Assembler Restructuring in Fermarl

Martin Ward
Software Technology Research Lab
De Montfort University
Bede Island Building,
Leicester LE1 9BH, UK
martin@gkc.org.uk

Abstract—The FermaT transformation system has proved to see at once that it is, say, within a double-nested loop in the

be a very successful tool for migrating from assembler to hilgy else clause of a conditional statement.

level languages, including C and COBOL. One of the more . . .
challenging aspects facing automated migration, specifilg when Assembler code, on the other hand, is simply a list
the aim is to produce maintainable code from unstructured Of instructions with labels and conditional or uncondiabn

“spaghetti” code, is to restructure assembler subroutinesinto branches. A branch to a label does not indicate whether it is a
semantically equivalent high level language procedures.nlthis forwards or backwards branch: and a backwards branch doe:
paper we describe some of the many varieties of assembler not necessarily imply a loop. Simply finding all the branch
subroutine structures and the techniques used by the migran instructions which lead to a particular label involves stag
eng@ne to transform these into _structured code. These trarisr- the whole program: and this does not take into account the
H:)ew?gsorrggr‘"tge "tsr‘;iﬁ’egntﬁgsézrfefcf’noégscgf”gg :'eos":’ma”d data hossibility of “relative branch” instructions where thegat of
g ' a branch is an offset from a label, or from the current locatio

Two separate case studies, involving over 10,000 assem- An unlabelled instruction can therefore still be the targiea
bler modules from commercial systems, demonstrate that ttee branch: so simply determining the “basic blocks” of assembl
techniques are able to restructure over 99% of hand-written code is far from trivial.

assembler, with no human intervention required. . L .
As well as being more difficult to analyse, for a given

functionality there is more code to analyse. A single fumti
[. INTRODUCTION point, which requires 220 lines of C or COBOL to implement,
will need about 400 lines of macro assembler or 575 lines of
basic assembler to implement. On the other hand, a highelr lev
language such as perl will require only 50 lines on average to
implement one function point [4].

According to IDC research, much of the world’s informa-
tion still resides on mainframe systems [1] with some edma
claiming that over 70% of all business critical softwaregun
on mainframes [5]. In industries such as banking, trangport
tion, finance, insurance, government, and utilities, nramg Assembler systems are also more expensive to maintain
systems continue to run critical business processes. Tis# mdhan equivalent systems written in high level languagepe@a
commonly used language in these systems is COBOL, but dones Research computed the annual cost per function poin
significant proportion of systems are implemented in Assemas follows:
bler: amounting to a total of around 140 — 220 billion lines

of assembler code [3]. The percentage of assembler varies in Assembler £48.00
different countries, for example, in Germany it is estindateat PL/1 £39.00
about half of all data processing organizations uses irdion C £21.00
systems written in Assembler [6]. A typical large orgariisat COBOL £17.00

will have several million lines of assembler code in openati
for example, the US Inland Revenue Service has over te[&S
million lines of assembler currently in use.

Many of these systems were originally implemented in
sembler due to the need to maximise the limited memory,
CPU and disk capacity of the systems available at that time.
In a recent survey of 520 ClOs internationally [2], more Today, the greatest need is for flexibility: the ability todape

than half (56%) said that mainframe developers were strugsystems to meet new business challenges. There is theeefore
gling to meet the needs of the business and 78% stated thgteat need to migrate from assembler to more modern high-
the mainframe will remain a key business asset over théevel languages, and to move from the mainframe to more
next decade. 71% of CIOs are concerned that the loomingost-effective hardware platforms.

mainframe skills shortage will hurt their business. In previous papers [7,8,9,10,11] we have described the ap-

Analysing assembler code is significantly more difficult Plication of program transformation technology to autoedat
than analysing high level language code. With a typical well migration from assembler to a high level language. The basic
written high level language program it is fairly easy to see t approach follows three stages:

top-level structure of a section of code at a glance: comutti 1) Trangslate the assembler into our internal Wide Spec-
statements and loops are clearly indicated, and the conditi trum Language (called WSL):

are visible. A programmer can glance at a line of code and 2) Apply correctness-preserving WSL to WSL transfor-
978-1-4673-5739-5/13/$31.0@) 2013 IEEE mations to the code to restructure, simplify, raise the

abstraction level, etc. These may include syntactidWithin each action bod$;, an action call of the forneall A;

and/or semantic code slicing; acts as a procedure call which results in the execution of the
3) Translate the high-level WSL directly into the target body S;. If execution reaches the end 8f then it continues
language (currently either C or COBOL). with the statement after theall. There may also be a special

)) action Z such thatcall Z causes termination of the whole
~ Since these papers were published there have been magyion system: in this case control flow is passed directly to
improvements made to FermaT including: the statement following the action system. If every exeruti
of an action leads to an action call (i.e. control can never
directly reach the end of the action body), then the action is
calledregular. If every action in the action system is regular
e Extensive jump table detection; then no action call will return and the action system can only
be terminated by a&all Z. In this case, actions are similar to
labels and action calls are similar foto statements.

e Improved detection and translation of self-modifying
code;

e Improved dataflow analysis;

e Array detection and analysis (including detection of

arrays of structures); The Fermal assembler to WSL translator translates each

assembler module to a regular action system: so an uncon

e Implementation of program slicing for WSL (our ditional branch translates directly to an action call, and a
internal Wide Spectrum Language) and assembler; conditional branch translates to #nstatement containing an

action call. Any instruction or macro which causes the medul

to return to the caller, or to terminate abnormally, is ttaresl

e Improvements in subroutine restructuring. using acall Z.

