
Understanding Concurrent ProgramsusingProgram TransformationsE. J. YoungerCentre for Software Maintenance LtdUnit 1P, Mountjoy Research CentreDurham, DH1 3SW M. P. WardComputer Science DepartmentScience Labs, South RdDurham DH1 3LEAbstractReverse engineering of concurrent real-time pro-grams with timing constraints is a particularly chal-lenging research area, because the functional behaviourof a program, and the non-functional timing require-ments, are implicit and can be very di�cult to dis-cover. In this paper we present a signi�cant advance inthis area, which is achieved by modelling real-time con-current programs in the wide spectrum language WSL.We show how a sequential program with interrupts canbe modelled in WSL, and the method is then extendedto model more general concurrent programs. We showhow a program modelled in this way may subsequentlybe �inverse engineered� by the use of formal programtransformations, to discover a speci�cation for theprogram. (We use the term �inverse engineering� tomean �reverse engineering achieved by formal programtransformations�).1 IntroductionThis paper describes extensions to the inverse en-gineering techniques developed at the University ofDurham, to enable these to be applied to programswith interrupts and concurrency. An example of theuse of the methods to derive a speci�cation for a simpleconcurrent system is given.The paper is organised as follows. In sections 2and 3 we give a brief introduction to the WSL languageand transformation theory. Then in Section 4 we showhow to model a real-time interrupt-driven program inthe WSL language. In Section 5 we show how theprinciples may be extended to model more generalconcurrent programs. Finally, we use this informationto derive a speci�cation of the example program inSection 6.

2 The Language WSLIn this section we give a brief introduction tothe language WSL [2,9,14] the �Wide Spectrum Lan-guage�, used in Ward's program transformation work,which includes low-level programming constructs andhigh-level abstract speci�cations within a single lan-guage. For brevity we will only de�ne the languageconstructs used in this paper.A program transformation is an operation whichmodi�es a program into a di�erent form which hasthe same external behaviour (it is equivalent undera precisely de�ned denotational semantics). Sinceboth programs and speci�cations are part of the samelanguage, transformations can be used to demonstratethat a given program is a correct implementation ofa given speci�cation. In [10,11,15] program trans-formations are used to derive a variety of e�cientalgorithms from abstract speci�cations. In [12,16]program transformations are used in reverse engin-eering and program comprehension tasks, includingthe derivation of concise speci�cations from programsource code.2.1 SequencesSequences are denoted by angled brackets: s =ha1; a2; : : : ; ani is a sequence, the ith element ai isdenoted s[i], s[i : : j] is the subsequence hs[i]; s[i +1]; : : : ; s[j]i, where s[i : : j] = hi (the empty sequence)if i > j. The length of sequence s is denoted`(s), so s[`(s)] is the last element of s. We uses[i : : ] as an abbreviation for s[i : : `(s)]. reverse(s) =han; an�1; : : : ; a2; a1i, head(s) is the same as s[1] andtail(s) is s[2 : : ].The concatenation of sequences s1 and s2 is denoteds1 ++ s2 = hs1[1]; : : :; s1[`(s1)]; s2[1]; : : : ; s2[`(s2)]i.



