specification.

We now have all the machinery required to define semi-refinement as a WSL condition.

We define a formula Semi(I1, I2) which is true when Ĩ1 is semi-refined by Ĩ2 (i.e. when Ĩ2 is a
semi-refinement of Ĩ1) using Definition 4.1:

Definition 5.4

Semi(I1, I2) =
DF

(wp
t
(I1) ⇒ wp

t
(I2))

∧ ∃v,w.
(
Fin(I1, v, w) ∧ Fin(I2, v, w)
∧ (wp 6=(I1, v, w) ⇔ (wp

t
(I1) ∧ wp 6=(I2, v, w)))

)

5.4 Definition of the Slicing Relation as a WSL Condition

To define the slicing relation as a WSL condition we need a way to express conditions such as:

∀(V \ Y ).WP(S,R)

where V is the initial state space and Y is another set of variables.
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Define the formula wpa
t
(y, I, v) which is true when:

∀(ṽ \ ỹ).WP(Ĩ , true)

is true:

wpa
t
(y, I, v) =

DF

∨

0<k<ω

(y = vk) ∧
∨

0<n<ω

(v = vn)

∧
∧

0<k,n<ω

(
(I = Sn ∧ v = vn ∧ y = vk) ⇒ ∀(Vn \ Vk).WP(Sn, true)

)

For our running example, recall that V3 is the set {c}, and v3 is the representation of V3. Then:

wpa
t
(v3, S2, v1) ⇐⇒ ∀a, b.WP(S2, true) ⇐⇒ true

Define the formula wpa 6=(y, I, v, w) which is true when:

∀(ṽ \ ỹ).WP(Ĩ ,
−→
w̃ 6=

−→
w̃ ′′)

is true:

wpa 6=(y, I, v, w) =
DF

Fins(I, v, w) ∧
∨

0<k<ω

(y = vk)

∧
∧

0<k,m,n<ω

(
(I = Sn ∧ v = vn ∧ w = vm ∧ y = vk)

⇒ ∀(Vn \ Vk).WP(Sn,
−→
Vm 6=

−→
Vm

′′)
)

For our running example:

wpa6=(v3, S2, v1, v3) ⇐⇒ ∀a, b.WP(S2, c 6= c′′)

⇐⇒ ∀a, b.WP(skip; skip; c := 3, c 6= c′′)

⇐⇒ ∀a, b. (3 6= c′′)

⇐⇒ 3 6= c′′

With the aid of these definitions and Theorem 4.5 we define a formula with free variables I, J, x
and y which is true precisely when J̃

ey |6
ex Ĩ is true:

Slice(I, J, x, y) =
DF

Red(J, I) ∧ ∃v.
(
Fins(I, v, x) ∧ Fins(J, v, x)
∧ (wp

t
(I) ⇒ wpa

t
(y, J, v))

∧ (wp 6=(I, v, x) ⇔ wp
t
(I) ∧ wpa6=(y, J, v, x))

∧ (wpa 6=(y, J, v, x) ⇔ wp 6=(J, v, x))
)

For our running example, we have:

Slice(S1, S2, v3, v3) ⇐⇒ Red(S2, S1) ∧ ∃v.
(
Fins(S1, v, v3) ∧ Fins(S2, v, v3)
∧ (wp

t
(S1) ⇒ wpa

t
(v3, S2, v))

∧ (wp 6=(S1, v, v3) ⇔ wp
t
(S1) ∧ wpa 6=(v3, S2, v, v3))

∧ (wpa 6=(v3, S2, v, v3) ⇔ wp 6=(S2, v, v3))
)

We know that Red(S2, S1) ⇐⇒ true (see above), so we will turn our attention to the existential
quantifier. Put v = v1 and use the results of the running example to simplify the quantifier to:

(
true ∧ true

∧ (a = 1 ⇒ true)
∧ ((a = 1 ∧ 3 6= c′′) ⇔ a = 1 ∧ 3 6= c′′)
∧ (3 6= c′′ ⇔ 3 6= c′′)

)
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which is true. So Slice(S1, S2, v3, v3) is true, which means that S2 is a valid slice of S1 on v3:

skip; skip; c := 3 {c} |6{c} {a = 1}; b := 2; c := 3

Now that we have defined a single formula which captures the meaning of “a valid slice”, we
can define the specification of a slicing program as a single specification statement:

SLICE =
DF

〈I, x〉 := 〈I ′, x′〉.Slice(I, I ′, x, x′)

This will assign new values to the variables I and x such that the new value of I is a slice of the
original value on the set of variables given in x, and the new value of x is a valid set of required
initial variables for this slice. By Theorem 4.5:

∆ ⊢ Slice(I, J, x, y) ⇐⇒ ∆ ⊢ J̃
ey |6

ex Ĩ

The specification is completely nondeterministic in the sense that any valid slice is a possible
output of the specification.