e Static Single Assignment computation;

In this paper we focus on the last of these improvements, The translator works from the listing produced by the IBM
which tackles one of the more challenging aspects of assgmblassembler, rather than the collection of source files. Th& h
restructuring: extracting self-contained proceduresifeomass the disadvantage that the translator has to be able to recog
of spaghetti code containing subroutine calls and returns. nise and parse the many different listing formats produced
by different versions of the assembler and different option
settings. To do this, the translator is table driven: a tdgt fi

Module A module is assembled from a single source file plustistings.tab contains information about all the recognised

associated copybooks and macros and generates a sing@ing formats (including the Tachyon assembler, Siemens
listing and object file. FermaT processes each module ifSSe€mbler, Amdahl Personal Assembler, CA-Realia 370 Macro

an assembler program separately and generates a targstsembler, MicroFocus Assembler, and z390 assembler). In
language file for each assembler module; all, there are a total of 38 different listing formats cuthgn

Assembler Program An assembler program consists of one fécognised.
or more modules which are assembled separately into
object files which in turn are linked together to form an
executable file;

Subroutine A subroutine is a group of assembler instructions)
which can be called from within the same module via
an instruction which saves the return address (the address

First, a note on the terminology we use:

Despite this disadvantage, there are several advantages t
working from the assembler listing:

With a fully expanded listing, all information includ-
ing copybooks and macro expansions is known to be
present;

of the instruction following the call) in a register and ; ; ;
branches to the start ofgthe subrc))utine Agsubroutine) Object code data, Instruction addresses and brancf
returns by branching to the saved return éddreSS' target addresses are a_/a!lable;_

') The cross reference listing gives the length, type,

Return Register The register in the subroutine call instruc-
tion in which the return address is stored,;

Procvev?]lijcrﬁ ﬁagr%%e%gﬁiésai dvfhﬁcﬁrgﬁlzzr;smg?ur‘;%nfgutﬁteThe above information is, of course, implicitly present e t
statement after the call. The aim of assembler restructugzo- ce co_de, but deriving it requires _dupllcatlng much &f th
ing is to convert subroﬁtines to procedures, and therebfunctlonahty of the assembler. I|_1 addition, the translatould

eliminate the use of code addresses in the ,program Yeed to.know exactly which options were used to qsse_mble the

" production module: and the most accurate sourchisfpiece

of information is the listing itself.

location and value of each assembler symbol.

Il. ASSEMBLER TOWSL TRANSLATION

The 16 general purpose registers are translated to the
ecial variablesg to 15 and the condition code is translated
the special variablec which can take one of the three values

A WSL action system consist of a collection of parame-
terless procedures with a starting action name and takes trfg

form: 0, 1, 2 or 3. Each instruction or macro is translated to a sing|
actions A : action whose body consists of WSL code which implements all
A = the behaviour of the instruction (including side-effeaists as

S; end setting the condition code). The action name is either thella
on the instruction or macro or a name of the foAmhexloc
A, = wherehexloc is the six or eight digit hex representation of the

S, end endactions current location (as provided in the listing).

As well as IBM mainframe assembler, WSL translators formatches, then we call the corresponding action. Thesenretur
other languages including Intel x86 assembler and a propriaddresses are called “dispatch codes”.

etary 16 bit embedded systems processor have been developed A branch and link instruction (BAL, BALR, BAS, BASR

L etc.) is translated to code which stores the dispatch code of
A. Subroutines in IBM Assembler the return point in the register indicated in the instructiand

The IBM 370 and z/OS mainframes do not have a hardwaréhen calls the action specified by the label in the instrunctio
stack. Inter-module calls are handled via a linked list afesa The translator ensures that this dispatch code will be dexdu
areas. Each save area stores copies of all register valudsthe dispatch action.
together with pointers to the next and previous save areas, As an example, the following fragment of an assembler
and it is standard for every module to save and restore a“sting starts at IOCE’lti0r®x0002F6
registers in its savearea. So a caller can assume thateregis
values are preserved over calls to an external module. Rate t CONVNX3 DS OH
some non-standard code will pass parameters in non-sthndaf LINK TO CONVERSION RTN
registers, and even return results in registers: the nidgrat BAL R14.MMOMTH
engine can detect and process this non-standard code nWithj MOVE MMM TO OUTPI’JT
a single module (which may consist of many thousands of lines MVC DDO2M.WRKMTH
of code) a different mechanism is used for subroutine call an ’

return: It translates to the following three WSL actions:

e A subroutine call is implemented as a BAL (Branch conyNnx3 =
And Link) or BAS (Branch And Save) instruction. -4 A 0002F6 end
This stores the return address (the address of th@ goooFg =
next instruction in the sequence) in the indicated "¢ . | [NK TO CONVERSION RTN
register and then branches to the indicated label. The . ._ 769.
subroutine body is responsible for storing the return ;i MM2MTH end
address elsewhere, if the register is needed within thg qogopa =

subroutine (or any of the subroutines it calls) for some “¢. MOVE MMM TO OUTPUT:
other purpose. DDO2M := WRKMTH;

e A subroutine return is implemented by reloading a call A_000300 end
register with the return address (if necessary) and then

executing a BR (Branch to Register) instruction which Note that each action ends withcall to the next action in
branches to the address in the register. the sequence. The value 762 is the decimal equivalent of the

hex location0x0002FA for the return address. Code to test

Return addresses may be saved and restored in variodstination against the value 762 is also added to the dispatch
places, loaded into a different register, overwritten,iofpdy action:
ignored. Also, a return address may be incremented, or th
return instruction may branch to an offset of the given metur
address. This feature might be used to branch over parameter
data which appears after the BAL instruction, or to branch
to one of several different return points. Merely determgni
which instructions form the body of the subroutine can be a
major analysis task: there is nothing to stop the programmer

from branching from the middle of one subroutine to the mid-

dle of another routine, or sharing code between subroytined N Pody of subroutin#M2MTH ends with a BR instruction to

or branching directly out of a subroutine instead of doing a'€turn from the subroutine:

normal return to the stored address.