2.2 Speci�cation StatementThe statement hx1; : : : ; xni := hx01; : : : ; x0ni:Q as-signs new values x01; : : : ; x0n to the variables x1; : : : ; xnsuch that the formula Q is true. If there are novalues which satisfy Q then the statement aborts(does not terminate). For example, the assignmenthxi := hx0i:(x = 2:x0) halves x if it is even and abortsif x is odd. If the sequence contains one variable thenthe sequence brackets may be omitted, for example:x := x0:(x = 2:x0). The assignment x := x0:(x0 = t)where x0 does not occur in t is abbreviated to x := t.2.3 Unbounded LoopsStatements of the form do S od, where S is astatement, are �in�nite� or �unbounded� loops whichcan only be terminated by the execution of a statementof the form exit(n) (where n is an integer, not avariable or expression) which causes the program toexit the n enclosing loops. To simplify the languagewe disallow exits which leave a block or a loop otherthan an unbounded loop. This type of structure isdescribed in [6,8].3 Program Re�nementand TransformationThe WSL language includes both speci�cation con-structs, such as the general assignment, and program-ming constructs. One aim of our program trans-formation work is to develop programs by re�ninga speci�cation, expressed in �rst order logic and settheory, into an e�cient algorithm. This is similar tothe �re�nement calculus� approach of Morgan et al[4,7]; however, our wide spectrum language has beenextended to include general action systems and loopswith multiple exits. These extensions are essential forour second, and equally important aim, which is to useprogram transformations for reverse engineering fromprograms to speci�cations.Re�nement is de�ned in terms of the denotationalsemantics of the language: the semantics of a programS is a function which maps from an initial state to a�nal set of states. The set of �nal states represents allthe possible output states of the program for the giveninput state. Using a set of states enables us to modelnondeterministic programs and partially de�ned (orincomplete) speci�cations. For programs S1 and S2we say S1 is re�ned by S2 (or S2 is a re�nement ofS1), and write S1 � S2, if S2 is more de�ned and moredeterministic than S1. If S1 � S2 and S2 � S1 thenwe say S1 is equivalent to S2 and write S1 � S2. Equi-valence is thus de�ned in terms of the external �black

box� behaviour of the program. A transformation isan operation which maps any program satisfying theapplicability conditions of the transformation to anequivalent program. See [9] and [14] for a descriptionof the semantics of WSL and the methods used forproving the correctness of re�nements and transform-ations. We use the term abstraction to denote the op-posite of re�nement: for example the �most abstract�program is the non-terminating program abort, sinceany program is a re�nement of abort.A transformation is an operation which maps anyprogram satisfying the applicability conditions of thetransformation to an equivalent program. See [9]and [14] for a description of the semantics of WSLand the methods used for proving the correctness ofre�nements and transformations.4 Modelling Interrupt-DrivenPrograms in WSLWSL has no notations for parallel execution orinterrupts. We chose not to add such notations to thelanguage, since this would complicate the semanticsenormously and render virtually all our transform-ations invalid. Consider, for example, the simpletransformation:x := 1; if x = 1 then y := 0 � � x := 1; y := 0which is trivial to prove correct in WSL. However, thistransformation is not universally valid if interrupts orparallel execution are possible, since an interruptingprogram could change the value of x between theassignment and the test. Instead, our approach is tomodel the interrupts in WSL by inserting a procedurecall at all the points where the program could beinterrupted. This procedure tests if an interrupt didactually occur, and if so it executes the interruptroutine, otherwise it does nothing. Although thisincreases the program size somewhat, the resultingprogram is written in pure WSL and all our trans-formations can be applied to it.One of our aims in transforming the resulting WSLprogram is to move the interrupt calls through thebody of the program, and collect them together andmerge them as far as possible. The body of themain program would then be essentially sequences ofstatements from the original program, separated bythe processing of any interrupts which occurred duringtheir execution.In order to model time within WSL we add avariable time to the program which is incrementedappropriately whenever an operation is carried out



