Understanding Concurrent Programs
using
Program Transformations

E. J. Younger
Centre for Software Maintenance Ltd
Unit 1P, Mountjoy Research Centre
Durham, DH1 3SW

Abstract

Reverse engineering of concurrent real-time pro-
grams with timing constraints is a particularly chal-
lenging research area, because the functional behaviour
of a program, and the non-functional timing require-
ments, are implicit and can be very difficult to dis-
cover. In this paper we present a stgnificant advance in
this area, which is achieved by modelling real-time con-
current programs in the wide spectrum language WSL.
We show how a sequential program with interrupts can
be modelled in WSL, and the method is then extended
to model more general concurrent programs. We show
how a program modelled in this way may subsequently
be “inverse engineered” by the use of formal program
transformations, to discover a specification for the
program. (We use the term “inverse engineering” to
mean “reverse engineering achieved by formal program
transformations”).

1 Introduction

This paper describes extensions to the inverse en-
gineering techniques developed at the University of
Durham, to enable these to be applied to programs
with interrupts and concurrency. An example of the
use of the methods to derive a specification for a simple
concurrent system is given.

The paper is organised as follows.
and 3 we give a brief introduction to the WSL language
and transformation theory. Then in Section 4 we show
how to model a real-time interrupt-driven program in
the WSL language. In Section 5 we show how the
principles may be extended to model more general
concurrent programs. Finally, we use this information
to derive a specification of the example program in
Section 6.

In sections 2

M. P. Ward

Computer Science Department
Science Labs, South Rd
Durham DH1 3LE

2 The Language WSL

In this section we give a brief introduction to
the language WSL [2,9,14] the “Wide Spectrum Lan-
guage”, used in Ward’s program transformation work,
which includes low-level programming constructs and
high-level abstract specifications within a single lan-
guage. For brevity we will only define the language
constructs used in this paper.

A program transformation is an operation which
modifies a program into a different form which has
the same external behaviour (it is equivalent under
a precisely defined denotational semantics). Since
both programs and specifications are part of the same
language, transformations can be used to demonstrate
that a given program is a correct implementation of
a given specification. In [10,11,15] program trans-
formations are used to derive a variety of efficient
algorithms from abstract specifications. In [12,16]
program transformations are used in reverse engin-
eering and program comprehension tasks, including
the derivation of concise specifications from program
source code.

2.1 Sequences

Sequences are denoted by angled brackets: s =
(a1,a2,...,an) is a sequence, the ith element a; is
denoted s[d], s[i..j] is the subsequence (s[i],s[i +
1], ..., s[4]}), where s[i..j] = () (the empty sequence)
if ¢ > j. The length of sequence s is denoted
£(s), so s[l(s)] is the last element of s. We use
s[i..] as an abbreviation for s[i..£(s)]. reverse(s) =
(an,an-1,...,a2,a1), head(s) is the same as s[1] and
tail(s) is s[2..].

The concatenation of sequences s; and s, 1s denoted

S1 H 89 = <51 [1], . .,sl[ﬁ(sl)], 52[1], ceey 52[£(52)]>.

2.2 Specification Statement

The statement (z1,...,2n) = {(z},...,2,).Q as-
signs new values), ..., 2} to the variables z1,..., 2,
such that the formula Q is true. If there are no
values which satisfy Q then the statement aborts
(does not terminate). For example, the assignment
(z) := (2').(z = 2.2") halves z if it is even and aborts
if x 1s odd. If the sequence contains one variable then
the sequence brackets may be omitted, for example:
z:= 2 .(x = 2.2"). The assignment z := z'.(¢/ = 1)
where ' does not occur in ¢ is abbreviated to z :=t.

2.3 Unbounded Loops

Statements of the form do S od, where S is a
statement, are “infinite” or “unbounded” loops which
can only be terminated by the execution of a statement
of the form exit(n) (where n is an integer, not a
variable or expression) which causes the program to
exit the n enclosing loops. To simplify the language
we disallow exits which leave a block or a loop other
than an unbounded loop. This type of structure is

described in [6,8].