gispatch =
if destination = 0 then call Z

elsif destination = 762 then call A_0002FA

fi end

MM2MTH EQU *

B. WSL Trandlation of BAL and BR * CONVERT MM TO MMM (ALPHA)
The WSL language does not have the concept of a “cod®M2MTHX EQU *

address”: so the assembler to WSL translator has to use soraeRETURN FROM SUB ROUTINE

mechanism to emulate the BAL and BR instructions. A return BR R14

address is represented as the integer value of the location o

the instruction (this is the offset of the instruction frolret This translates to the WSL code:

start of the module). MM2MTH =

A branch to register (BR) instruction is translated into C: CONVERT MM TO MMM (ALPHA);
WSL code to copy the register value to the special variable call A_000374 end
destination, and then call thealispatch action. Thedispatch
action testslestination against all the possible return addressesMM2MTHX =
(these are all the possible return addresses which are en-call A_0003DO0 end
countered during the translation of the module). If the galu A_0003D0 =

C: RETURN FROM SUB ROUTINE subroutines wherever possible since this can allow FermaT t

destination := r14; unscramble some unstructured code around the module. Fo

call dispatch end example, a branch out of the middle of the subroutine does

not cause problems if the subroutine has been inlined.

So, the code ath_0002F6 setsri4 to the value 762 and
branches taM2MTH. When actionMM2MTHX is called, the
value inry4 is copied todestination and dispatch is called.
Sincedestination has the value 762, thdispatch action will
call A_0002FA and the code following the subroutine call is
executed.

Constant Propagation can also determine when a branch tc
register is actually a return from the module itself to thKirg
module. Registers are initialised with a special dispatatiec
which indicates a return from the module when branched to
(i.e. the WSL program should terminate). If dataflow analysi
shows that this dispatch code reaches a branch to register, t
thecall dispatch is replaced by @all Z. Similarly, a branch to
ll. WSL TO WSL TRANSFORMATION register which is applied to the address of an external nedul

Stage two in the migration process is the automated ad’_s con.verted to a caI_I to the module. If there is av_alid dispat
plication of WSL to WSL program transformations. SpaceCOde in another register, then the called module is assumed t
precludes a full discussion of all the transformations igakih ~ '€turn to this address.
the migration process: since are 156 different transfaonat
currently implemented in the engine, of which around 50B. Multiple Calls to a Smple Subroutine
are used in a typical assembler to COBOL migration. The _ o) _ i
process is controlled by the transformati6ix_Assembler A simple subroutine is one with the following characteris-
which analyses the module at each stage and determines tHeS:
next transformation to apply. Many transformations ardiedp
repeatedly: typically a module has several thousand trans-
formations applied before translation to the target laggua
although large and complex modules can require more than
one million transformations!

In this paper we will focus on the transformations which This last restriction might appear to be rather severe: bte n
convert assembler subroutine code to inline code or nghat once a subroutine has been inlined or transformed into
procedures. These transformations come under the gene@lWSL procedure, there are no longer asuproutine calls
heading of “dispatch removal” since the aim is to eliminatet0o that code. Once all the subroutines called by a subroutine

calls to thedispatch action, and ultimately eliminate the action have been processed, the transformed subroutine bodyavill n
itself. longer contairsubroutine calls, and requirement (3) is satisfied.

1) It has a single entry point;

2) It only returns directly to the caller: e.g. it does not
branch to the middle of another subroutine;

3) It contains no calls to other subroutines.

. The FermaT transformation engine therefore processes sub
A. Single Call routines in a “bottom up” order as they appear in the subneuti
é:all graph: “leaf” nodes which contain no subroutine calis a

The simplest case is where a subroutine is only calle . . »
from one place in the program. In this situation, the value Oprocessed first, followed by the next higher “layer” in thdl ca
%raph, and so on.

the return address at the start of the subroutine is a know
constant: provided the start of the subroutine can only be Therefore, provided all subroutines satisfy requireméhjts
reached from the single call. (In other words, there are rectli and (2), and there are no recursive calls, then there will be
branches to the subroutine entry point or to labels insiée thsubroutines which satisfy requirement (3), and by proogssi
subroutine body, and control flow cannot “fall through”ith® the call graph in a “bottom up” ordeall subroutines can be
body of the subroutine). If this is the case, then the Constarhandled by this method.

Propagation transformation will replace references tadern]] o

actual dispatch code. For example, if the calMb2MTHX at ~ takes these stages:

A_0002F6 in our example were the only call to that subroutine
(and there was no other way to reach the subroutine body),
then Constant Propagation would replace references,tby

the dispatch code 762. When Constant Propagation encsunter
a call to dispatch it checks if destination contains a known
dispatch code: which is true in this case. If so, then the call
to dispatch is expanded (the call is replaced by the body of
the action) and simplified. The result is that ttwl dispatch
statement is replaced wall A_0002FA.