which takes some time. We can then reason aboutthe response times of the program by observing theinitial and �nal values of this variable. We can alsomodel the times when interrupts occur by providingan input sequence consisting of pairs of values ht; ciwhere t the time at which the interrupt occurs and cis the character. Naturally we should insist that thesequence of t values be monotonically increasing. Sucha sequence can model input from an external device,a concurrent process, or even a hardware register. Wemake this explicit in our model of the program: thearray (or equivalently, sequence) input consists of pairsof times and characters to represent the inputs, andis sorted by times. The interrupt routine tests thetime variable against the time value associated withthe �rst element of the input sequence to see if thatinterrupt is now �due�. If so, then it removes a pairfrom the head of the sequence and processes the result.The program is modelled as follows:S1;S2;etc : : :  S1;interrupt(time); time := time + 1;S2;interrupt(time); time := time + 1;etc : : :If we assume a discrete model of time, i.e. that thevalue of time is an integer, and we assume that time isincremented by one between each potential interrupt,then the test for validity of a call to the interruptroutine is simply:interrupt(time0)  if (time0 = input[1][1])then process interrupt �where process interrupt corresponds to the originalinterrupt service routine. Note that input[1] is the�rst element of the input sequence: this element is apair of values (a time and a character), so input[1][1]is the �rst element of the pair, i.e. the time of the �rstinterrupt.However, a better model, which does not requirea discrete model of time, and which allows di�erent�atomic� (i.e. non-interruptable) operations to takedi�erent amounts of time, is the following:interrupt(time0) while (time0 > input[1][1]) doprocess interrupt odThis revised model of the interrupt routine allowsmore than one interrupt to occur between atomic op-erations, and has the advantage that a call to interruptcan be merged with a second call which immediately

follows it:interrupt(t1); interrupt(t2) � interrupt(t2)provided t2 > t1. This follows from the transforma-tion:while B1 do S od;while B2 do S od � while B2 do S odprovided B1 ) B2. This transformation is proved in[9]. If t2 > t1 then we have (t1 > input[1][1])) (t2 >input[1][1]), and we can merge the two while loopsand hence the two procedures.Thus, once we have moved a set of interrupt pro-cedure calls to the same place, we can merge them intoone statement equivalent to �process all outstandinginterrupts�, which is much closer to a speci�cationlevel statement than is a series of calls to the sameprocedure.Note that the addition of interrupt calls is de�ningthe �interruptable points� in the program, or equi-valently, the �atomic operations�. The increments totime de�ne the processing time for each atomic opera-tion. For real programming languages, e.g. Coral, theatomic operations may well be machine code instruc-tions, rather than high-level language statements, andit is at the machine code level that the model needs tobe constructed, for it to accurately re�ect the real pro-gram. This will inevitably lead to a large and complexWSL program; however automatic restructuring andsimplifying transformations can eliminate much of thecomplexity before the maintainer even has to look atthe program.5 ConcurrencyInterrupts may be regarded as a special type ofconcurrent processing on a single processor. Whenan interrupt occurs, the �main� program is suspendedand the interrupt routine is executed in its entirety,possible changing the state of the main program in theprocess. Execution of the main program then resumes.It is the fact that the interrupt routine is executed inits entirity that makes interrupts a special case fromthe point of view of modelling in WSL; we are ableto insert a copy of the interrupt routine wherever aninterrupt occurs, and hence the e�ect of the interruptis deterministic.The analogy with a single-processor multitaskingsystem is obvious: here the running program executesuntil it is suspended by the operating system. Othertasks are then (partially) executed, and may changethe state of the original program; eventually execution



of this program is resumed. From the perspective ofthe original task, this looks like a call to a proced-ure which executes sequences of instructions from theoperating system and the other tasks in the system,and subsequently returns. The analogy also appliesto more general forms of concurrency, including fully-parallel multiprocessor systems. In principle, the stateof any program or task in such a system may bechanged, between one atomic operation and the next,by other concurrently executing tasks. Again thiscould be modelled by procedure calls between eachpair of atomic operations, which perform the appro-priate processing and change the state accordingly.5.1 Rely and Guarantee conditionsRely and guarantee conditions were introduced toaugment the pre- and postconditions of VDM whendeveloping parallel systems [5]. They provide a meansto specify the interaction between a program and itsexecution environment (concurrent tasks). A guaran-tee condition is a condition on the state shared bythe program and its environment, which the programwill at all times preserve. Similarly, a rely conditionis a condition on the state of the program which anyinterference from the environment will preserve. Asan example, consider the abstraction:x := 1;if x > 1 then y := 0 � � x := x0:(x0 > 1);y := 0In pure WSL this is trivially correct, but if we al-lowed interference from the environment to change thevalue of x between the assignment and the test, thetransformation is not necessarily valid. However, if wehave a rely condition which speci�es x >(x then thistransformation will be valid. (Here (x and x representrespectively the initial and �nal values of x)In the following section we use rely and guaranteeconditions to model the e�ects of concurrency in pureWSL. Again this means that our program transform-ations are applicable since the resulting program ispurely sequential.5.2 Modelling Concurrency in WSLConsider a sequential program T which can berepresented by a �ow chart. Any program can berestructured into this form. For example:

