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Abstract

In this paper we describe an improved formalisation of
slicing in WSL (Wide Spectrum Language) transformation
theory and apply the result to give syntactic and semantic
slices for some challenging slicing problems. Although
there is no algorithm for constructing a minimal syntactic
slice, we show that it is possible, in the WSL language, to
derive a minimal semantic slice for any program and any
slicing criteria. We describe the Representation Theorem
and show how it is (partially) implemented in the FermaT
transformation system. The theorem has applications to se-
mantic (or conditioned) slicing, and we use a combination
of abstraction (via the representation theorem), simplifica-
tion and refinement plus other program transformations to
develop a powerful conditioned slicing algorithm.

1. Introduction

Program slicing is a decomposition technique that ex-
tracts from a program those statements relevant to a partic-
ular computation. Informally, a slice provides the answer
to the question “What program statements potentially affect
the value of variable v at statement s?” An observer cannot
distinguish between the execution of a program and execu-
tion of the slice, when attention is focused on the value of v
in statement s.

Slicing was first described by Mark Weiser [14] as a
debugging technique [15], and has since proved to have
applications in testing, parallelization, integration, software
safety, program understanding and software maintenance.
Survey articles by Binkley and Gallagher [1] and Tip [8]
include extensive bibliographies.

In [10] a formalisation of slicing in terms of program
transformations was proposed. In this paper we present an
improved formalisation and apply it to some particularly

challenging slicing problems. The WSL (Wide Spectrum
Language [9]) formulation of slicing immediately lends it-
self to several extensions: simply by relaxing some of the
constraints in the definition and removing restrictions on the
allowed transformations.

Weiser defined a program slice S as a reduced, exe-
cutable program obtained from a program P by removing
statements, such that S replicates part of the behavior of P.
A program transformation is any operation on a program
which generates a semantically equivalent program. A slice
is not generally a transformation of the original program
since a transformation has to preserve the whole behaviour
of the program, while in the slice some statements which
affect the values of some output variables (those not in the
slice) may have been deleted.

Suppose we are slicing on the end of the program: then
the subset of the behaviour we want to preserve is simply
the final values of one or more variables (the variables in the
slicing criterion). If we modify both the original program
and the slice to delete the unwanted variables from the state
space, then the two modified programs will be semantically
equivalent. Consider this simple example:
x := y + 1;
y := y + 4;
x := x + z

where we are interested in the final value of x. The assign-
ment to y can be sliced away:
x := y + 1;
x := x + z

These two programs are not equivalent, because they give
different values to y, but if we modify both programs by
appending a remove(y) statement (to remove y from the
final state space) then the resulting programs are equivalent.

To be precise, let S1 be the program:
x := y + 1;
y := y + 4;



x := x + z;
remove(y)

and let S2 be the program:
x := y + 1;
x := x + z;
remove(y)

The initial state space for S1 and S2 is {x, y, z} while the
final state space is {x} (the remove statement ensures that
y cannot appear in the final state space). Both programs set
x to the value y+1+z, so the two programs are equivalent.

So much for slicing at the end of a program. Suppose we
want to slice on the value of i at the top of the while loop
body in this program:
i := 0; s := 0;
while i < n do

s := s + i;
i := i + 1 od;

i := 0

Slicing on i at the end of the program would give i := 0
as a valid slice: which is not what we wanted! So we need
some way to get the sequence of values taken on by i at the
top of the loop to be “carried” to the end of the program. A
simple way to do this is to add a new variable, slice, which
records this sequence of values:
i := 0; s := 0;
while i < n do

slice := slice ++ 〈i〉;
s := s + i;
i := i + 1 od;

i := 0;

where the statement slice := slice ++ 〈i〉 appends the value
of i to the end of the sequence stored in slice. By the end of
the program, slice contains a list of all the values taken on
by i at each iteration of the loop.

Slicing on slice at the end of the program is therefore
equivalent to slicing on i at the top of the loop. If we add
the statement remove(i, s, n) to remove all the variables
other than slice, then the result can be transformed into the
equivalent program:
i := 0;
while i < n do

slice := slice ++ 〈i〉;
i := i + 1 od;

remove(i, s, n)

which yields the sliced program:
i := 0;
while i < n do

i := i + 1 od

This approach easily generalises to slicing on a set of
locations with the same or a different set of variables of
interest at each location.