1) Control Flow Analysis: Starting with the subrou-
tine entry point, Fermar traces forwards through the
action system call graph to find the actions which
compose the body of the subroutine. The analysis
stops at any call tadispatch. When the analysis
is complete, each of the actions in the proposed
procedure body is checked to see if it is reachable
from outside the subroutine without going through
the entry action. This may be due to a branch into

A dispatch call has been eliminated and further restructur- the middle of the subroutine body, or a branch out of
ing of the action system will have the effect of “inlining”eh the subroutine body (for example, into a generic error
procedure body. In the case of a simple subroutine, there is handler). Since there is no way of determining, in
an option in FermaT which will allow the subroutine body to advance of the analysis, which instructions comprise
be recovered and converted to a WSL procedure just before the subroutine body, a branch out of the body will

translation to the target language. It is still importantrttine initially cause the external code to be included in the

2)

3)

proposed body. See below for how these situations call A_0003D0 end

are dealt with. A _0003D0 =

Data Flow Analysis Once a suitable procedure C: RETURN FROM SUB ROUTINE

body has been determined, FermaT carries out a data destination := ryy4;

flow analysis on the proposed procedure body. This call Z end

analysis checks that the value assigned to the return

register on entry to the subroutine will be propagatedwe have removed the singtll dispatch at the end of the

to thedestination variable for every call talispatch. subroutine and inserted callsd@patch at each of the original
The analysis needs to track the return address througkubroutine calls (which are now procedure calls). However,
any assignments which save and restore the returgonstant propagation can remove these calls. For example
register. Note that some subroutines may incrementhe call dispatch above transforms t@all A_0002FA. The

the return address before returning (see below); assignmentr, := 762 can also be deleted, since we know
Create a New Procedure If the above tests are that this dispatch code has been accounted for. If there are
successful then the set of actions composing the bodyio other references to this dispatch code, then we know that
of the subroutine are extracted from the main actiona call dispatch can no longer lead toall A_0002FA, so the
system and composed into a new (sub) action systeroall to A_0002FA can be removed frordispatch. In turn, this
with the subroutine entry point as the entry action.allows the call to be restructured: for example, if the call
Within this new action system calls tlispatch are in A_0002F6 is the only call toA_0002FA, then it can be
replaced bycall Z. This action system forms the expanded and the action deleted from the action system.
body of a new WSL procedure. Calls to the original

subroutine in the main action system are replaced by % This algqrithm wiI_I handle any simple subroutine. Once all
call to the WSL procedure followed knall dispatch; the subroutine calls in a subroutine body have been comerte

4) Constant Propagation The dispatch calls introduced 0 Procedures, then the subroutine itself can be convesed.
in step (3) can now be eliminated via constant propa-!f an assembler module consist entirely of simple subrastin

gation. Since the subroutine call has been converted t§ c@n be fully restructured using these techniques: rdgssd

a procedure call, the return address can be propagat

&i the degree of subroutine call nesting present. Howenwer, i

over the procedure body and used to eliminate the calPractice, there are many modules which do not keep to the
to dispatch. Note that if control flow falls through Cconstraints of a simple subroutines. The exceptions irclud

into the subroutine body from the body of another
subroutine, or if there is a branch to the subroutine
entry point from another subroutine, then there may
be dispatch calls which cannot be removed at this

stage.

Each time a simple subroutine is successfully converted to a
procedure, one or more calls tiispatch (the return points of
the original subroutine) are eliminated from the program.

In our example, it turns out that the subroutmM®2MTHX

Subroutines which exit abnormally from the middle
(for example, branching directly to common error han-
dling code). This is extremely common in assembler
programs;

Falling through from one subroutine into the start of
another;

e Branching from the middle of one subroutine into the
middle of another subroutine;

is a simple subroutine which does not call any other subrou- o Returning directly to the caller’s caller (instead of via

tines, so it can be converted to a WSL procedure. The result the immediate caller);
is:
B e Multiple entry points to a subroutine, or equivalently,
CONVNX3 = having a section of common code shared by several
call A_0002F6 end subroutines:
A_0002F6 = ’

C: LINK TO CONVERSION RTN
T14 ‘= 762;
MM2MTH();
call dispatch end
A_0002FA =
C: MOVE MMM TO OUTPUT;
DDO2M := WRKMTH;
call A_000300 end

where:

proc MM2MTH() =
actions MM2MTH :
MM2MTH =
C: CONVERT MM TO MMM (ALPHA);
call A 000374 end

MM2MTHX =

e Multiple return points: either returning to the given
return address or to an offset on the return address;

e Passing parameters as inline data after the subroutine
call. Here the subroutine uses the return register to
address data, then increments it to get the actual return
address;

e Sometimes saving the return address and sometimes
not;

All the above exceptional cases appear so regularly that any
automated assembler migration solution needs to be able tc
handle them. Each of these will be discussed in more detail in
subsequent subsections.

In addition to the above, there are also frequently “bugs”
in the assembler code which can prevent the module from
restructuring. The code might be a genuine bug in the sense

that the module would crash or give incorrect results unde€. Subroutine With Exit
certain circumstances, or it might be a highly convoluteg¢ wa
of coding something which happens to give the correct result___1 "€ most common way in which a subroutine fails to be a
but is very difficult to analyse and understand. Such highlys'MPIe subroutine is for there to be a branch out of the middle
convoluted code may only work “by accident” in the Senseof the subroutine: typically this branch will be to error liéing

; de. The subroutine has detected an error: so it is no longel
that a small and apparently innocuous change to the prograﬁ‘? . . : .
may cause it to stop working correctly. interested in returning but branches directly to an appater
error handling routine.