?� -? ?? ?? ?P2P1P3P4P5 P6P7where each of the Pn represents an atomic instruc-tion or an atomic test. Suppose we model Pn byPn; next := n+1; time := time+1; , with the obviousextension for branch instructions. Now suppose T isa task in a concurrent system. Consider �rst a systemwith only two tasks, T1 and T2. We rewrite T2 as aprocedure as follows;proc T2(steps) �while (steps > 0) dosteps := steps � 1;if next = 1 ! P1; next := 2ut next = 2 ! if P2then next := 3else next := 6 �: : :ut next = 0 ! skip � od;This procedure executes a sequence of steps instruc-tions from T2, beginning from the last instructionexecuted in the last invocation of the procedure. Ifsteps=0 then the procedure call returns immediately.If we then model T1 byT1  steps := steps 0:(steps 0 2 N0);T02(steps);S1; time := time + 1;steps := steps 0:(steps 0 2 N0);T02(steps);S2; time := time + 1;: : :then we have modelled the semantics of the originalsystem. By interposing calls to T02 between the atomicinstructions of T1 we have modelled the execution ofT2 and its interference with T1.This is a complete model of the system, eventhough it has the same surface structure as T1. Itis non-deterministic due to the presence of the non-deterministic assignment statements in T1, whichcause values to be assigned to the variable steps. This



re�ects the fact that we cannot know a priori howmany instructions from T2 will be executed betweenPn and Pn+1 in T1. In order to proceed, we want toreplace:steps := steps 0:(steps 0 2 N0); T02(steps);with an abstraction, which speci�es T02 for any valueof steps and any initial value of next. This will bethe strongest condition preserved by the execution ofany sequence of instructions fromT2, and correspondsto a guarantee condition for T2. This speci�cation isrecoverable from T2 in isolation.We can repeat this process, interchanging the rolesof T1 and T2. We then will have two models, onebased on T1 with interference from T2 inserted, theother based on T2 with interference fromT1. Howeverthese are guaranteed to be equivalent, since they bothcapture the logic of the entire system.Now suppose we have more than two tasks T1 : : :Tn. Let T2 : : : Tn be rewritten as procedures asabove. Then we can writeT1  steps := steps 0:(steps 0 2 N0);V (steps);S1; time := time + 1;steps := steps 0:(steps 0 2 N0);V (steps);: : :whereproc V (steps) �for k := 1 to steps step 1 doif true ! T02(1)ut true ! T03(1): : :ut true ! T0n(1) � od endand each T0j is derived from the corresponding Tj asbefore.Procedure V causes steps instructions to be ex-ecuted; these are chosen non-deterministically fromthe remaining tasks T2, : : : , Tn by the if statement,which calls one of the corresponding procedures withparameter one, resulting in the execution of one in-struction from the task.The above is a complete speci�cation for the sys-tem when taken together with the de�nitions of theprocedures T0j . However it is also non-deterministicdue to the assignment statements; as before we needto replace the assignments and procedure calls byabstractions.Consider the procedure V . Here the loop bodyimplements a non-deterministic choice from the set of