3 Program Refinement
and Transformation

The WSL language includes both specification con-
structs, such as the general assignment, and program-
ming constructs. One aim of our program trans-
formation work is to develop programs by refining
a specification, expressed in first order logic and set
theory, into an efficient algorithm. This is similar to
the “refinement calculus” approach of Morgan et al
[4,7]; however, our wide spectrum language has been
extended to include general action systems and loops
with multiple exits. These extensions are essential for
our second, and equally important aim, which is to use
program transformations for reverse engineering from
programs to specifications.

Refinement 1s defined in terms of the denotational
semantics of the language: the semantics of a program
S is a function which maps from an initial state to a
final set of states. The set of final states represents all
the possible output states of the program for the given
input state. Using a set of states enables us to model
nondeterministic programs and partially defined (or
incomplete) specifications. For programs S; and S
we say S; is refined by Sy (or Sz is a refinement of
S1), and write S; < Sq, if S5 is more defined and more
deterministic than S;. If S; < S5 and So < Sy then
we say S1 1s equivalent to S, and write S; & S,. Equi-
valence is thus defined in terms of the external “black

box” behaviour of the program. A transformation is
an operation which maps any program satisfying the
applicability conditions of the transformation to an
equivalent program. See [9] and [14] for a description
of the semantics of WSL and the methods used for
proving the correctness of refinements and transform-
ations. We use the term abstraction to denote the op-
posite of refinement: for example the “most abstract”
program is the non-terminating program abort, since
any program 1is a refinement of abort.

A transformation 1s an operation which maps any
program satisfying the applicability conditions of the
transformation to an equivalent program. See [9]
and [14] for a description of the semantics of WSL
and the methods used for proving the correctness of
refinements and transformations.

4 Modelling Interrupt-Driven
Programs in WSL

WSL has no notations for parallel execution or
interrupts. We chose not to add such notations to the
language, since this would complicate the semantics
enormously and render virtually all our transform-
ations invalid. Consider, for example, the simple

transformation:

r=Lifr=1theny:=0fi ~ z:=1;, y:=0

which is trivial to prove correct in WSL. However, this
transformation is not universally valid if interrupts or
parallel execution are possible, since an interrupting
program could change the value of x between the
assignment and the test. Instead, our approach is to
model the interrupts in WSL by inserting a procedure
call at all the points where the program could be
interrupted. This procedure tests if an interrupt did
actually occur, and if so 1t executes the interrupt
routine, otherwise it does nothing. Although this
increases the program size somewhat, the resulting
program is written in pure WSL and all our trans-
formations can be applied to it.

One of our aims in transforming the resulting WSL
program is to move the interrupt calls through the
body of the program, and collect them together and
The body of the
main program would then be essentially sequences of
statements from the original program, separated by
the processing of any interrupts which occurred during
their execution.

In order to model time within WSL we add a
variable time to the program which is incremented
appropriately whenever an operation is carried out

merge them as far as possible.

which takes some time. We can then reason about
the response times of the program by observing the
initial and final values of this variable. We can also
model the times when interrupts occur by providing
an input sequence consisting of pairs of values (¢, ¢)
where t the time at which the interrupt occurs and ¢
is the character. Naturally we should insist that the
sequence of ¢ values be monotonically increasing. Such
a sequence can model input from an external device,
a concurrent process, or even a hardware register. We
make this explicit in our model of the program: the
array (or equivalently, sequence) input consists of pairs
of times and characters to represent the inputs, and
is sorted by times. The interrupt routine tests the
time variable against the time value associated with
the first element of the input sequence to see if that
interrupt is now “due”. If so, then it removes a pair
from the head of the sequence and processes the result.
The program is modelled as follows:

Si; o S
Ss; interrupt(time); time := time + 1;
ete ... So;
interrupt(time); time := time + 1;
ete ...