2. Slicing as a Program Transformation

The WSL language has been described elsewhere [9,
13], so will not be described in detail here. Key points
to note are that WSL is based on infinitary logic: which
means that formulae in WSL programs can be infinitely
long. The weakest precondition of a WSL program S, for a
given postcondition, R, denoted WP(S, R), is the weakest
condition on the initial state such that if S is started in
a state which satisfies WP(S, R) then it is guaranteed to
terminate and every possible final state will satisfy R. If
the postcondition R is defined as an infinitary logic formula,
then WP(S, R) can be defined as an infinitary logic formula.
Hence, the WP for one program can be used as an assertion
or condition in another program.

WSL includes loops of the form do . . . od which can
only be terminated via an exit(n) statement. The statement
exit(n) (in which n is an integer, not a variable or ex-
pression) causes the immediate termination of n enclosing
nested do . . . od loops. A statement in which each exit(n)
is enclosed in at least n nested loops is called a proper
sequence: such a statement cannot terminate an enclosing
loop.

2.1. Reduction

To give a formal definition of slicing in WSL we need to
define a reduction of a program. Informally, a reduction of
a program has certain statements replaced by skip or exit

statements. We define the relation S1 v S2, read “S1 is a
reduction of S2”, on WSL programs as follows:

S v S for any program S

skip v S for any proper sequence S

If S is not a proper sequence and n > 0 is the largest
integer such that there is an exit(n+k) within k > 0 nested
do . . . od loops in S, then:

exit(n) v S

(In other words, if execution of S could result in the termi-
nation of at most n enclosing loops, then S can be reduced
to exit(n)).

If S′

1
v S1 and S′

2
v S2 then:

if B then S′

1
else S′

2
fi v if B then S1 else S2 fi



If S′ v S then:

while B do S′ od v while B do S od

var 〈v := e〉 : S′ end v var 〈v := e〉 : S end

var 〈v := ⊥〉 : S′ end v var 〈v := e〉 : S end

where ⊥ represents the undefined value. This last case will
be used when the variable v is used in S, but the initial value
e is not used.

If S′

i
v Si for 1 6 i 6 n then:

S′

1
; S′

2
; . . . ; S′

n
v S1; S2; . . . ; Sn

The reduction relation does not allow deletion of a skip

statement from a sequence of statements. This is so that the
position of each subcomponent of the reduced program is
the same as the corresponding subcomponent in the original
program. This relationship makes it easer to prove the
correctness of slicing algorithms: deleting the extraneous
skip statements is a trivial additional step. In what follows
we will omit the extra skip statements when the relationship
between the original and sliced programs is clear.

Three important properties of the reduction relation are:

Lemma 2.1 Transitivity: If S1 v S2 and S2 v S3 then
S1 v S3.

Lemma 2.2 Antisymmetry: If S1 v S2 and S2 v S1 then
S1 = S2.

Lemma 2.3 The Replacement Property: If any component
of a program is replaced by a reduction, then the result is a
reduction of the whole program.

2.2. Syntactic Slicing

In [10] a syntactic slice was defined as any reduction of
the program which is also a refinement of the program. This
definition allows a program slicer to delete loops which do
not affect the variables in the slicing criteria without having
to prove termination of the loop (most slicing researchers
allow deletion of nonterminating code as a valid slice).
But such a definition of slicing is counter-intuitive in the
sense that slicing is intuitively an abstraction operation (an
operation which throws away information) while refinement
is the opposite of abstraction. A more important consider-
ation is that we would like to be able to analyse the sliced
program and derive facts about the original program (with
the proviso that the original program might not terminate in
cases where the slice does). If the sliced program assigns
a particular value to a variable in the slice, then we would
like to deduce that the original program assigns the same
value to the variable. But with the refinement definition of

a slice, the fact that the slice sets x to 1, say, tells us only
that 1 is one of the possible values given to x by the original
program.