The most common bugs which prevent a module from it oI simple subroutines in a module have been processed,

restructuring are:

but there are still subroutines remaining, then anothegl lef/

analysis is triggered:

Recursive subroutines, or mutually recursive sets of

subroutines. Since assembler calls do not use a stack ®

(unless explicitly programmed to do so), but store the
return address in a fixed memory location, a direct or
indirect recursive call will cause the original return
address to be overwritten. A common example of this
is when an error handler needs to write to a file or
write a message to the operator, and the file operation
or message handler itself checks for errors and calls
the error handling routine. This may not be discovered
in testing if it is unlikely for an error to occur
while displaying a message during error handling.
However, the fact that this control flow path appears
may well prevent the module from restructuring. It is
also regarded as a bad programming practice.

Returning from a subroutine before it has been called.
This can occur when there is a control flow path from
a module entry point to the code which loads a saved
return address and then executes a BR instruction to
return from a subroutine, and where there is no call
to the subroutine along the path. If this path is taken,
then the program will either crash (if nothing has been
saved in the return address) or branch to the return
point taken in the last call to the subroutine (which
may have occurred in a previous call to this module);

Any call to Z or to a label which is also reachable

from outside the subroutine body is treated as an
“abnormal exit” from the subroutine. The labelled

action is not included in the procedure body, instead
code is generated to store a value in the special
variable exit_flag and the subroutine then returns to

the caller. This flag is set to O for a normal return, a
value of 1 means that the subroutine terminated by
a call Z, each higher value (if any) indicates that

the subroutine terminated by calling a distinct label
outside the subroutine body;

A dataflow analysis is then carried out on this modified
subroutine body. If the analysis succeeds, then the
subroutine is converted to a procedure.

Subroutine calls are replaced by the following WSL
code:

SUBR();

if exit_flag = 0 then call dispatch

elsif exit_flag = 1 then call Z

elsif exit_flag = 2 then call A

il

whereSUBR is the name of the new procedure.

Constant propagation will now eliminate the dispatch

))) call, as in Section IlI-B
e Restoring the return address for a different subroutine:

for example, subroutine A stores the return addressf the subroutine body executes code which causes an abhorme

in ASAVE, subroutine B stores the return address inexit or a return from the whole module, then this code will be

BSAVE but then when B returns it loads the address intranslated to WSL statements ending ieadl Z. This can be

ASAVE and branches to it. handled as an exit from the subroutine, as above. In our case
studies, over 21% of modules neededt_flag before they

e Not restoring the return register on every path througtcould be restructured (see Section V).

the subroutine: there may be a path on which the return

register’'s _/alue is corrupted (e.qg. b_y being used as they Returning to the Caller’s Caller

return register for another subroutine call), but is not

restored. If this path can be taken, then it is clearly a Suppose subroutirg@UB1, which has a return addressHn

bug, but if the path is not taken in normal processingcalls subroutinesuB2 which has a return address k2. The

its presence will still impede the restructuring process\WSL code for a return fronsuB2 will therefore be:

))) destination := ry; call dispatch
Less common bugs include calling a subroutine and pass-

ing the return address in the wrong register, eg calling vigowever, suB2 might also decide to return to the caller's
BAL R15,SUBR whenSUBR expects a return address k4! cjier: je. to the address iR1 which is the return address
Another example is a branch back to the instruction whichyy, gyp1-
saves the return address: if this branch is taken after thenre
address register has been modified, then the corrupted valggstination :=ry; call dispatch
will overwrite the correct value in the save area.
If this is the case, then the dataflow analysis will fail: sirthe

All the above bugs (and many others!) have been found irvalue ofdestination on this call todispatch is not the value in

production code. ro9 0N entry toSUB2.

To handle this situation, if the dataflow analysis fails thenG. Branch to the Middle of a Subroutine

FermaT will check that: A subroutineSUBX may include in its body a direct branch

(conditional or unconditional) into the middle of another
subroutineSUBY. This includes two common cases (among
others):

e There are calls tdispatch wheredestination is loaded
from the return register; and

e There are other calls tdispatch wheredestination is

loaded from adifferent register. 1) SUBY may be the subroutine which callesUBX,

or may be the caller's caller. In this case, instead

If this is the case, then the second set of calls are treated of returning normally, we have an abnormal exit
as subroutine exits (as in Section I1I-C) and the dataflow (Section 11I-C). If it is possible to calfUBX without
analysis is re-computed. Note that this rule only appliesmwh having previously calledUBY, then there is a bug in
the original dataflow analysis failed: since it is possibbe f the program: since wheBUBY tries to return, there
a subroutine to save the return register and reload it into a will be no valid return address.)

different register. 2) SUBY may be using the same return registeiSuBX.

In this case, we have code which is common to both
SUBX andSUBY. Instead of creating a new subroutine

E. Fall Through into a Subroutine to share this common code, the programmer has made
]]) use of the fact that both subroutine use the same
Another common case is where a subroutine consists return register.

of some initial code followed by the execution of another

subroutine, which uses the same return register. Instead &%or correct restructuring, these cases may need to be libndle
implementing a call to the second subroutine, a parsimanioudifferently. Case (1) is an exit from the middle of a subroeti
programmer might just branch directly to the start of the(Section IlI-C), so the branch should be translated intoecod
second subroutine, or even arrange the code so that executiwwhich sets a flag and returns. Case (2) is an example of
“falls through” into the top of the second subroutine. Forshared code: the code we branch to needs to be converte

example: to a procedure which can be called from bstfBX andSUBY.