procedures T0j , where j = 2 : : :n. One of the pro-cedures is selected non-deterministically, and a singleinstruction from the corresponding task is executed.A total of steps atomic instructions from the set oftasks is executed; individual instructions or sequencesof instructions may be executed from any of the tasks.We can abstract T0j(1) to a non-deterministic choiceover all sequences of instructions in Tj � in so doingwe abstract away the fact that the instructions areexecuted in a speci�c order. This is equivalent toremoving the guards from the if statement in the pro-cedures T0j, which we can always do as an abstractionstep. We can therefore writeT0j(1) � li Pijwhere Pij are the instructions in the task Tj, anddi indicates a non-deterministic choice. This is thestrongest speci�cation which is an abstraction of everyinstruction in Tj . In fact this speci�cation may bevery large for a task which is even moderately complex,making it di�cult to use in practice. To reason aboutits e�ect onT1 however we are only concerned with theelements of the speci�cation which a�ect the state ofT1; we may therefore if necessary abstract away otherdetails of the Tj's and so simplify the speci�cations ofthe T0js.Having found a speci�cation for each of the T0j, wecan use these to �nd the speci�cation for the loop bodyof the procedure V . This is a non-deterministic choicefrom the set of T0j(1)'s, whose speci�cations are givenabove. The procedure V executes the loop body stepstimes, where the value of steps is not determinable,representing as it does the number of instructionsexecuted between two sequential instructions in T1.The strongest speci�cation for V which we can �nd istherefore the strongest abstraction which holds for anyvalue of steps, i.e. any number of concatenations of theloop body. This will in general be an abstraction ofthe speci�cation for the loop body.To summarise, we have the following abstrac-tion/re�nement relations:T0j(1) � li PijL � lj>1T0j(1) � lj>1�li Pij� � SLSL � SVwhere L is the body of the loop, SL is a speci�cationfor the loop body, and SV is a speci�cation for the pro-cedure V. The crucial factor in this method is that thisspeci�cation is derived by analysis of the individual



tasks in isolation, without the need to take accountof the interaction between them. It can therefore befound using methods developed for purely sequentialsystems.SV therefore speci�es the e�ects of the remainingtasks on the state of T1. It is in e�ect a rely con-dition for T1. By substituting this speci�cation forthe calls to procedure V in our model of T1, we caninverse engineer T1 to recover its speci�cation, S1,which includes the e�ects of the other tasks upon it.Since we may have abstracted away those parts of thespeci�cation which do not a�ect the state of T1, inorder to simplify the speci�cations of the T0j(1)'s, weno longer have a complete speci�cation for the entiresystem. Repeating this exercise for the remainingtasks allows us to recover a set of speci�cations Sjfor the tasks, each of which include the e�ects of theother tasks upon their state.The speci�cation S for the complete system mustincorporate all the properties of the set of Sj 's. This isexpressed in WSL by the join operation. The join ofa set of speci�cations is the most abstract speci�cationwhich re�nes each member of the set. Thus the spe-ci�cation S is more re�ned than the speci�cations Sj ,unless the speci�cations Sj are equivalent; this arisessince, in combining the speci�cations for the tasks, weare restoring information originally abstracted away inthe derivation of the individual Sj's: Si will includeinformation abstracted away in the derivation of Sk(for any i and k).
S1
T1 AbstractionT2SInverseEngineering EngineeringInverse

S2Join JoinAlthough S will be more re�ned than the set of Sj 's,it may still be too abstract to be useful if too muchabstraction is performed in deriving the Sj's. This willbe a problem particularly if the objective is to valid-ate a system against an existing speci�cation, or tore-implement an existing system. If too much inform-ation is lost in deriving the Sj's then the speci�cationS may be more abstract than the speci�cation against