Consider the following nondeterministic program which
we want to slice on the final value of x:
x := 1;
while n > 1 do

if even?(n) then n := n/2
else n := 3 ∗ n + 1 fi od;

if true → x := 1
ut true → x := 2 fi

The while loop clearly does not affect x, so we would like
to delete it from the slice. But if we are insisting that the
slice be equivalent to the original program (on x), then we
have to prove that the loop terminates for all n before we
can delete it. The loop generates the Collatz sequence and
it is an open question as to whether the sequence always
reaches 1. (The problem was first posed by L. Collatz in
1937 [6,7]).

Allowing any refinement as a valid slice (as in [10])
would allow us to delete the while loop, but would also
allow us to delete the if statement, giving x := 1 as a valid
slice. If the slice is being determines as part of a program
analysis or comprehension task, then the programmer might
(incorrectly) conclude that the original program assigns the
value 1 to x whenever it terminates.

These considerations led to the development of the con-
cept of a semi-refinement:

Definition 2.4 A semi-refinement of S is any program S′

such that {WP(S, true)}; S′ is equivalent to S. The semi-
refinement relationship is denoted S 4 S′.

The weakest precondition WP(S, true) is true on precisely
those initial states for which S is guaranteed to terminate.
Hence, the assertion {WP(S, true)} is a skip when S ter-
minates and abort when S may not terminate.

If S 4 S′ then S′ must be equivalent to S when S
terminates, but S′ can do anything at all when S does not
terminate. In particular S′ can be equivalent to skip when S
does not terminate.

We define a syntactic slice of S on X to be any reduction
of S which is also a semi-refinement:

Definition 2.5 A Syntactic Slice of S on X is any program
S′ such that S′ v S and

S; remove(W \ X) 4 S′; remove(W \ X)

where W is the final state space for S and S′.

We can extend this definition to slicing at arbitrary points
in the program by adding assignments to a new slice variable
as discussed in Section 1.



2.3. Semantic Slicing

The definition of a syntactic slice immediately suggests
a generalisation: why restrict the semi-refinements to delet-
ing statements? Or, to put it another way, why not drop the
requirement that S′ v S?

Harman and Danicic [3,5] coined the term “amorphous
program slicing” for a combination of slicing and transfor-
mation of executable programs. So far the transformations
have been restricted to restructuring snd simplifications, but
the definition of an amorphous slice allows any transforma-
tion (in any transformation theory) of executable programs.

We define a “semantic slice” to be any semi-refinement
in WSL, so the concepts of semantic slicing and amorphous
slicing are distinct but overlapping. A semantic slice is de-
fined in the context of WSL transformation theory, while an
amorphous slice is defined in terms of executable programs
(WSL allows nonexecutable statements including abstract
specification statements and guard statements). Also, amor-
phous slices are restricted to finite programs, while WSL
programs (and hence, semantic slices) can include infinitary
formulae. To summarise:

1. Amorphous slicing is restricted to finite, executable
programs. Semantic slicing applies to any WSL pro-
grams including non-executable specification state-
ments, non-executable guard statements, and programs
containing infinitary formulae;

2. Semantic slicing is defined in the particular context of
the WSL language and transformation theory: amor-
phous slicing applies to any transformation theory or
definition of program equivalence on executable pro-
grams.

The relation between a WSL program and its semantic
slice is a purely semantic one: compare this with a “syntac-
tic slice” where the relation is primarily a syntactic one with
a semantic restriction.

Definition 2.6 A semantic slice of S on X is any program
S′ such that:

S; remove(W \ X) 4 S′; remove(W \ X)

Note that while there are only a finite number of different
syntactic slices (if S contains n statements then there are
at most 2n different programs S′ such that S′ v S) there
are infinitely many possible semantic slices for a program:
including slices which are actually larger than the original
program. Although one would normally expect a seman-
tic slice to be no larger than the original program, [11,
12] discuss cases where a high-level abstract specification
can be larger than the program while still being arguably
easier to understand and more useful for comprehension

and debugging. A program might use some very clever
coding to re-use the same data structure for more than one
purpose. An equivalent program which internally uses two
data structures might contain more statements and be less
efficient while still being easier to analyse and understand.