If we assume a discrete model of time, 1.e. that the
value of time is an integer, and we assume that time is
incremented by one between each potential interrupt,
then the test for validity of a call to the interrupt
routine is simply:

if (timey = input[1][1])
then process_interrupt fi

interrupt(timeg) — ~~

where process_interrupt corresponds to the original
interrupt service routine. Note that input[l] is the
first element of the input sequence: this element is a
pair of values (a time and a character), so input[1][1]
is the first element of the pair, i.e. the time of the first
interrupt.

However, a better model, which does not require
a discrete model of time, and which allows different
“atomic” (i.e. non-interruptable) operations to take
different amounts of time, is the following:

interrupt(timey) ~» while (timey > input[1][1]) do
process_interrupt od

This revised model of the interrupt routine allows
more than one interrupt to occur between atomic op-
erations, and has the advantage that a call to interrupt
can be merged with a second call which immediately

follows it:
interrupt(ty); interrupt(ts) = interrupt(ts)

provided ¢ > t;. This follows from the transforma-
tion:

while B; do S od; &~ while B, do S od
while B, do S od

provided B; = Bs. This transformation is proved in
[9]. If ¢5 > ¢1 then we have ({1 > input[1]|[1]) = (t2 >
input[1][1]), and we can merge the two while loops
and hence the two procedures.

Thus, once we have moved a set of interrupt pro-
cedure calls to the same place, we can merge them into
one statement equivalent to “process all outstanding
interrupts”, which is much closer to a specification
level statement than is a series of calls to the same
procedure.

Note that the addition of interrupt calls is defining
the “interruptable points” in the program, or equi-
valently, the “atomic operations”. The increments to
time define the processing time for each atomic opera-
tion. For real programming languages, e.g. Coral, the
atomic operations may well be machine code instruc-
tions, rather than high-level language statements, and
it is at the machine code level that the model needs to
be constructed, for it to accurately reflect the real pro-
gram. This will inevitably lead to a large and complex
WSL program; however automatic restructuring and
simplifying transformations can eliminate much of the
complexity before the maintainer even has to look at
the program.

5 Concurrency

Interrupts may be regarded as a special type of
concurrent processing on a single processor. When
an interrupt occurs, the “main” program is suspended
and the interrupt routine is executed in its entirety,
possible changing the state of the main program in the
process. Execution of the main program then resumes.
It is the fact that the interrupt routine is executed in
its entirity that makes interrupts a special case from
the point of view of modelling in WSL; we are able
to insert a copy of the interrupt routine wherever an
interrupt occurs, and hence the effect of the interrupt
is deterministic.

The analogy with a single-processor multitasking
system is obvious: here the running program executes
until it is suspended by the operating system. Other
tasks are then (partially) executed, and may change
the state of the original program; eventually execution

of this program is resumed. From the perspective of
the original task, this looks like a call to a proced-
ure which executes sequences of instructions from the
operating system and the other tasks in the system,
and subsequently returns. The analogy also applies
to more general forms of concurrency, including fully-
parallel multiprocessor systems. In principle, the state
of any program or task in such a system may be
changed, between one atomic operation and the next,
by other concurrently executing tasks. Again this
could be modelled by procedure calls between each
pair of atomic operations, which perform the appro-
priate processing and change the state accordingly.

5.1 Rely and Guarantee conditions

Rely and guarantee conditions were introduced to
augment the pre- and postconditions of VDM when
developing parallel systems [5]. They provide a means
to specify the interaction between a program and its
execution environment (concurrent tasks). A guaran-
tee condition is a condition on the state shared by
the program and its environment, which the program
will at all times preserve. Similarly, a rely condition
is a condition on the state of the program which any
interference from the environment will preserve. As
an example, consider the abstraction:

r:=1; > zi=x.(2 = 1)
ifzr>1theny:=04f y:=0

In pure WSL this is trivially correct, but if we al-
lowed interference from the environment to change the
value of z between the assignment and the test, the
transformation is not necessarily valid. However, if we
have a rely condition which specifies x 25 then this
transformation will be valid. (Here 7 and z represent
respectively the initial and final values of #)

In the following section we use rely and guarantee
conditions to model the effects of concurrency in pure
WSL. Again this means that our program transform-
ations are applicable since the resulting program is
purely sequential.