Suppose the function vars(I) returns a representation of the set of all variables in the program
whose representation is given in I. Consider the program:

x := vars(I) ∪ x

Since any program is always a valid slice of itself, this program is a valid slicing algorithm. The
program in I is unchanged and the set of required initial variables simply has all the variables in
the program added to it, regardless of whether they are needed or not. So this program is a valid
refinement of SLICE. (But not a terribly useful one!)

6 Deriving an Implementation

In this section we will use program transformations to derive a (more useful) implementation of the
slicing specification. First, consider the simple case where I contains a statement sequence. Apply
Transformation 4 (Splitting a Tautology) to give:

if @GT(I) = Statements

then if @Size(I) = 0
then SLICE

else SLICE fi

else SLICE fi

If I is an empty statement sequence, then I is the only possible reduction of I, and there can be no
change to the set of required variables. So SLICE is equivalent to skip. If I contains one or more
statements, then we can apply Property 10 of Lemma 4.7. We can slice the last statement and use
the resulting output variable set as the input variable set for slicing the rest of the sequence (which
may be empty).

First we define some functions for operating on sequences. If L the sequence 〈l1, l2, . . . , ln〉
then ℓ(L) = n is the length of the sequence. If L is not empty, then L[i] = li is the ith element,
L[i . . j] = 〈li, li+1, . . . , lj〉 is a subsequence, L[i . .] = L[i . . ℓ(L)] is a subsequence, LAST(L) = L[ℓ(L)]
is the last element and BUTLAST(L) = L[1 . . ℓ(L)−1] is the sequence with the last element removed.
For WSL items, we define these functions:

butlast item(I) =
DF

@Make(@ST(I), 〈〉,BUTLAST(@Cs(I)))

last item(I) =
DF

Iˆ@Size(I)

add item(I, J) =
DF

@Make(@ST(I), 〈〉,@Cs(I) ++ 〈J〉)

add items(I, L) =
DF

@Make(@ST(I), 〈〉,@Cs(I) ++ L)

So, for any item I with @Size(I) > 0:

I = add item(butlast item(I), last item(I))

25



6.1 Statements

Now, consider the case where I is of type Statements. If I has no components, then SLICE is
refined by skip. If I has one or more components, then we can apply Property 10 of Lemma 4.7
and slice the sequence by slicing the last component and using the resulting set of required variables
to slice the remainder of the sequence. Therefore, the specification

{@ST(I) = Statements}; SLICE

is refined by the program:

if @Size(I) = 0
then skip

else var 〈I1 := butlast item(I)〉 :
var 〈I2 := last(I)〉 :

{I = add item(I1, I2)};
I := I2; SLICE; I2 := I;
I := I1; {@ST(I) = Statements}; SLICE; I1 := I;
I := add item(I1, I2) end end fi

In applying recursive implementation transformation (Transformation 3) it is not necessary for all

copies of the specification to be replaced by recursive calls. We can choose certain copies of the
specification (for which there is a term which is reduced under some well-founded partial order)
and replace these by recursive calls. In this case, the resulting recursive implementation will still
contain copies of the specification.

In this case, we want to apply recursive implementation to the second copy of SLICE, using the
fact that the non-negative integer function @Size(I) is reduced before the copy of the specification.
So we get the following recursive procedure:

proc slice1 ≡
if @Size(I) = 0

then skip

else var 〈I1 := butlast item(I)〉 :
var 〈I2 := last(I)〉 :

{I = add item(I1, I2)};
I := I2; SLICE; I2 := I;
I := I1; slice1; I1 := I;
I := add item(I1, I2) end end fi.

Before we can remove the recursion, we would like to restructure the code so that the recursive call
to slice1 is not inside a local variable statement. We can move the call out of the I1 structure by
replacing the second reference to I1 by I, deleting the assignment to I1 and taking code out of the
structure:

var 〈I2 := last(I)〉 :
var 〈I1 := butlast item(I)〉 :

I := I2; SLICE; I2 := I; I := I1 end;
slice1

I := add item(I, I2) end

Implement the I2 local variable using a global stack L (this process is described in [54]):

L := 〈last(I)〉 ++ L;
var 〈I1 := butlast item(I)〉 :

I := L[1]; SLICE; L[1] := I; I := I1 end;
slice1;
I := add item(I, L[1]); L := L[2 . .]
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Let VAR be the var statement above. Now we can apply the generic recursion removal transforma-
tion from [54] to get:

proc slice1 ≡
var 〈L := 〈〉〉 :

do if @Size(I) = 0
then exit(1)
else L := 〈last(I)〉 ++ L; VAR fi od;

while L 6= 〈〉 do

I := add item(I, L[1]); L := L[2 . .] od end.