2.4. Conditioned Slicing

A conditioned slice [4] is a slice of a program to which
extra conditions have been added in the form of assertions.
These conditions can allow further statements to be deleted.
The formal definitions of conditioned syntactic slicing and
conditioned semantic slicing are therefore identical to the
definitions of syntactic and semantic slicing with suitable
assertion statements inserted in the original program.

3. Minimal Semantic Slicing

Theorem 3.1 The Representation Theorem
Let S be any statement with initial state space V and final
state space V . Let x be a list of all the variables in V . Then
S is equivalent to:
[¬WP(S, false)];
x := x′.(¬WP(S, x 6= x′) ∧ WP(S, true))

If S is null-free (which is guaranteed for all WSL
statements in language levels above the kernel level) then
WP(S, false) is false, and the initial guard is redundant. For
such statements we can transform the specification state-
ment to show that S is equivalent to:
{WP(S, true)}; x := x′.(¬WP(S, x 6= x′))

Then, by the definition of semi-refinement:

S 4 x := x′.(¬WP(S, x 6= x′))

This is clearly a minimal semantic slice (counting state-
ments) since it only contains a single statement, and by
definition no WSL program can be smaller than a single
statement. (It is not necessarily minimal if we are counting
the total number of symbols: if statement S contains loops
or recursion then the formula WP(S, R) is infinitely long!)
So we have:

Theorem 3.2 The Minimal Semantic Slice Theorem
Let S, be any null-free statement and let x be any list of
variables. Then the statement x := x′.(¬WP(S, x 6= x′)) is
a valid semantic slice of S on the final values of x.

This may appear to contradict Weiser’s theorem on the
non-computability of minimal slices, but Weiser’s theorem
only applies to algorithms for computing minimal syntactic
slices. The construction of x := x′.(¬WP(S, x 6= x′)) from
S, while being well defined, is not an algorithm in the usual



sense because the formula WP(S, x 6= x′) may be infinitely
long. (In fact, it will be infinite whenever S contains any
loops or recursion). An infinite specification statement is
not directly executable, so this result is only practical for
statements which contain no loops or recursion, but it does
show that no semantic slice need be larger than a single
statement.

For WSL programs with no loops or recursion (and
where all the formulae are finite). Theorem 3.2 does give an
algorithm for computing a minimal semantic slice on any
given slicing criterion. By combining the representation
theorem and a syntactic slicing algorithm with other pro-
gram transformations we have developed a semantic slicer
for general WSL programs.

4. Implementation of Abstraction and Refine-
ment

We have implemented a function @WP in the FermaT
transformation system which computes the weakest precon-
dition for any program which does not include loops or
procedure calls. (The implementation could be extended
to non-recursive procedures and functions in the obvious
way: by unfolding all procedures and functions in the main
body of the program). With the aid of this function, we
have implemented a transformation called Prog To Spec

which can transform any non-recursive and non-iterative
program into an equivalent specification statement. The
implementation of @WP required less than 100 lines of
METAWSL code, and the body of Prog To Spec is only
32 lines of code (including comments), demonstrating that
METAWSL is the ideal language for implementing program
transformations!

In the rest of the paper, all slicing examples were com-
puted by FermaT in a single step and the output copied into
the paper.

In ASCII notation, the WSL specification statement is
written as follows:

SPEC <x1, x2, ... xn>: Q ENDSPEC

This statement assigns values to the variables x1, . . . , xn
such that the condition Q is satisfied. Within Q the primed
variables x1’, . . . , xn’ represent the new values to be
assigned, and x1, . . . , xn represent the original values. If
there is no assignment of values which will satisfy Q, then
the statement aborts. For example, the specification:

SPEC <x>: x’ = x + 1 ENDSPEC

increments the value of x, while

SPEC <x>: EVEN(x) AND ODD(x’) ENDSPEC

assigns x any odd value, provided it initially held an even
value. (The first of the two specifications is a strict refine-
ment of the second.)