FermaTl can usually distinguish between these two situa-
SUBL ... tions due to a careful ordering of the application of redtrtic
SUBD body of SUB1 ing heuristics.

body of SUB2 . .
BR R14 H. Multiple Return Points

If a subroutine is carrying out a test, whose result needs to
where bothSUB1 and SUB2 take a return address ii4. If be returned to the caller, then the usual way to handle this is

SUB2 can be converted to a WSL procedure, then the resultingither:

WSL code is: _ . S .

1) Set a flag in the subroutine which is tested in the
SUBL = _ caller; or

...body of SUBL...; SUB2(); call dispatch end 2) Execute a test (eg a compare instruction) in the
subroutine just before returning. The test will set
Now it should be possible to proceS8/B1. the condition code, and the condition code is not
) o)) modified by the Branch to Register instruction, so

Note that if the initialisation code irSUB1 includes a the condition code can be tested by the caller.

subroutine return, then the branch (or fall through)stiB2
can be mistakenly identified as an exit fr@uB1. This does However, some programmers eschew these methods and in
not necessarily prevent restructuring, but may cause enobl stead make use of the fact that an unconditional branch in-
later. struction is exactly four bytes long. If an unconditionadixch
is inserted immediately after the call (BAL) instructiohgn
) _ the called subroutine can choose to return to the instnuctio
F. Multiple Entry Points immediately after the branch, by incrementing the return

Section III-E is an example of a more general problem: g2ddress by four. The code to call the subroutine is:

subroutine which has multiple entry points, or, equivdignt
multiple subroutines which share a section of code. (These
issues illustrate our comment in Section II-A that it can be
difficult to determine which instructions form the body of a N
subroutine).

BAL SUBR,R14
B SUBERR
RM ... normal return

In this case, the code labell®@RM may appear to be unreach-
If the common code can be restructured into a single actioable (typically, it is not even labelled): but it can be readh
which callsdispatch (or dispatch and Z only), then FermaTl if SUBR increments the value iR14 by four before returning.
can create a WSL procedure out of the common code. In thiBlote that it is quite common for &AL to be followed by
case, the two subroutines can be “disentangled” since eaan unconditional branch (which may in turn be followed by
includes a call to the common code. unreachable code) when the subroutine du@sncrement its

return address: so the two situations must be distinguiblged register to indicate which return point the subroutine cele.

the migration engine. The migration engine generates code which sets the returr
register to zero, then calls the procedure (generated fram t
subroutine body), then tests the return register to seehwhic
return point is required:

The body ofSUBR may contain code like this:

SUBR

CLC WRKMM,=CL2’12’ T14 1= 0;

BH SUBRERR SUBR();

B 4(R14) if 714 = 0 then call RET1
SUBRERR BR R14 elsif r14 = 4 then call RET2

If the month number (iNRKMM) is greater than 12, then we flag ©Isif r14 = 4 (n — 1) then call RETn
the error by returning to the return address passed by the cal else call FINAL fi
(the caller will then execute the branch9UBERR). Otherwise,

we return to the address four bytes on from the given returh. Inline Parameters Passed to Subroutine

address (which leads to the code labelliEgM). Usually, parameters are passed to a subroutine in hamec

The instructionB 4(R14) translates to WSL as: data areas, or in registers or via a pointer in a register.ddew
o . _ some programmers have noticed that the return register car
destination := ri4 + 4; call dispatch serve two purposes: if we include inline data immediatelgraf

]) the subroutine call, then this data can be accessed viattira re
The same effect could be achieved iR R14,4(R14) fol- yegister.

lowed byBR R14, which will translate as: o _)] _
This situation is particularly tricky because a single sagyi

r14 1= 714 +4; destination := r4; call dispatch is, in effect, being used to store two pieces of informati@):
i a pointer to the parameters; and (b) an offset from the return
More generally, the subroutine call can be followed by twoaddress. In the assembler, the code is arranged so that thes

or more unconditional branches: two values are the same, but in the WSL translation the values
are distinct. Therefore, the assembler to WSL translater ha
BAL SUBR,R14 to detect when parameters are being passed as inline data ar
B RET1 generate specific code to handle this. Just because a salerout
B RET2 call is followed by data does not necessarily mean that this
. more branches data is being used as parameters: for example an error eoutin
B RETn might be called viaBAL, even though it does not return. In
FINAL ... final return point is here this case, the data could be the start of a data area used b

the module. The assembler to WSL translator therefore check
To select the return poin§UBR can incremenk14 by the that the following three conditions all hold:

appropriate multiple of 4 (0, 4, 8, 12 etc.). o .)
1) The subroutine is called via BAL or BALR which

This will have the effect of preventing the dataflow anaIySiS is followed by data dedarationS’ which in turn are
from succeeding: we cannot prove that the original valuéén t followed by more executable code;
return register ends up in the variallestination, if the value 2) The subroutine body uses the return register to ad-
has been incremented by 4 (or more) in between. To handle dress data, eg via a Load MvC (Move Characters)
this case, the dataflow analysis needs to be more subtle: instruction:
3) The subroutine return is to an offset on the return

e Any increment of the return address (by a multiple of register
4) is noted, by setting the flagcremented_Return; '
If all these conditions hold, then the subroutine call is¢a

e Anincrement of the return address by a multiple of 4 .
Ié;lted as follows:

is treated as a copy, as far as the dataflow analysis i
concerned. 1) Ensure that the first inline parameter (the first data
declaration after the call) has a label;