5.2 Modelling Concurrency in WSL

Consider a sequential program T which can be
represented by a flow chart. Any program can be
restructured into this form. For example:

P1

P3 P6

P4 P7

where each of the Pn represents an atomic instruc-
tion or an atomic test. Suppose we model Pn by
Pn; next := n+1; time := time-+1; , with the obvious
extension for branch instructions. Now suppose T is
a task in a concurrent system. Consider first a system
with only two tasks, Ty and Ty. We rewrite T5 as a
procedure as follows;

proc Ta(steps) =
while (steps > 0) do
steps := steps — 1;
if next = 1 — P1; next := 2
O next = 2 — if P2
then next := 3
else next := 6 fi

O next = 0 — skip fi od;

This procedure executes a sequence of steps instruc-

tions from T3, beginning from the last instruction

executed in the last invocation of the procedure. If

steps=0 then the procedure call returns immediately.
If we then model Ty by

T, ~ steps := steps’.(steps’ € N°);
T (steps);
S1; time := time + 1;
steps := steps’.(steps’ € NY);
T (steps);
S2; time := time + 1;

then we have modelled the semantics of the original
system. By interposing calls to T’ between the atomic
mstructions of T; we have modelled the execution of
T5 and 1ts interference with T;.

This 18 a complete model of the system, even
though it has the same surface structure as T;. It
is non-deterministic due to the presence of the non-
deterministic assignment statements in T, which
cause values to be assigned to the variable steps. This

reflects the fact that we cannot know a priori how
many instructions from Ts will be executed between
Pn and Pn+1 in Ty. In order to proceed, we want to
replace:

steps := steps’.(steps’ € N%); Th(steps);

with an abstraction, which specifies T/ for any value
of steps and any initial value of next. This will be
the strongest condition preserved by the execution of
any sequence of instructions from T4, and corresponds
to a guarantee condition for Ty. This specification is
recoverable from T'5 in 1solation.

We can repeat this process, interchanging the roles
of Ty and T3. We then will have two models, one
based on T; with interference from T3 inserted, the
other based on T with interference from T';. However
these are guaranteed to be equivalent, since they both
capture the logic of the entire system.

Now suppose we have more than two tasks Ty ...
T,. Let Ty, ... T, be rewritten as procedures as
above. Then we can write

T, ~ steps := steps’.(steps’ € N°);
V (steps);
S1; time := time + 1;
steps := steps’.(steps’ € NY);
V (steps);

where

proc V(steps) =
for k := 1 to steps step 1 do
if true — T5(1)
O true — T5(1)

O true — T/,(1) fi od end

and each T} is derived from the corresponding T; as
before.

Procedure V' causes steps instructions to be ex-
ecuted; these are chosen non-deterministically from
the remaining tasks To, ..., T, by the if statement,
which calls one of the corresponding procedures with
parameter one, resulting in the execution of one in-
struction from the task.

The above is a complete specification for the sys-
tem when taken together with the definitions of the
procedures T}. However it is also non-deterministic
due to the assignment statements; as before we need
to replace the assignments and procedure calls by
abstractions.

Consider the procedure V. Here the loop body
implements a non-deterministic choice from the set of

procedures T}, where j = 2...n. One of the pro-
cedures 1s selected non-deterministically, and a single
instruction from the corresponding task is executed.
A total of steps atomic instructions from the set of
tasks i1s executed; individual instructions or sequences
of instructions may be executed from any of the tasks.