Applying Prog To Spec to the assignment

x := 2 * x + 1

gives the specification:

SPEC <x>: x’ = 2 * x + 1

Another example:

D_IF TRUE -> p := 1

[] TRUE -> p := 2 FI

gives:

SPEC <p>: p’ = 1 OR p’ = 2 ENDSPEC

The statement to be specified may include assertions,
local variables, nested IF statements and so on. FermaT’s
simplifier will use the assertions to simplify other parts of
the generated specification, eliminate local variables and so
on, automatically. For example:

VAR < x := y >:

IF p > q THEN x := x + 2

ELSE x := x - 2 FI;

{x = 10} ENDVAR

is transformed to the assertion:

{y = 8 AND p > q OR y = 12 AND p <= q}

Note that the assertion has been used to simplify the preced-
ing code.

A simple IF statement such as:

IF x > y THEN z := 1 ELSE z := 2 FI

is transformed to the specification:

SPEC <z>:

z’ = 1 AND x > y

OR z’ = 2 AND x <= y ENDSPEC

while a nested IF statement such as:

IF x = 1 THEN y := 2

ELSIF x = 2 THEN y := 3

ELSE y := 4 FI

becomes:

SPEC <y>:

y’ = 4 AND x <> 1 AND x <> 2

OR y’ = 2 AND x = 1

OR y’ = 3 AND x = 2 ENDSPEC

Generally, programmers find that a compound statement
with assertions, IF statements and simple assignments to
be easier to read and understand than the equivalent single



specification statement. So we have implemented another
transformation Refine Spec which analyses a specification
statement and carries out the following operations:

1. Factor out any assertions;

2. Expand into an IF statement: for example, the speci-
fication x := x′.(Q ∨ (B ∧ P)) where B does not
contain any variables x′, is equivalent to
if B then x := x′.(Q′ ∨ P′) else x := x′.(Q′′) fi

where Q′ and P′ are the result of simplifying Q and P
under the assumption that B is true, and Q′′ is the result
of simplifying Q under the assumption that B is false.
These sub-specifications are then recursively refined;

3. Finally, any simple assignments or parallel assign-
ments are extracted.

For example, the statement:

VAR < x := x >:

IF p = q

THEN x := 18

ELSE x := 17 FI;

IF p <> q

THEN y := x

ELSE y := 2 FI ENDVAR

is abstracted to the specification:

SPEC <y>:

y’ = 2 AND p = q

OR y’ = 17 AND p <> q ENDSPEC

Applying Refine Spec produces:

IF p = q THEN y := 2 ELSE y := 17 FI

The above example shows one way in which abstraction
and refinement can be applied to construct a semantic slice:
simply convert all the assigned variables that we do not
want to slice on (x in this case) into local variables, and
apply abstraction and refinement to the result!

5. Implementation of Conditioned Semantic
Slicing

We have implemented a semantic slicer by combin-
ing abstraction and refinement (via the Prog To Spec and
Refine Spec transformations) with a simple syntactic slic-
ing algorithm plus some additional general-purpose trans-
formations. The slicer is also a conditioned slicer: since any
assertions added to the program before slicing are used by
the abstraction and refinement transformations to simplify
the program.

The heart of the slicer is the @SSlice function which
takes a WSL program and a set of variables (the slicing

criterion for the end of the program) and returns a list of
two elements: the sliced program and the set of variables
whose values are required at the beginning of the program.

The main body of the semantic slice transformation exe-
cutes @SSlice in a loop:
do R := @SSlice(@I, X);

Make R[1] the current program;
Apply the transformation Refine Spec

to any specification statements;
Apply Constant Propagation;
if the program has not changed in this iteration

then exit(1) fi od

The @SSlice(I,X) function is outlined in Figure 1.

Deleting an assertion is a valid slice, though other strict
refinements are not considered to be valid. However, our
semantic slicer does not delete assertions since this might
destroy the conditioning information before it can be ap-
plied to the program. If required, a call to Delete Assertions

can be added at the end of the transformation.