which we wish to validate, or more abstract than theactual system requirements speci�cation.5.3 Summary of methodIn order to model a concurrent system in WSL weproceed as follows:For each task, we derive a speci�cation for theconditions on its state which are guaranteed to bepreserved by the other tasks in the system. To achievethis, we consider each of the remaining tasks in isol-ation, and derive for each of these a speci�cation ofthe conditions on the state of the �rst task whichare guaranteed to be preserved by the execution ofany instruction from the second task. The resultingspeci�cations, derived from all the remaining tasks,are then combined by a non-deterministic choice togive us a speci�cation of the conditions on the stateof the �rst task, guaranteed to be preserved by theexecution of any instruction from any other task inthe system. The full speci�cation for the e�ect ofthe remaining tasks on the �rst is then given by anynumber of concatenations of this speci�cation.We substitute this speci�cation between eachatomic operation in the task: this gives us an abstrac-tion of the task itself including the e�ect of interferencefrom the rest of the system. We may then inverseengineer this model of the task using transformations,to �nd a speci�cation for the task incorporating thee�ects of interference from the other tasks.We can repeat this process for each of the tasks inthe system. Having derived a speci�cation for each ofthem, we can derive the speci�cation for the completesystem by combining the individual speci�cations us-ing the WSL join operation.6 Example of methodIn this section we give an example of the use ofthe method to inverse engineer a simple concurrentsystem. This consists of only two tasks sharing a singleprocessor under the control of a scheduler, though weignore the details of the scheduler. One task receivescharacters from an input stream, and writes these intoa bu�er; the second process takes characters from this



bu�er and writes them to the standard output.T1 = do if empty(input) then exit(1) �;while (time < input[1][1]) dosuspend1 od;buf := buf ++ hinput[1][2]i;input := tail(input) odT2 = do if empty(input) ^ empty(buf )then exit(1) �;while (empty(buf )) dosuspend2 od;std out := std out ++ hbuf [1]i;buf := tail(buf ) odThe input consists of a sequence of pairs: a characterand its arrival time. If there is no character waiting tobe read, i.e. the arrival time of the next character inthe input has not yet been reached, T1 suspends itselfby means of the system call suspend1, which resultsin T2 being reactivated. Similarly, if the bu�er isempty,T2 suspends itself by the system call suspend2.If there is no more input to be received, then T1terminates; similarly if there is no further input andno characters left in the bu�er T2 terminates.Execution of the two tasks alternates on a timeslicebasis: at regular intervals, the executing task is haltedand the second task is restarted. We can model thisusing a procedure: we de�neproc timeslice1 �if (time � last > Pt)then last := time; suspend1 �:where Pt is the timeslice period, and an equivalentprocedure timeslice2 for T2. This procedure teststhe time since the last context switch, and if it isgreater than or equal to the timeslice period suspendsthe active task and reactivates the halted one via thesystem call suspend1. To incorporate the e�ect ofinterference from the other task we insert this proced-ure call between each statement in the task, togetherwith an assignment which increments time. (For thepurposes of this example we treat each WSL statementas an atomic instruction). The result, following the

necessary restructuring of the while loops to accom-modate these additions, isT̂1 � do if empty(input) then exit(1) �;do if (time > input[1][1])then timeslice1; time := time + 1;exit(1)else timeslice1; time := time + 1 �;suspend1 od;buf := buf ++ hinput[1][2]i;timeslice1; time := time + 1;input := tail(input);timeslice1; time := time + 1 odT̂2 � do if empty(input) ^ empty(buf )then exit(1) �;do if :empty(buf )then timeslice2; time := time + 1;exit(1)else timeslice2; time := time + 1 �;suspend2 od;std out := std out ++ hbuf [1]i;timeslice2; time := time + 1;buf := tail(buf );timeslice2; time := time + 1 odIn order to proceed, we now need de�nitions for theprocedures suspend1 and suspend2. These specify thee�ect of executing the other task for one timesliceperiod, and must re�ne the conditions which are pre-served by execution of any sequence of statementsfrom the tasks, i.e. any number of whole or partial ex-ecutions of the respective loop bodies. We can recoverthese conditions, and de�ne abstractions of suspend1and suspend2 which preserve the conditions but areotherwise unrestricted. We denote these by G1 andG2 respectively. We then know that G1 � suspend1and G2 � suspend2 .During its timeslice, a task executes without in-terference from the other task. We therefore recoverG1 and G2 from T1 and T2. As these are small inthis example, we can do this by inspection. Consider�rst T2. We are interested only in how it a�ects thevariables in T1: in fact the only variables which arechanged by T2 are std out and buf, (and also time,though this is not shown in the de�nition of T2 givenabove). std out is not accessed or updated in T1, sowe can disregard it. Since at least one statement in T2will be executed, time will be incremented. Also, wecan see that zero or more characters will be removedfrom the head of buf, up to a maximum of `(input),in which case the bu�er is emptied and T2 is then