We can abstract T} (1) to anon-deterministic choice
over all sequences of instructions in T; — in so doing
we abstract away the fact that the instructions are
executed in a specific order. This is equivalent to
removing the guards from the if statement in the pro-
cedures T}, which we can always do as an abstraction
step. We can therefore write

T)(1) > [|P;

where P% are the instructions in the task T;, and
[]; indicates a non-deterministic choice. This is the
strongest specification which is an abstraction of every
instruction in T;. In fact this specification may be
very large for a task which is even moderately complex,
making it difficult to use in practice. To reason about
its effect on Ty however we are only concerned with the
elements of the specification which affect the state of
T; we may therefore if necessary abstract away other
details of the T;’s and so simplify the specifications of
the T}s.

Having found a specification for each of the T’ we
can use these to find the specification for the loop body
of the procedure V. This is a non-deterministic choice
from the set of T}(l)’s, whose specifications are given
above. The procedure V executes the loop body steps
times, where the value of steps is not determinable,
representing as 1t does the number of instructions
executed between two sequential instructions in Tj.
The strongest specification for V which we can find is
therefore the strongest abstraction which holds for any
value of steps, 1.e. any number of concatenations of the
loop body. This will in general be an abstraction of
the specification for the loop body.

To summarise, we have the following abstrac-
tion /refinement relations:

Ti(1) > [|P;

K3

L~ []Ti0 > []]]P) ~ sz
i>1 i>1 q
S, > Sv

where L is the body of the loop, Sy is a specification
for the loop body, and Sy is a specification for the pro-
cedure V. The crucial factor in this method is that this
specification is derived by analysis of the individual

tasks in isolation, without the need to take account
of the interaction between them. It can therefore be
found using methods developed for purely sequential
systems.

Sy therefore specifies the effects of the remaining
tasks on the state of T;. It is in effect a rely con-
dition for T;. By substituting this specification for
the calls to procedure V in our model of Ty, we can
inverse engineer T to recover its specification, Si,
which includes the effects of the other tasks upon 1it.
Since we may have abstracted away those parts of the
specification which do not affect the state of Ty, in
order to simplify the specifications of the T}(l)’s, we
no longer have a complete specification for the entire
system. Repeating this exercise for the remaining
tasks allows us to recover a set of specifications S;
for the tasks, each of which include the effects of the
other tasks upon their state.

The specification S for the complete system must
incorporate all the properties of the set of S;’s. This is
expressed in WSL by the join operation. The join of
a set of specifications is the most abstract specification
which refines each member of the set. Thus the spe-
cification S is more refined than the specifications S;,
unless the specifications S; are equivalent; this arises
since, in combining the specifications for the tasks, we
are restoring information originally abstracted away in
the derivation of the individual S;’s: S; will include
information abstracted away in the derivation of Sy
(for any ¢ and k).

T, T, Abstraction
o o
Inverse Inverse
Engineering Engineering
S
Joln Joln
S S,

Although S will be more refined than the set of S;’s,
it may still be too abstract to be useful if too much
abstraction is performed in deriving the S;’s. This will
be a problem particularly if the objective is to valid-
ate a system against an existing specification, or to
re-implement an existing system. If too much inform-
ation is lost in deriving the S;’s then the specification
S may be more abstract than the specification against

which we wish to validate, or more abstract than the
actual system requirements specification.

5.3 Summary of method

In order to model a concurrent system in WSL we
proceed as follows:

For each task, we derive a specification for the
conditions on its state which are guaranteed to be
preserved by the other tasks in the system. To achieve
this, we consider each of the remaining tasks in isol-
ation, and derive for each of these a specification of
the conditions on the state of the first task which
are guaranteed to be preserved by the execution of
any instruction from the second task. The resulting
specifications, derived from all the remaining tasks,
are then combined by a non-deterministic choice to
give us a specification of the conditions on the state
of the first task, guaranteed to be preserved by the
execution of any instruction from any other task in
the system. The full specification for the effect of
the remaining tasks on the first is then given by any
number of concatenations of this specification.