Generate the following code for the call:

ryn, = XF inline_par(code, ADDRESS_OF(par));

With these modifications, the dataflow analysis will succeed 2)
but will note that the return address may be incrementedesin
the increment may be inside a loop, it may not be possible

(via static analysis of the subroutine body) to determire th call SUBR

exact set of possible increments for the return address: and wherecode is the dispatch code for the return address

therefore the number of return points. Instead, the mignati (the address of the code following the inline data),

engine looks at the set of calls and checks for a sequence of andpar is the name of the first data area;

one or more unconditional branch instructions after thétoal 3) Change any branch to the return address plus an
determine the set of return points. offset, where the offset equals the length of the inline

) data, to a direct return.
Note that there may also be abnormal exits from the

subroutine: so we choose not to use the variasle flag to The transformations which scan WSL code looking for sub-
determine the required return point. Instead, we use therret routine calls are modified to check for WSL code of the form

rn, := IXF inline_par(code, ADDRESS_OF(par)); the COBOL programming language has many restrictions and
call SUBR limitations which must be accommodated in order to generate
compilable and executable COBOL.

as well asr, := code; call SUBR. A major limitation with some COBOL compilers is a

Once a subroutine has been detected and the control flol&ck of bit manipulation functions. Although bit fields and b
and dataflow analysis confirmed that it can be converted to aperations were introduced to the language in the ISO/IEC
procedure, the statement 1989:2002 standard, which was published in 2002, with a

. - CS (Committee Draft) available in 1997, current mainframe
rn = IXF inline_par(code, ADDRESS_OF (par)) compilers do not have native support for these operations.

. The WSL to COBOL translator can generate code for several
is converted tor,, := ADDRESS_OF(par). The converted targets including the following:

subroutine body (which is now a WSL procedure) can now
treatr, as a simple data pointer from which the parameters 1) If the target is for Microfocus COBOL, then calls are
can be addressed: in other words, the code in the subroutine generated to the built-in bit operations in Microfocus;
which accesses the parameters requires no special handling 2) [f the target is for IBM mainframe COBOL, then calls

This approach can also handle cases where a subroutine are generated to assembler support functions which
has both inline parametessid multiple return points. implement the bit operations. These can process the
bit operation at full speed, albeit with the overhead
. . f Il.
J. Inline Code Converted to a Subroutine oraca

One day a programmer wanted to re-use a section of inline Pack and unpack instructions (which convert string data to

: ; ked decimal and vice versa) can usually be implemented a:
code which appeared elsewhere in the program. Instead &£ . emen
going to all the trouble of extracting this section of codelan & COBOL MOVE. For example, moving from a decimal field
turning it into a subroutine, he or she realised that by wisgr © @ Packed field will convert the string of decimal digits to
a suitable Load Address instruction just before the block oft Packed decimal value. However, the assembler instrution

code, and a Branch to Register instruction just after it, th¢l© ot check the validity of the data, so a pack or unpack
block of code could be used as a subroutine without movindf®™ @ One byte source to a one byte target simply reverses

it out of place. The modified code looks like this: he nybbles in the source field. This operation is frequently
applied to general hex data, so has to be translated as a ca

LA R14 RETLAB to a support function.

SUBR .. Pointers are available in COBOL via tt8ET ADDRESS
block of code is here OF ... andSET ... TO ADDRESS OF statements but many
.. COBOL programmers are unfamiliar with pointers, so the
BR R14 transformations attempt to eliminate as many pointer opera

RETLAB . . . tions as possible via dataflow analysis and converting pont

to array indices.

Elsewhere, the block of code can now be called as a subroutine
via: BAL SUBR,R14 The actual translation step is then a simple line-by-line

translation of the “COBOL-like” WSL into a COBOL source
This form of subroutine causes no difficulty to FermaT file. This is followed by a further conversion of the COBOL
because the Load Address instruction, followed by fallingsource which handles formatting details such as indemtatio
through to theSUBR label generates the following WSL: levels, spacing, and coping with the COBOL file format. A
L) COBOL source line has a fixed format, dating back to the
rl4:=1234; call SUBR punched card era. The on-line card readers for the IBM 704,
709, 7090 and 7094 computers (introduced between 1954 anc
1964) operated only in ‘row binary’ format: reading carde/+o
by-row into 12 pairs of 36-bit word2(x 36 = 72). The reader
was not capable of reading more than 72 of the 80 columns
of a card, so early compilers and assemblers could only ‘see’
those 72 columns. All COBOL compilers, including the most
SUBR(); call RETLAB recent versions, therefore ignore columns 73-80 in ordbeto
compatible with existing source code.

where 1234 is the offset of the labRETLAB. The dispatch
code 1234 is also added to ttispatch action with correspond-
ing labelRETLAB. This is identical to the code generated by a
normal subroutine call. The code betwetivBR andRETLAB

is converted to a WSL procedure, called as follows:

and theRETLAB action is then restructured in the usual way.

V. CASE STUDIES

IV. WSL TO TARGET LANGUAGE TRANSLATION To test the effectiveness of the FermaTl migration engine at

Once the automated WSL to WSL transformation stage isestructuring commercial assembler modules, we took a copy
complete, the final stage in the migration process is tréinala of an assembler system currently in production in a large
from WSL to the target language. However, this is precededmerican insurance company. The system consists of over
by a further transformation stage in which the WSL code is3,000 programs and 8,991 assembler modules (many of which
manipulated to bring it closer to the target language. Thisare used in more than one program). The FermaTl migration
stage is particularly important for migration to COBOL snc engine was able to restructure all but 84 out of the 8,991

modules for a success rate of 99.07%. A significant numbeA. Performance

of the failures turned out, on analysis, to be due to bugs in Performance of the migrated code depends somewhat or

the code or to code which would only work “by accident e type of code and also depends on the target platform.