The while loop is equivalent to: I := add items(I, L); L := 〈〉. The do . . . od loop is equivalent to
a while loop:

while @Size(I) 6= 0 do L := 〈last(I)〉 ++ L; VAR od

I is an empty statement sequence on termination of the loop, so I := add items(I, L) is equivalent
to I := @Make(Statements, 〈〉, L). We get this simplified version:

proc slice1 ≡
var 〈L := 〈〉〉 :

while @Size(I) 6= 0 do

L := 〈last(I)〉 ++ L; VAR od;
I := @Make(Statements, 〈〉, L) end.

The statement VAR is:

var 〈I1 := butlast item(I)〉 :
I := L[1]; SLICE; L[1] := I; I := I1 end;

Introduce a new variable R and maintain the invariant R = @Cs(I1) over the while loop:

var 〈L := 〈〉〉 :
var 〈R := @Cs(I)〉 :

while @Size(I) 6= 0 do

L := 〈last(I)〉 ++ L;
var 〈I1 := butlast item(I)〉 :

I := L[1]; SLICE; L[1] := I;
R := BUTLAST(R);
I := I1 end od;

I := @Make(Statements, 〈〉, L) end

Now we can replace all references to I and I1 within the var statement by references to R:

var 〈L := 〈〉〉 :
var 〈R := @Cs(I)〉 :

while R 6= 〈〉 do

L := 〈LAST(R)〉 ++ L;
var 〈I1 := butlast item(I)〉 :

I := L[1]; SLICE; L[1] := I;
R := BUTLAST(R);
I := I1 end od;

I := @Make(Statements, 〈〉, L) end

Delete redundant assignments to I and remove I1 to get:

var 〈L := 〈〉〉 :
var 〈R := @Cs(I)〉 :

while R 6= 〈〉 do

I := LAST(R); SLICE; L := 〈I〉 ++ L;
R := BUTLAST(R) fi;
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I := @Make(Statements, 〈〉, L) end

The loop processes the components of I in reverse order, so we can transform it to a for loop:

var 〈L := 〈〉〉 :
for I ∈ REVERSE(@Cs(I)) do

SLICE; L := 〈I〉 ++ L od;
I := @Make(Statements, 〈〉, L) end

This code is a refinement of the specification {@ST(I) = Statements}; SLICE.

This may seem to be a lot of heavy machinery for such a simple result, but the point of this
derivation is that the transformations used are completely general purpose operations which can be
applied to WSL programs of arbitrary complexity. The heuristics which guide the transformation
process are equally generic.

6.2 Local Variable

For the var statement, we slice the body on the set x\〈@V(v)〉 where v is the internal representation
of the local variable. We then construct the result, depending on whether the local variable is in
the initial set of needed variables:

var 〈v := Iˆ1, e1 := Iˆ2, x0 := x〉 :
I := Iˆ3;
x := x \ {@V(v)};
SLICE;
if @V(v) /∈ x

then e := @Make(Bottom, 〈〉, 〈〉) fi;
I := @Make(Var, 〈〉, 〈v, e, I〉);
x := (x \ {@V (v)}) ∪ ({@V (v)} ∩ x0) ∪ @Used(e)) end

(Note that: @Used(@Make(Bottom, 〈〉, 〈〉)) = ∅).

6.3 Guarded

A single Guarded item with condition B and statement sequence S is equivalent to {B}; S, so a
refinement of {@GT(I) = Guarded}; SLICE is:

var 〈B := Iˆ1〉 :
I := Iˆ2; SLICE; x := x ∪ @Used(B);
I := @Make(Guarded, 〈〉, 〈B, I〉) end

A Cond statement with no components is defined to be equivalent to an abort, while a Cond

statement with one component is defined to be equivalent to {B}; S. Note that the statement
if B then S fi is represented as a Cond with two components:

〈Cond, 〈〉, 〈Guarded, 〈〉,B,S〉, 〈Guarded, 〈〉, true, skip〉〉

6.4 Cond

A Cond statement with two or more components can be sliced by slicing the first component and
the rest of the statement, and then combining the result.

The specification we wish to refine is: {@ST(I) = Cond}; SLICE. Using case 11 in Lemma 4.7
we can refine this specification to:

if @Size(I) = 0
then x := ∅

else var 〈I1 := Iˆ1, I2 := butlast item(I), x0 := x, x1 := ∅〉 :
I := I1;
SLICE;
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x1 := x; I1 := I;
x := x0; I := I2;
{@ST(I) = Cond}; SLICE;
I := @Make(Cond, 〈〉, 〈I1〉 ++ @Cs(I));
x := x1 ∪ x end fi

The non-negative integer function @Size(I) is reduced before the copy of the specification, so we
can apply the recursive implementation theorem:

proc slice2 ≡
if @Size(I) = 0

then x := ∅

else var 〈I1 := Iˆ1, I2 := butlast item(I), x0 := x, x1 := ∅〉 :
I := I1;
SLICE;
x1 := x; I1 := I;
x := x0; I := I2;
slice2;
I := @Make(Cond, 〈〉, 〈I1〉 ++ @Cs(I));
x := x1 ∪ x end fi.