We substitute this specification between each
atomic operation in the task: this gives us an abstrac-
tion of the task itself including the effect of interference
from the rest of the system. We may then inverse
engineer this model of the task using transformations,
to find a specification for the task incorporating the
effects of interference from the other tasks.

We can repeat this process for each of the tasks in
the system. Having derived a specification for each of
them, we can derive the specification for the complete
system by combining the individual specifications us-
ing the WSL join operation.

6 Example of method

In this section we give an example of the use of
the method to inverse engineer a simple concurrent
system. This consists of only two tasks sharing a single
processor under the control of a scheduler, though we
ignore the details of the scheduler. One task receives
characters from an input stream, and writes these into
a buffer; the second process takes characters from this

buffer and writes them to the standard output.

Ty = do if empty(input) then exit(1) fi;
while (time < input[1][1]) do
suspendl od,
buf := buf 4 (input[1][2]);
input := tail(input) od

T, = do if empty(input) A empty(buf)
then exit(1) fi;
while (empty(buf)) do
suspend? od,
std_out := std_out + {buf[l]};
buf := tail(buf) od

The input consists of a sequence of pairs: a character
and 1its arrival time. If there is no character waiting to
be read, i.e. the arrival time of the next character in
the input has not yet been reached, T suspends itself
by means of the system call suspendl, which results
in Ty being reactivated. Similarly, if the buffer is
empty, T suspends itself by the system call suspend2.
If there is no more input to be received, then T,
terminates; similarly if there is no further input and
no characters left in the buffer T» terminates.

Execution of the two tasks alternates on a timeslice
basis: at regular intervals, the executing task is halted
and the second task is restarted. We can model this
using a procedure: we define

proc timeslicel =
if (time — last > P;)
then last := time; suspendl fi.

where P; is the timeslice period, and an equivalent
procedure timeslice2 for Ts. This procedure tests
the time since the last context switch, and if it 1s
greater than or equal to the timeslice period suspends
the active task and reactivates the halted one via the
system call suspendl. To incorporate the effect of
interference from the other task we insert this proced-
ure call between each statement in the task, together
with an assignment which increments time. (For the
purposes of this example we treat each WSL statement
as an atomic instruction). The result, following the

necessary restructuring of the while loops to accom-
modate these additions, is

T, ~ do if empty(input) then exit(1) fi;
do if (time > input[1][1])
then timeslicel; time := time + 1;
exit(1)
else timeslicel; time := time + 1 fi;
suspendl od,;
buf := buf 4 (input[1][2]);
timeslicel; time = time + 1;
input := tail(input);
timeslicel; time = time + 1 od

=
R
&

if empty(input) A empty(buf)
then exit(1) fi;
do if —empty(buf)
then timeslice2; time := time + 1,
exit(1)
else timeslice2; time := time + 1 fi;
suspend? od,;
std_out := std_out # (buf[l]};
timeslice2; time := time + 1;
buf := tail(buf);

timeslice2; time := time + 1 od

In order to proceed, we now need definitions for the
procedures suspendl and suspend2. These specify the
effect of executing the other task for one timeslice
period, and must refine the conditions which are pre-
served by execution of any sequence of statements
from the tasks, i.e. any number of whole or partial ex-
ecutions of the respective loop bodies. We can recover
these conditions, and define abstractions of suspendl
and suspend2 which preserve the conditions but are
otherwise unrestricted. We denote these by G1 and
G2 respectively. We then know that G1 < suspendl
and G2 < suspend?.