suspended. Using these facts we can write:G1 = htime; buf i := htime0; buf 0i:(time0 > time^ 9j; 0 6 j 6 `(buf ): buf 0 = buf [j : :])Clearly, G1; G1 � G1. As G1 � suspend1 we canalso writetimeslice1� if (time � last > Pt)then last := time; G1 �� htime; buf i := htime0; buf 0i:(time0 > time^ 9j; 0 6 j 6 `(buf ): buf 0 = buf [j : :])� G1Having found G1, we are able to inverse engineer T̂1:T̂1 �do if empty(input) then exit(1) �;do if (time > input[1][1])then G1; time := time + 1;exit(1)else G1; time := time + 1 �;G1 od;buf := buf ++ hinput[1][2]i;G1; time := time + 1;input := tail(input);G1; time := time + 1 od;Replacing G1 by its de�nition, transforming the loopto a while and simplifying gives:while :empty(input) dohtime; buf i := htime0; buf 0i:�time0 > input[1][1]^ 9j; 0 6 j 6 `(buf ):buf 0 = buf [j : :] ++ input[1][2]�;input := tail(input) od;This loop can be replaced by a single assignment:T̂1 �htime; buf i := htime0; buf 0i:�time0 > input[`(input)][1]^ 9j; 0 6 j 6 `(buf ) + `(input):buf 0 = (buf ++ �2 � input)[j : :]�;input := hi= S1Here �2 � input is the sequence of �second elements�from the sequence of pairs input. S1 is a speci�cationfor T1 with the interference from T2 included. All theinput characters are read and so the input is emptied;

the time at which the task terminates is some timeafter the last character is received; on termination, thebu�er consists of the initial contents of the bu�er withall the input characters appended to the end, and anunspeci�ed number of characters (less than or equal tothe number of characters in the bu�er) removed fromthe head. This quantity cannot be determined solelyfrom T̂1 as it depends on the number of iterations ofT2 which are executed before T1 terminates, and thisis unknown to T1.We now inverse engineer T̂2 by the same methodto �nd a speci�cation S2. Inspection of T1 providesus with a suitable abstraction. De�ne:G2 = hbuf ; timei := hbuf 0; time0i:�time0 > time^ 9j; 0 6 j 6 `(input):buf 0 = buf ++Pji=0 input[i][2]�We have: G2; G2 � G2 and timeslice2 � G2.This is an abstraction of suspend2. Substitutingthis in T̂2, we can inverse engineer to �nd:T̂2 �hstd out; buf ; timei := hstd out0; buf 0; time0i:�time0 > time^ std out0 ++ buf 0 ++ �2 � input0= std out ++ buf ++ �2 � input^ buf 0 = hi ^ input0 = hi��hstd out; buf ; timei := hstd out0; buf 0; time0i:�std out0 := std out ++ buf ++ �2 � input^ time0 > time�� S2The speci�cation for the complete system is thengiven by: S =DF join S1 t S2 niojFor two speci�cations, the join operation reduces toand-ing the conditions in the speci�cation statements.Therefore:S �hstd out; buf ; timei := hstd out0; buf 0; time0i:�time0 > input[`(input)][1]^ std out0 = std out ++ buf ++ �2 � input^ buf 0 = hi ^ input0 = hi�This speci�cation tells us that, for any initial valuesof buf, input and std out, the system terminates in astate in which buf and input are empty, and std outconsists of its initial value with the initial contentsof buf and the sequence of characters from inputappended, in the order in which they occurred in theinput. Additionally, the time at which the system