As before, we need to ensure that the recursive call is outside the local variable structure before
introducing recursion. We use two stacks: L1 to store the value of I1 and L2 to store x1:

proc slice2 ≡
if @Size(I) = 0

then x := ∅

else var 〈I2 := butlast item(I), x0 := x〉 :
I := Iˆ1;
SLICE;
L2 := 〈x〉 ++ L2;
L1 := 〈Iˆ1〉 + +L1

x := x0; I := I2 end;
slice2

I := @Make(Cond, 〈〉, 〈L1[1]〉 ++ @Cs(I));
x := L2[1] ∪ x;
L2 := L2[2 . .];
L1 := L1[2 . .] fi.

Now apply the generic recursion removal transformation from [54] to get:

proc slice2 ≡
var 〈L1 := 〈〉, L2 := 〈〉〉 :

while @Size(I) 6= 0 do

var 〈I2 := butlast item(I), x0 := x〉 :
I := Iˆ1;
SLICE;
L2 := 〈x〉 ++ L2;
L1 := 〈Iˆ1〉 + +L1

x := x0; I := I2 end;
x := ∅;
while L1 6= 〈〉 do

I := @Make(Cond, 〈〉, 〈L1[1]〉 ++ @Cs(I));
x := L2[1] ∪ x;
L2 := L2[2 . .];
L1 := L1[2 . .] od.
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Introduce a new variable x1 :=
⋃

1≤i≤ℓ(L2) L2[i]. The second while loop simplifies to: I :=
@Make(Cond, 〈〉,REVERSE(L1)); x := x1. The first while loop processes the components of I
in order, so we can transform it to a for loop. The procedure simplifies to:

proc slice2 ≡
var 〈L1 := 〈〉, x1 := ∅〉 :

for I ∈ @Cs(I) do

var 〈x0 := x〉 :
SLICE;
L1 := 〈I〉 ++ L1;
x1 := x ∪ x1;
x := x0 end od;

I := @Make(Cond, 〈〉,REVERSE(L1));
x := x1 end.

6.5 While

The final case to consider is the while loop. Suppose we have the loop while B do S od : V → V
with required set X ⊆ V , and we want to find a statement S′ and set Y such that:

X ⊆ Y and vars(B) ⊆ Y and S′
Y |6Y S

If we assume that Y contains all the variables in x, then Property 1 and Property 13 of Lemma 4.7
together show that:

while B do S′ od Y |6X while B do S od

The problem is that Property 13 of Lemma 4.7 gives no hint as to how the set Y , or the statement
S′, should be computed.

Suppose we have the loop while B do S od : V → V with required set X ⊆ V , and we want to
find a statement S′ and set Y such that:

X ⊆ Y and vars(B) ⊆ Y and S′
Y |6Y S

Define a sequence of sets Xi and a sequence of statements S′
i where X0 = X ∪ vars(B), S′

0 = S and:

S′
i X′

i

|6Xi
S and Xi+1 = vars(B) ∪ Xi ∪ X ′

i

The sequence Xi is increasing and bounded above by the finite set V , so the sequence must converge
in a finite number of steps. i.e. there is an Xn such that Xm = Xn for m > n. This Xn, and the
corresponding S′

n satisfies the requirement S′
n Xn

|6Xn
S, so by Lemma 4.7 we have:

while B do S′
n od Xn

|6Xn
while B do S od

The following code repeatedly slices the loop body until the set of variables converges:

var 〈B := Iˆ1, I0 := Iˆ2, x1 := x ∪ @Used(Iˆ1)〉 :
do I := I0;

x := x1;
SLICE;
if x ⊆ x1 then exit fi;
x1 := x1 ∪ x od;

I := @Make(While, 〈〉, 〈B, I〉);
x := x1 end

The loop is guaranteed to terminate, because the value of x1 is increasing on each iteration and is
bounded above by xo ∪ vars(I0) (where x0 is the initial value of x).
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6.6 The Slicing Algorithm