During its timeslice, a task executes without in-
terference from the other task. We therefore recover
G1 and G2 from T; and T,. As these are small in
this example, we can do this by inspection. Consider
first To. We are interested only in how it affects the
variables in Ti: in fact the only variables which are
changed by Ts are std_out and buf, (and also time,
though this i1s not shown in the definition of T given
above). std_out is not accessed or updated in Ty, so
we can disregard it. Since at least one statement in T
will be executed, time will be incremented. Also, we
can see that zero or more characters will be removed
from the head of buf, up to a maximum of {(input),
in which case the buffer is emptied and T, is then

suspended. Using these facts we can write:

G1 = (time, buf) := (timé', buf”).
(time’ > time

A 35,0 < j < U(buf). buf’ = buf[j .])

Clearly, G1; G1 =~ GI1. As G1 < suspendl we can
also write

timeslicel

> if (time — last > Py)
then last := time; G1 fi

> (time, buf) := (time’, buf”).
(time’ > time

A 35,0 < j < L(buf). buf’ = buflj.])
> Gl

Having found G1, we are able to inverse engineer T;:
T, >
do if empty(input) then exit(1) fi;
do if (time > input[1][1])
then G1; teme := time + 1,
exit(1)
else G1; time := time + 1 £i;
G1 od;
buf := buf 4 (input[1][2]);
G1; time := time + 1,
input := tail(input);
G1; time := time + 1 od,;

Replacing G1 by its definition, transforming the loop
to a while and simplifying gives:

while —empty(input) do
(time, buf) := (time’, buf”).
(time’ > input[1][1]
A 35,0 < j < U buf).
buf’ = buf[j.] 4 input[1][2]);
input := tail(input) od;
This loop can be replaced by a single assignment:
T, >
(time, buf) := (time’, buf’).
(time’ > input[{(input)|[1]
A 35,0 < j < (buf) + {(input).
buf’ = (buf + 2 * input)|j .]),
input := ()
= Sl
Here w5 * input 1s the sequence of “second elements”
from the sequence of pairs input. S; is a specification

for T with the interference from Ts included. All the
input characters are read and so the input is emptied;

the time at which the task terminates is some time
after the last character is received; on termination, the
buffer consists of the initial contents of the buffer with
all the input characters appended to the end, and an
unspecified number of characters (less than or equal to
the number of characters in the buffer) removed from
the head. This quantity cannot be determined solely
from T as it depends on the number of iterations of
T» which are executed before T; terminates, and this
1s unknown to T;.

We now inverse engineer T3 by the same method
to find a specification S,. Inspection of Ty provides
us with a suitable abstraction. Define:

G2 = (buf, time) := (buf’, tim¢e').
(time/ > time
A 35,0 < j < {(input).

buf’ = buf + _!_, input[i][2])

We have: G2; G2 ~ G2 and timeslice2 > G2.
This is an abstraction of suspend2. Substituting
this in T, we can inverse engineer to find:
T, >
(std_out, buf , time) := (std_out’, buf’, time').
(time/ > time
A std_out’ 4+ buf’ 4 o * input’
= std_out + buf H w5 * input
A buf’ = () A input’ = ())

o~
~

(std_out, buf , time) := (std_out’, buf’, time').
(std_out/ := std_out H buf 4 7y * input
A time > time)
~ Sz

The specification for the complete system is then
given by:
S =, join S; US; nioj

For two specifications, the join operation reduces to
and-ing the conditions in the specification statements.
Therefore:

S~
(std_out, buf , time) := (std_out’, buf’, time').
(time’ > input[¢(input)][1]
A std_out’ = std_out - buf H m» * input
A buf’ = () A input’ = ())

This specification tells us that, for any initial values
of buf, input and std_out, the system terminates in a
state in which buf and input are empty, and std_out
consists of its initial value with the initial contents
of buf and the sequence of characters from input
appended, in the order in which they occurred in the
input. Additionally, the time at which the system

terminates is greater than the time of arrival of the
last character. In this example, the specification S,
is almost a complete specification for the system, re-
flecting the fact that very little high level information
was abstracted away in deriving a specification for the
interference of Ty with the state of Ts.