terminates is greater than the time of arrival of thelast character. In this example, the speci�cation S2is almost a complete speci�cation for the system, re-�ecting the fact that very little high level informationwas abstracted away in deriving a speci�cation for theinterference of T1 with the state of T2.7 ConclusionsThis study shows that by using an appropriatemodels we can represent interrupt-driven and con-current programs within the (purely sequential) WSLlanguage. With such models, the inverse engineer-ing techniques of [12,14] can be applied to extractthe speci�cation of the original program. Programtransformations are su�ciently powerful to cope withthese, often complex, models. Although a fairly largenumber of transformations are required to deal withthese models, results from case studies indicate thatthese are used in a systematic way: this suggests thatmuch of the work can be automated by a tool such asthe Maintainer's Assistant [2,17] and this is currentlybeing investigated under a SMART II (Small FirmsMerit Award for Research and Technology) projectat the Centre for Software Maintenance Ltd., and aspart of a three-year SERC project at the University ofDurham.AcknowledgementsThe research described in this paper has been fun-ded partly by a Department of Trade and IndustrySMART award to the Centre for Software Mainten-ance Ltd., and partly by SERC (The Science andEngineering Research Council) project �A Proof The-ory for Program Re�nement and Equivalence: Exten-sions�.References[1] R. J. R. Back, Correctness Preserving Program Re�ne-ments, Mathematical Centre Tracts#131, Mathemat-isch Centrum, Amsterdam, 1980.

[2] T. Bull, �An Introduction to the WSL Program Trans-former,� Conference on Software Maintenance 26th�29th November 1990, San Diego (Nov., 1990).[3] E. W. Dijkstra, A Discipline of Programming, Pren-tice-Hall, Englewood Cli�s, NJ, 1976.[4] C. A. R. Hoare, I. J. Hayes, H. E. Jifeng, C. C. Mor-gan, A. W. Roscoe, J. W. Sanders, I. H. Sørensen, J.M. Spivey & B. A. Sufrin, �Laws of Programming,�Comm. ACM 30 (Aug., 1987), 672�686.[5] C. B. Jones, �Speci�cation and Design of (Parallel)Systems,� in Proc. IFIP 1983, R. E. A. Mason, ed.,North-Holland, Amsterdam, 1983, 321�332.[6] D. E. Knuth, �Structured Programming with theGOTO Statement,� Comput. Surveys 6 (1974), 261�301.[7] C. Morgan, Programming from Speci�cations, Pren-tice-Hall, Englewood Cli�s, NJ, 1990.[8] D. Taylor, �An Alternative to Current Looping Syn-tax,� SIGPLAN Notices 19 (Dec., 1984), 48�53.[9] M. Ward, �Proving Program Re�nements and Trans-formations,� Oxford University, DPhil Thesis, 1989.[10] M. Ward, �Derivation of a Sorting Algorithm,�Durham University, Technical Report, 1990.[11] M. Ward, �A Recursion Removal Theorem,� Springer-Verlag, Proceedings of the 5th Re�nement Workshop,London, 8th�11th January, New York�Heidelberg�Berlin, 1992.[12] M. Ward, �Abstracting a Speci�cation from Code,� J.Software Maintenance: Research and Practice 5 (1993),101�122.[13] M. Ward, �Foundations for a Practical Theory of Pro-gram Re�nement and Transformation,� forthcoming,1993.[14] M. Ward, �Speci�cations and Programs in a WideSpectrum Language,� Submitted to J. Assoc. Comput.Mach., Apr., 1991.[15] M. Ward, �Derivation of Data Intensive Algorithms byFormal Transformation,� Submitted to IEEE Trans.Software Eng., May, 1992.[16] M. Ward & K. H. Bennett, �A Practical ProgramTransformation System For Reverse Engineering,�Working Conference on Reverse Engineering, May 21�23, 1993, Baltimore MA(May, 1993).[17] M. Ward, F. W. Calliss & M. Munro, �The Main-tainer's Assistant,� Conference on Software Mainten-ance 16th�19th October 1989, Miami Florida (Oct.,1989).