If none of the variables assigned in I are in x, or I is an abort, or assignment, then Lemma 4.7
provides a simple refinement for SLICE. So, putting these results together we see that SLICE is
refined by:

if @GT(I) = Statements

then var 〈L := 〈〉〉 :
for I ∈ REVERSE(@Cs(I)) do

SLICE; L := 〈I〉 ++ L od;
I := @Make(Statements, 〈〉, L) end

elsif @ST(I) = Abort

then x := 〈〉
elsif @Assigned(I) ∩ x = ∅

then I := @Make(Skip, 〈〉, 〈〉)
elsif @ST(I) = Assignment ∨ @ST(I) = Spec

then x := (x \ @Assigned(I)) ∪ @Used(I)
elsif @ST(I) = Var

then SLICE

elsif @ST(I) = Guarded

then SLICE

elsif @ST(I) = Cond

then SLICE

elsif @ST(I) = While

then SLICE

else ERROR(“Unexpected type: ”,@Type Name(@ST(I))) fi

The cases where I is a skip or assertion are handled by the third branch, since these statements
assign no variables so @Assigned(I) = ∅.

The specification will abort if I contains an unexpected type. We have refined this abort to
instead call an error routine.

Now, every copy of SLICE appears at a position where the number of nodes in I is smaller
than the original value. So we can apply the recursive implementation theorem once more to get a
complete implementation of the specification:

proc slice() ≡
if @ST(I) = Statements

then var 〈L := 〈〉〉 :
for I ∈ REVERSE(@Cs(I)) do

slice; L := 〈I〉 ++ L od;
I := @Make(Statements, 〈〉, L) end

elsif @ST(I) = Abort

then x := 〈〉
elsif @Assigned(I) ∩ x = ∅

then I := @Make(Skip, 〈〉, 〈〉)
elsif @ST(I) = Assignment ∨ @ST(I) = Spec

then x := (x \ @Assigned(I)) ∪ @Used(I)
elsif @ST(I) = Var

then var 〈assign := Iˆ1〉 :
var 〈v := @V(assignˆ1), e := @Used(assignˆ2, x0 := x〉 :

I := Iˆ2;
slice;
if v /∈ x

then assign := @Make(Assign, 〈〉, 〈assignˆ1,BOTTOM〉) fi;
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x := (x \ {v}) ∪ ({v} ∩ x0) ∪ e)
I := @Make(Var, 〈〉, 〈assign, I〉) end end

elsif @ST(I) = Cond

then var 〈x1 := ∅, x0 := x,G := 〈〉〉 :
for guard ∈ @Cs(I) do

I := guardˆ2; x := x0; slice;
G := 〈@Make(Guarded, 〈〉, 〈guardˆ1, I〉 + +G;
x1 := x1 ∪ @Used(guardˆ1) ∪ xod;
x := x1;
I := @Make(Cond, 〈〉,REVERSE(G)) end

elsif @ST(I) = While

then var 〈B := Iˆ1, I0 := Iˆ2, x1 := x ∪ @Used(Iˆ1)〉 :
do I := I0;

x := x1;
slice;
if x ⊆ x1 then exit fi;
x1 := x1 ∪ x od;

I := @Make(While, 〈〉, 〈B, I〉);
x := x1 end

else ERROR(“Unexpected type: ”,@Type Name(@ST(I))) fi.

Essentially this code was implemented as the Simple Slice transformation in the FermaT trans-
formation system. After fixing a couple of typos, the code worked first time: which is only to be
expected, since it was derived from the specification by a process of formal transformation.

6.7 Extensions to the Target Language

The target language, i.e. the language in which the programs to be sliced are written, has been
purposefully kept small in order to avoid cluttering the derivation with extraneous details. In this
section, we will discuss how the derivation process can be extended to deal with various extensions
to the target language.

6.7.1 Pointers

Pointers, pointer arithmetic and variable aliasing can be treated as an entirely orthogonal problem
to program slicing. The first step is to compute a “points-to” analysis which determines for each
pointer reference a set of possible memory areas that the pointer could possibly refer to, and for
each variable the set of other variables it could be aliased with. This analysis is necessarily a
conservative one since the problems of determining precise aliasing and precise points-to analysis
are non-computable. The most conservative approximation is to assume that any pointer can point
to any memory area, but there is an extensive field of research on improved analyses, see [44,69,
70] and many others. Mock et al have used dynamic points-to data with to obtain a bound on the
best case slice size improvement that can be achieved with improved pointer precision [29]

Dynamic data allocation is simply another example of pointer analysis and can be handled in
the same way.

6.7.2 Unstructured Control Flow

See Section 7.1 for a brief description of how unstructured control flow (eg goto statements) can
be handled.

Dynamic dispatch can be treated as a conditional procedure call to one of the set of possible
targets for the dispatch. Determining the set of possible targets is again an orthogonal problem.

Exceptions can be treated as unstructured branches and handled as described in Section 7.1.
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The next section deals with extending the slicing algorithm in a different direction: keeping the
target language the same, but generalising from static slicing to semantic slicing.