7 Conclusions

This study shows that by using an appropriate
models we can represent interrupt-driven and con-
current programs within the (purely sequential) WSL
language. With such models, the inverse engineer-
ing techniques of [12,14] can be applied to extract
the specification of the original program. Program
transformations are sufficiently powerful to cope with
these, often complex, models. Although a fairly large
number of transformations are required to deal with
these models, results from case studies indicate that
these are used in a systematic way: this suggests that
much of the work can be automated by a tool such as
the Maintainer’s Assistant [2,17] and this is currently
being investigated under a SMART II (Small Firms
Merit Award for Research and Technology) project
at the Centre for Software Maintenance Ltd., and as
part of a three-year SERC project at the University of
Durham.

Acknowledgements

The research described in this paper has been fun-
ded partly by a Department of Trade and Industry
SMART award to the Centre for Software Mainten-
ance Ltd., and partly by SERC (The Science and
Engineering Research Council) project “A Proof The-
ory for Program Refinement and Equivalence: Exten-
sions” .

References

[1] R. J. R. Back, Correctness Preserving Program Refine-
ments, Mathematical Centre Tracts#131, Mathemat-
isch Centrum, Amsterdam, 1980.

[2] T. Bull, “An Introduction to the WSL Program Trans-
former,” Conference on Software Maintenance 26th—
29th November 1990, San Diego (Nov., 1990).

[3] E. W. Dijkstra, A Discipline of Programming, Pren-
tice-Hall, Englewood Cliffs, NJ, 1976.

[4] C. A. R. Hoare, 1. J. Hayes, H. E. Jifeng, C. C. Mor-
gan, A. W. Roscoe, J. W. Sanders, I. H. Sgrensen, J.
M. Spivey & B. A. Sufrin, “Laws of Programming,”
Comm. ACM 30 (Aug., 1987), 672-686.

[5] C. B. Jones, “Specification and Design of (Parallel)
Systems,” in Proc. IFIP 1983, R. E. A. Mason, ed.,
North-Holland, Amsterdam, 1983, 321-332.

[6] D. E. Knuth, “Structured Programming with the
GOTO Statement,” Comput. Surveys6(1974), 261-
301.

[7] C. Morgan, Programming from Specifications, Pren-

tice-Hall, Englewood Cliffs, NJ, 1990.

[8] D. Taylor, “An Alternative to Current Looping Syn-
tax,” SIGPLAN Notices 19 (Dec., 1984), 48-53.

[9] M. Ward, “Proving Program Refinements and Trans-
formations,” Oxford University, DPhil Thesis, 1989.

[10] M. Ward, “Derivation of a Sorting Algorithm,”
Durham University, Technical Report, 1990.

[11] M. Ward, “A Recursion Removal Theorem,” Springer-
Verlag, Proceedings of the 5th Refinement Workshop,
London, 8th—11th January, New York—Heidelberg—
Berlin, 1992.

[12] M. Ward, “Abstracting a Specification from Code,” J.
Software Maintenance: Research and Practice 5 (1993),
101-122.

[13] M. Ward, “Foundations for a Practical Theory of Pro-
gram Refinement and Transformation,” forthcoming,
1993.

[14] M. Ward, “Specifications and Programs in a Wide
Spectrum Language,” Submitted to J. Assoc. Comput.
Mach., Apr., 1991.

[15] M. Ward, “Derivation of Data Intensive Algorithms by
Formal Transformation,” Submitted to IEEE Trans.
Software Eng., May, 1992.

[16] M. Ward & K. H. Bennett, “A Practical Program
Transformation System For Reverse Engineering,”
Working Conference on Reverse Engineering, May 21—
23, 1993, Baltimore MA (May, 1993).

[17] M. Ward, F. W. Calliss & M. Munro, “The Main-
tainer’s Assistant,” Conference on Software Mainten-
ance 16th—19th October 1989, Miami Florida (Oct.,
1989).