5.1. The Tax Calculation Program

The program in Figure 2 computes the amount of tax
payable, including allowances, for a UK citizen in the tax
year April 1998 to April 1999. Each person has a personal
allowance, which is not taxed. This depends on their status,
reflected in the variables married, blind, widowed, and
the integer variable age. There are three tax bands, for
which tax is charged at the rates 10%, 23% and 40%.

With FermaT’s conditioned semantic slicer we can ex-
tract the business rules for particular situations and express
them in a concise and readable format.

In [4] the conditioned program slicer ConSIT was used
to compute a conditioned slice for the tax program (imple-
mented in a subset of C) to answer the question “What is
the personal allowance calculation for a blind widow aged
over 68?”. ConSIT produced the following program as the
answer (which we have translated from C to WSL):

IF age >=75

THEN personal := 5980

ELSE IF age >= 65

THEN personal := 5720 FI FI;

IF age >= 65 AND income > 16800

THEN VAR < t := personal -

(income-16800)/2 >:

IF t > 4335

THEN personal := t

ELSE personal := 4335 FI ENDVAR FI;

IF blind = 1

THEN personal := personal + 1380 FI



funct @SSlice(I,X) ≡
var 〈R := 〈〉, new := 〈〉, newX := 〈〉〉 :

if I is a statement sequence
then Trim trailing statements from I which do not

assign to any variables in X fi

If there are no loops in I , and it is not a simple
assertion or abort statement, then apply
Prog To Spec to convert it to a specification;
if I is a statement sequence S1; . . . ; Sn

then for S ∈ 〈Sn, . . . , S1〉 do

R := @SSlice(S,X);
new := 〈R[1]〉 ++ new;
X := R[2] od;

R := 〈fill Statements ˜*new endfill, X〉
elsif I is an assertion or comment

then R := 〈I,X〉
elsif I is an abort

then R := 〈I, ∅〉
elsif no variable assigned in I is in X

then R := 〈@Skip, X〉
elsif I is if B then S1 else S2 fi

then var 〈R1 := @SSlice(S1, X),
R2 := @SSlice(S2, X)〉 :

R := 〈if B then R1[1] else R1[2] fi,
R1[2] ∪ R2[2] ∪ vars(B)〉 end

elsif I is while B do S od

then var 〈B := vars(B), newX := X〉 :
do R := @SSlice(S, newX);

R[2] := R[2] ∪ newX ∪ B;
if R[2] = newX then exit(1) fi;
newX := R[2] od end;

R := 〈while B do R[1] od, R[2]〉
elsif I is var 〈v := e〉 : S end

then R := @SSlice(S, X \ {v});
newX := (R[2] \ {v}) ∪ ({v} ∩ X);
if v ∈ R[2]

then R := 〈var 〈v := e〉 : R[2] end, newX〉
else R := 〈var 〈v := ⊥〉 : R[2] end, newX〉 fi

elsif I is x := x′.Q
then var 〈x1 := x ∩ X, x2 := x \ X,R1 := 〈〉〉 :

R1 := x1 := x′
1
.∃x2.Q;

R := 〈R1, (X \ vars(x1)) ∪ vars(R1)〉 end.

Figure 1. Definition of @SSlice

IF age >= 75

THEN personal := 5980

ELSE IF age >= 65

THEN personal := 5720

ELSE personal := 4335 FI FI;

IF age >= 65 AND income > 16800

THEN VAR < t := personal

- (income - 16800)/2 >:

IF t > 4335

THEN personal := t

ELSE personal := 4335 FI

ENDVAR FI;

IF blind = 1

THEN personal := personal + 1380 FI;

IF married = 1 AND age >= 75

THEN pc10 := 6692

ELSE IF married = 1 AND age >= 65

THEN pc10 := 6625

ELSE IF married = 1 OR widow = 1

THEN pc10 := 3470

ELSE pc10 := 1500 FI FI FI;

IF married = 1 AND age >= 65

AND income > 16800

THEN VAR < t := pc10

- ((income - 16800)/2) >:

IF t > 3740

THEN pc10 := t

ELSE pc10 := 3740 FI ENDVAR FI;

IF income <= personal

THEN tax := 0

ELSE

income := income - personal;