7 Semantic Slicing

Semantic slicing is defined purely in terms of the semantic relation, without any syntactic constraint.
We define the formula SSlice, which is simply Slice with the syntactic constraint deleted, as follows:

SSlice(I, J, x, y) =
DF

∃v.
(
Fins(I, v, x) ∧ Fins(J, v, x)
∧ (wp

t
(I) ⇒ wpa

t
(y, J, v))

∧ (wp 6=(I, v, x) ⇔ wp
t
(I) ∧ wpa 6=(y, J, v, x))

∧ (wpa 6=(y, J, v, x) ⇔ wp 6=(J, v, x))
)

The formal specification of a semantic slicing algorithm can then be defined as:

SSLICE =
DF

〈I, x〉 := 〈I ′, x′〉.SSlice(I, I ′, x, x′)

From the definitions of SSLICE and TRANS it is clear that:

∆ ⊢ SSLICE ≈ SSLICE; TRANS and ∆ ⊢ SSLICE ≈ TRANS; SSLICE

This means that in the derivation of a semantic slicing algorithm, any program transformation can
be inserted before or after any copy of SSLICE in the program. It is also trivial to prove that:

∆ ⊢ SSLICE ≤ SLICE

which means that any copy of SSLICE can be replaced by SLICE. In particular, we can use the
implementation of SLICE to slice primitive statements (assertion, assignment etc.)

7.1 Other Slicing Algorithms

The FermaT transformation system also includes a Syntactic Slice transformation which handles
unstructured code and procedures with parameters.

As discussed in [66], we can apply arbitrary transformation in the process of slicing, provided
that the final program satisfies all the conditions of Definition 4.3: in particular, that it is a
reduction of the original program. So we can implement a slicing algorithm as the sequence:

transform → reduce → transform

provided that the reduction step is also a semi-refinement and the final transformation step “un-
does” the effect of the initial transformation. This step is facilitated by the fact that the reduction
relation preserves the positions of sub-components in the program. In practice, the final transform

step is implemented by tracking the movement of components in the initial transform step, noting
which components are reduced in the reduce step and replacing these by skips directly in the original
program.

FermaT’s solution is to destructure the program to an action system in “basic blocks” format.
To slice the action system, FermaT computes the Static Single Assignment (SSA) form of the
program, and the control dependencies of each basic block using Bilardi and Pingali’s optimal
algorithms [8,37]. FermaT tracks control and data dependencies to determine which statements
can be deleted from the blocks. Tracking data dependencies is trivial when the program is in SSA
form. FermaT links each basic block to the corresponding statement in the original program, so it
can determine which statements from the original program have been deleted (in effect, this will
“undo” the destructuring step).
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7.2 Performance

The slicer presented in this paper produces identical results as FermaT’s Syntactic Slice trans-
formation, once the extra skip statements have been deleted. (This can be carried out with
FermaT’s Delete All Skips transformation.) the only exception is for code containing explicit abort

statements. The syntactic slicer does not currently recognise that control cannot pass through an
abort statement: it is not sufficient simply to delete the control flow path through the abort since
this may result in an invalid control flow graph for the whole program. Such a graph can only arise
for a non-terminating program: which can be completely sliced away.

As with any dataflow-based slicer, the algorithm does not take into account dataflows from
unreachable code. For example, slicing abort; y := x on the final value of y will give abort; y := x,
when abort; skip is also valid. However, slicing y := x; abort produces skip; abort since the
set of required variables is empty once an abort has been seen in the right-to-left processing of a
statement sequence.

Execution performance of both slicers is similar: the worst case arises for deeply-nested loops
and is O(n2) where n is the depth of while loop nesting.

The biggest difference is that Syntactic Slice can handle a larger subset of WSL: including
unstructured code and procedures.

7.3 Practical Applications

The FermaT Workbench and FermaT Migration Engine are two commercial tools which apply the
program transformation theory to the analysis and migration of assembler code. The assembler is
translated into equivalent WSL code which can be analysed and transformed using the FermaT
framework. In the case of the Workbench, the results of this analysis are presented back to
the programmer in terms of the original assembler code. For example, control dependencies and
dataflows are computed from the WSL translation. These are used to compute program slices
which are presented to the programmer by highlighting the original assembler source file or listing.

In the case of the Migration Engine, the transformed WSL code is translated into the target
language (usually C or COBOL). The correctness of the migration process depends critically on the
transformation theory since all the important migration stages (translating data representations,
restructuring, simplifying and raising the abstraction level) are carried out in WSL via proven
correctness-preserving transformations.

8 Related Work

8.1 Formal Development Methods

Producing a program (or a large part of it) from a specification in a single step is a difficult task to
carry out, to survey and to verify [6]. Moreover, programmers tend to underestimate the complexity
of given problems and to overestimate their own mental capacity [36] and this exacerbates the
situation further.