(in the sense that an apparently innocuous change to t . - A
code would cause an error elsewhere in the program). Of tha/Pically, there is little degradation in performance when
) e COBOL is running in the mainframe environment: one

. {
modules which were able to be restructured, 1,953 (21.9%) hatest reported a 4% decrease in performance. In some case:
e COBOL can perform better than the original assembler:

subroutines with unstructured exits: these neededxheflag
or example, the COBOL compiler can make use of newer

variable to be added before they could be restructured (se%g
Section 1lI-C). . . . -
and faster instructions than were available to the original

A second case study involved 1,822 modules from arassembler programmers. Also, self-modifying code canecaus
employee management system. After fixing all bugs uncovered severe performance hit on modern machines since the whole
by the migration process, all but seven modules could bénstruction cache is flushed when any instruction is modified
restructured automatically, for a success rate of 99.62%. O
the modules which were restructured, 368 (21.3%) needed the VI. CONCLUSION

exit_flag variable.) . .
Despite the enormous technical and theoretical challenges

A major requirement is for the migrated COBOL to be presented by the analysis of assembler code: totally auézma
maintainable. All modules which restructure will be corteer migration of assembler to a high-level language such as C or
into a hierarchy of single-entry single-exit proceduressist- COBOL is feasible with complete restructuring achieved for
ing of structured code with no GO TO statements. In additionpgver 99% of assembler modules.
the McCabe cyclomatic complexity is typically reduced by at

0
least 25%. REFERENCES
An example of a bug uncovered by the failure to restructure
is the following code: [1] Robert Amatruda, “The Critical Need to Protect MainfrarBusiness-
Critical Applications,” IDC, White Paper, Jan., 2012.
BAS R04,S00100 [2] Compuware Corporation, “Mainframe Succession: LongeLihe Main-
frame,” Compuware, White Paper, 2012.
S00100 do some processing [3] Capers JonesThe Year 2000 Software Problem — Quantifying the Costs
and Assessing the Consequencésidison Wesley, Reading, MA, 1998.
L'.' ’ RO4 . SOORO4 [4] Capers Jones, “Backfiring: Converting Lines of Code to¢tion Points,”

IEEE Compute8#11 (Nov., 1995), 87-88.

[5] J. Scott, “The e-Business Hat Trick — Adaptive EnteresisAdaptable

. . Software, Agile IT Professionals,Cutter IT Journal3#4 (Apr. 2000),
Elsewhere in the module&00R04 is used to save and restore 7-12.

the return address iR4, but in this subroutine the register is (5] Harry Sneed & Chris Verhoef, “Reengineering the Corfiora-A Man-
“restored” without having been saved. The return addres wi ifesto for IT Evolution,” {http: //www.cs.vu.nl~x/br/br.htm).

be overwritten by the contents @&00R04, which _mlght be [7] M. ward, “Assembler to C Migration using the FermaT Tréamemation
zero, or the return address left over from a previous call to a System, international Conference on Software Maintenance, 30tj-Au

BR RO4

different subroutine. 3rd Sept 1999, Oxford, Englar999).
. [8] Martin Ward, “Pigs from Sausages? Reengineering fronsefxsbler to
Another example. C via FermaT Transformations,Science of Computer Programming,
Special Issue on Program Transformafi2#1-3 (2004), 213-25%http:
LA R15,4 IT CAME FROM VIM /I www. cse. dmu. ac. uk~mward/ martin/ papers/ migration-t.ps)gz
BAL R10,SUBR020 GO DECIDE WHICH ONE doi:dx.doi.org/10.1016/j.scico.2004.03.007.
LTR R5,R5 DID WE FIND ANYTHING [9] Martin Ward & Hussein Zedan, “Combining Dynamic and 8taSlic-
BZ ERRORO040 NO, SO ERROR CONDITION ing for Analysing Assembler,’Science of Computer Programmiig #3
. (Mar., 2010), 134-175¢http: // www. cse. dmu. ac. uktmward/ martin/
ERRORO40 EQU * EFRROR CONDITION IF WE GET HERE papers/ combined-slicing-t.gdloi:10.1016/j.scico.2009.11.001.
ST R15,ERRPECD2 SAVE ERROR CODE [10] Martin Ward, Hussein Zedan & Tim Hardcastle, “LegacysAsbler
LA R15,252 MAJOR ERROR CODE Reengineering and Migration,20th IEEE International Conference on
ICM R15,12,ERRMODID INDICATE THE MODULE Software Maintenance, 11th-17th Sept ChiC&gO IIIinoisAL(8004).
BR R10 AND RETURN [11] Martin Ward, Hussein Zedan, Matthias Ladkau & StefanteNgerg,

“Conditioned Semantic Slicing for Abstraction; Industrixperiment,”

. . . Software Practice and Experier8@#12 (Oct., 2008), 1273-1304http:
Here, this code was called with a return address.in. /I www. cse. dmu. ac. uktmward/ martin/ papers/ slicing-paper-final.pdf

The error handler aERROR040 stores some information and doi:doi.wiley.com/10.1002/spe.869.
then attempts to return. But when we branchERROR040

after calling SUBR020, R10 now contains the return address

that was passed in the call 8¥BR020 soBR R10 will branch

back to theLTR instruction and loop endlessly.