IF income <= pc10

THEN tax := income * rate10

ELSE

tax := pc10 * rate10;

income := income - pc10;

IF income <= 28000

THEN tax := tax + income * rate23

ELSE tax := tax + 28000 * rate23;

income := income - 28000;

tax := tax + income * rate40

FI FI FI

Figure 2. Tax Calculation Program



To carry out the same computation with FermaT’s se-
mantic slicer, we simply insert these assertions at the top
of the program:

{blind = 1};

{married = 0};

{widow = 1};

{age > 68};

and then slice on the value of the variable personal. The
resulting semantic slice is:

IF age < 75 AND income >= 19570

THEN personal := 5715

ELSIF age < 75 AND income > 16800

THEN personal := (16800 - income)/2 + 7100

ELSIF age < 75

THEN personal := 7100

ELSIF income >= 20090

THEN personal := 5715

ELSIF income > 16800

THEN personal := (16800 - income)/2 + 7360

ELSE personal := 7360 FI

Although both slices have the same number of lines of
code, the semantic slice is clearly easier to understand: each
input condition leads to a single assignment to personal

which either gives the final value, or computes the value
from income.

The tax calculation for a sighted, married person aged
between 65 and 74 with an income over 30,000 can be
computed by adding the assertions:

{age >= 65 AND age < 75};

{income > 30000};

{blind = 0};

{married = 1};

and slicing on the final value of tax. The result is:

IF income <= 36075

THEN tax := (income - 8075) * rate23

+ 3740 * rate10

ELSE tax := (income - 36075) * rate40

+ 3740 * rate10

+ 28000 * rate23 FI

Conditioned slicing works equally well with conditions
at the end of the program which relate to values calculated
by the program. For example, if we want to determine
which people with an income of less than 16,000 will have
a personal allowance of 7,100 then we simply insert the
assertion {income < 16000} at the top of the program,
and insert {personal = 7100} at the end of the program
and slice on the final value of personal. The result is:

{blind = 1

AND age < 75

AND income < 16000

AND age >= 65};

personal := 7100

i.e. only blind people aged 65 to 74 will have a personal
allowance of 7,100.

The following program is another example of using an
assertion on the output of a program to simplify the code
before the assertion:

IF x = 0 THEN y := 1

ELSIF x = 1 THEN y := 10

ELSIF x = 2 THEN y := 4

ELSE y := 5 FI;

IF z = 1 THEN y := y + 1 FI;

{y < 5}

Slicing on y gives:

IF z = 1

THEN {x = 0}; y := 2

ELSIF x = 2

THEN y := 4

ELSE {x = 0}; y := 1 FI

To slice on the condition that a certain branch in the
program will not be taken, it is sufficient to insert an abort

statement (which is equivalent to the assertion {false}) at
the appropriate point or points. Many large commercial
systems contain a lot of error handling code: in some cases
much of the code in a module is for error handling and this
can obscure the algorithms computed by the module. In
addition, many modules produce more than one output. By
inserting abort statements at all the points where an error
has been detected, and slicing on each individual output it
is possible to compute a concise representation of the algo-
rithm (the “business rule”) for each output of the module
under normal conditions.

5.2. Semantic Slicing on Loops

The following program was used as an example in [2]
and [4] which we have translated from C to WSL:

i := 1;

posprod := 1; negprod := 1;

possum := 0; negsum := 0;

WHILE i <= n DO

a := input[i];

{a > 0};

IF a > 0

THEN possum := possum + a;

posprod := posprod * a

ELSIF a < 0

THEN negsum := negsum - a;

negprod := negprod * (-a)



ELSIF test0 = 1

THEN IF possum >= negsum

THEN possum := 0;

ELSE negsum := 0 FI;

IF posprod >= negprod

THEN posprod := 1

ELSE negprod := 1 FI FI;

i := i + 1 OD;

IF possum >= negsum

THEN sum := possum

ELSE sum := negsum FI;

IF posprod >= negprod

THEN prod := posprod

ELSE prod := negprod FI

ConSIT took about 20 minutes on a Pentium II running at
233MHz to compute the following conditioned slice for the
final value of sum:

i := 1;

possum := 0;

negsum := 0;