A solution in which a program is developed incrementally by stepwise refinement was proposed
by Wirth [71]. However, the problem still remains that each step is done intuitively and must then
be validated to determine whether the changes that have been made preserve the correctness of the
program with respect to some specification, yet do not introduce unwanted side effects.

The next logical stage, improving on stepwise refinement, is to only allow provably semantic-
preserving changes to the program. Such changes are called transformations. There are several
distinct advantages to this approach [6]:

• The final program is correct (according to the initial specification) by construction.

• Transformations can be described by semantic rules and can thus be used for a whole class
of problems and situations.
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• Due to formality, the whole process of program development can be supported by the com-
puter. A significant part of transformational programming involves the use of a large number
of small changes to be made to the code. Performing such changes by hand would introduce
clerical errors and the situation would be no better than the original ad hoc methods.
However, such clerical work is ideally suited to automation, allowing the computer itself
to carry out the monotonous part of the work, allowing the programmer to concentrate on
the actual design decisions.

Development approaches in which each refinement step is first proposed by the developer and then
verified correct (also by the developer but with automated assistance in the form of theorem provers)
have had some success [27,28,72] but have also encountered difficulties in scaling to large programs.
The scaling problems are such that some authors relegate formal methods to the specification stage
of software development [19] for all but the most critical systems. These approaches are therefore of
very limited application to reverse engineering, program comprehension or reengineering tasks [73].

In a survey of transformational programming [35] R. Paige wrote:

Transformational systems may have the power to perform sophisticated program anal-
ysis and to generate software at breakneck speed, but to date they are not sound.
Lacking from them is a convenient mechanical facility to prove that each transformation
preserves semantics. In order to create confidence in the products of transformational
systems we need to prove correctness of specifications and transformations.

The FermaT transformation system provides implementations of a large number of transformations
which have been proved correct. The system also provides mechanically checkable correctness
conditions for all the implemented transformations.

Xingyuan Zhang et al [75] have developed a formalisation of WSL in the type-theoretical
proof assistant Coq. This has been used to mechanically verify the correctness of some simple
restructuring transformations [76].

8.2 Formal Reverse Engineering Methods

The approach presented here, in which a large catalogue of proven transformations, together with
their correctness conditions, is made available via a semi-automatic transformation system, has
been proved capable of scaling up to large software developments and has the further advantage of
being applicable in the reverse engineering and reengineering realm. Because the transformations
are known to be correct, they can be applied “blindly” to an existing program whose function is not
clearly understood in order to restructure and simplify the program into a more understandable
form. FermaT is described as “semi-automatic” because the user selects each transformation and
point of application, while the system checks the applicability conditions and applies the transfor-
mation. It should be noted that some of the transformations are actually meta-transformations
which use heuristics to control the transformation process in order to apply a large number of other
transformations to the whole target program. Many activities are therefore totally automated:
including WSL restructuring and the whole migration process from assembler to C or COBOL (see
[53,63]).

Note that proving the correctness of an assembler to WSL translator would require a formal
specification of assembler language: which is generally not available. Our solution is to develop
translators which, as far as possible, translate each instruction separately using a translation table
which gives the mapping between each assembler instruction and its WSL implementation. In
effect, the translation table provides a (partial) formal specification for the assembler language.
The translator does not need to be concerned about introducing redundant or inefficient code
(such as setting a flag which is immediately tested, or assigning data to variables which will be
overwritten) since these inefficiencies will be removed by automated transformations. Similarly,
the WSL to C and COBOL translators are designed to work with WSL code which has been
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transformed into a form which is already very close to C or COBOL. So the translation step itself
is a simple one-to-one mapping of program structures.

The long range goal of transformational programming is to improve reliability, productivity,
maintenance and analysis of software without sacrificing performance [35].

8.3 Refinement

The Refinement Calculus approach to program derivation [22,31,33] is superficially similar to
our program transformation method. It is based on a wide spectrum language, using Morgan’s
specification statement [30] and Dijkstra’s guarded commands [17]. However, this language has
very limited programming constructs: lacking loops with multiple exits, action systems with a
“terminating” action, and side-effects. These extensions are essential if transformations are to
be used for reverse engineering. The most serious limitation is that the transformations for
introducing and manipulating loops require that any loops introduced must be accompanied by
suitable invariant conditions and variant functions. This makes the method unsuitable for a
practical reengineering method. Morgan remarks (pp 166–167 of [31]) that the whole development
history is required for understanding the structure of the program and making safe modifications.

The Z specification notation [43] has recently been used to develop the specification and full
refinement proof of a large, industrial scale application [45]. The proofs were carried out by hand but
the proof obligations and many of the steps were mechanically type-checked. The author’s discuss
the trade-offs they had to make to find the right path between greater mathematical formality and
the need to press on and “just do” the proofs in any way they could.