WHILE i <= n DO

a := input[i];

{a > 0};

IF a > 0

THEN possum := possum + a FI;

i := i + 1 OD;

IF possum >= negsum

THEN sum := possum FI

Note that ConSIT was unable to remove the variable
negsum since it is a purely syntactic conditioned slicer.
FermaT’s semantic slicer took just over half a second (0.56
seconds) on a 3GHz PC to produce the slice:

i := 1;

possum := 0;

WHILE i <= n DO

{input[i] > 0};

< possum := input[i] + possum,

i := i + 1 > OD;

IF possum < 0

THEN sum := 0

ELSE sum := possum FI

Here, the initial slice over the program deleted the as-
signments to negsum in the loop body. A subsequent
Constant Propagation replaced references to negsum by
zero, after which a second slicing operation removed
negsum from the program. All these transformations were
carried out automatically by Semantic Slice to give the re-
sult above.

5.3. Performance

The worst case performance of Semantic Slice is expo-
nential in the size of the program, as can be seen in the
following simple sequence of n assignments:

x := f(x, x);

x := f(x, x);

...

x := f(x, x);

Any semantic or amorphous slicer which merges sequences
of assignments to the same variable will give a single as-
signment which contains 2n references to x.

In addition, a sequence of simple IF statements can also
lead to exponential growth in the output since the weakest
precondition for if B then S1 else S2 fi on postcondition R
is:

(B ⇒ WP(S1, R)) ∧ (¬B ⇒ WP(S2, R))

which contains two copies of R. The weakest precondition
for two consecutive IF statements will therefore contain
four copies of R, and so on. If the resulting conditions can-
not be further simplified, then the abstracted specification
statement may be exponentially large compared to the size
of the input.

In most practical programs this exponential growth is
unlikely to occur, so a practical solution is to limit the
expansion of statements to ensure that the computed slices
are no larger than the input program.

6. Future Work

There are many other transformations implemented in
FermaT which could usefully be applied to semantic slicing:
in particular, the restructuring and simplifying transforma-
tions. A transformation called Use Assertion uses a given
assertion to simplify subsequent code: this would make the
processing of the tax examples much more efficient (we did
not make use of Use Assertion in this paper because we
wanted to show that more powerful results can be achieved
via abstraction and refinement. But Use Assertion is able to
propagate an assertion across a loop).

Another useful extension would be to attempt to derive
and prove the correctness of simple invariants over loops in
the program.

Transformations which collapse simple loops to MAP or
REDUCE statements will allow the abstraction transforma-
tion Prog To Spec to be applied to larger blocks of code For
example, the while loop in the sliced program in Section 5.2
can be transformed to an assignment of a REDUCE:



i := 1;

{REDUCE("+", input[1..n]) > 0};

possum := REDUCE("+", input[1..n]);

i := n + 1;

IF possum < 0

THEN sum := 0

ELSE sum := possum FI

Semantic Slice on sum reduces this to the simple assign-
ment:

sum := REDUCE("+", input[1..n])

FermaT includes a more powerful syntactic slicer which
can process unstructured programs and procedures. Inte-
grating abstraction and refinement into this slicer would
produce a semantic conditioned slicer which can handle
more WSL syntax.

7. Conclusion

In this paper we have described a partial implementation
of the representation theorem in the FermaT transformation
system. This enables the “abstraction” of any non-iterative
and non-recursive WSL statement to generate an equivalent
specification statement. The FermaT expression and condi-
tion simplifier can be applied to simplify the specification,
which can then, if necessary, be refined into IF statements,
assertions and simple assignments. This abstraction and
refinement process has been integrated into a simple syn-
tactic slicer, together with other FermaT transformations, to
produce a powerful conditioned semantic slicer (which is
not restricted to non-iterative programs!) The slicer is able
to use both preconditions and postconditions to simplify the
code before and after slicing

FermaT is available under the GNU GPL (General Public
Licence) from the following web sites:

http://www.dur.ac.uk/∼martin.ward/fermat.html
http://www.cse.dmu.ac.uk/∼mward/fermat.html
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