Bicarregui and Matthews [7] investigated the use of automated theorem proving technology in
the refutation of proof obligations arising from this development method. They note that even a
simple design using the B-Method and tools may give rise to many thousands of proof obligations.
Although automated theorem provers can help, they found that: “when a prover fails to complete
a proof, the developer is left uncertain as to whether the failure is due to the inability of the prover
to find a proof or simply because the conjecture is actually false, that is, because there is in fact
some defect in the design. In this situation, the developer is often left with the highly specialised
task of inspecting the failed proof to try to discover which of these is the case.”

9 Conclusions

In this paper we have presented a case study in transforming a specification (in the form of a WSL
specification statement) into a WSL implementation via correctness preserving transformations.
We defined methods for representing finite WSL programs as data, together with definitions of the
reduction relation, refinement and semi-refinement as WSL conditions. These were used to define
the slicing relation |6 as a WSL condition.

These definitions allowed us to define a WSL specification for slicing, such that any correct
slicing algorithm is a refinement of the specification. Using the WSL program derivation method
we have derived a simple slicing algorithm by transforming the slicing specification into an imple-
mentation. The simple slicing algorithm is essentially the same as the Simple Slice transformation
implemented in the FermaT transformation system.

FermaT also implements a more powerful syntactic slicing algorithm which can handle proce-
dures, do . . . od loops and action systems, and a semantic slicing algorithm which is described
elsewhere [67]. FermaT can be downloaded from:

http://www.cse.dmu.ac.uk/∼mward/fermat.html
http://www.gkc.org.uk/fermat.html

This “transformational” method for algorithm derivation has many advantages, including the
following:
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1. At each step in the derivation process, we are working with a program which is guaranteed
to be a correct implementation of the original specification. The final program is therefore
also guaranteed to be correct;

2. The early stages of derivation rely on human intuition and understanding. During these
stages, the program being manipulated is still in the form of a non-recursive specification. This
means that it is easy to take a vague “idea” about how the algorithm might be implemented
and use the idea to elaborate the specification into a more detailed specification. For example,
the derivation of a binary search algorithm might starts with the simple idea: pick an element
in the array and compare it with the value we are searching for.

3. Only in the later stages of derivation do we need to introduce recursion and iteration. At this
point we have available several powerful automatic transformations, so there is less need to
rely on human intuition. The later stages of the derivation are almost totally automatic.

4. There is rarely any need to introduce loop invariants or loop variant functions. Loop invariants
are typically simple, localised invariants which relate two data structures. These are used to
replace one data structure by an equivalent one.

5. There are no huge lists of “proof obligations” which need to be discharged before the derivation
can be considered correct.

References

[1] H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I. Adams IV, D. P. Friedman, E. Kohlbecker,
G. L. Steele Jr., D. H. Bartley, R. Halstead, D. Oxley, G. J. Sussman, G. Brooks, C. Hanson, K. M.
Pitman & M. Wand, “Revised5 Report on the Algorithmic Language Scheme,” Feb., 1998, 〈http://
ftp-swiss.ai.mit.edu/∼jaffer/r5rs toc.html〉.

[2] Torben Amtoft, “Slicing for Modern Program Structures: a Theory for Eliminating Irrelevant Loops,”
Information Processing Letters 106 (2008), 45–51.

[3] R. J. R. Back, Correctness Preserving Program Refinements, Mathematical Centre Tracts#131,
Mathematisch Centrum, Amsterdam, 1980.

[4] R. J. R. Back, “A Calculus of Refinements for Program Derivations,” Acta Informatica 25 (1988),
593–624.

[5] R. J. R. Back & J. von Wright, “Refinement Concepts Formalised in Higher-Order Logic,” Formal
Aspects of Computing 2 (1990), 247–272.

[6] F. L. Bauer, B. Moller, H. Partsch & P. Pepper, “Formal Construction by Transformation—Computer
Aided Intuition Guided Programming,” IEEE Trans. Software Eng. 15 (Feb., 1989).

[7] Juan C. Bicarregui & Brian M. Matthews, “Proof and Refutation in Formal Software Development ,”
In 3rd Irish Workshop on Formal Software Development (July, 1999).

[8] Gianfranco Bilardi & Keshav Pingali, “The Static Single Assignment Form and its Computation,”
Cornell University Technical Report, July, 1999, 〈http://www.cs.cornell.edu/Info/Projects/Bernoulli/
papers/ssa.ps〉.

[9] D. Binkley, “Precise Executable Interprocedural Slices,” ACM Letters on Programming Languages and
Systems 2 (Mar., 1993), 31–45.

[10] Dave Binkley, Sebastian Danicic, Tibor Gyimóthy, Mark Harman, Ákos Kiss & Bogden Korel, “A
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