Specifications from Source Code—
Alchemists’ Dream or Practical Reality?

M.P. Ward

Computer Science Department

Science Labs
South Rd
Durham DHI1 3LE

Abstract

We describe a method for extracting high-level spec-
ifications from unstructured source code. The method
is based on a theory of program refinement and trans-
formation, which is used as the bases for the develop-
ment of a catalogue of powerful semantics-preserving
transformations. FEach transformation is an opera-
tion on a program which has a mechanically-checkable
correctness condition, and which has been rigorously
proved to produce a semantically equivalent result. The
transformations are carried out in a wide spectrum
programming language (called WSL). This language
includes high-level specifications as well as low-level
programming constructs. As a result, the formal re-
verse engineering process (from source code to equiva-
lent specifications) and the redevelopment process (re-
finement of specifications into source code) can both be
carried out within a single language and transforma-
tion theory.

We also discuss a tool (FermaT) which has been
developed to support this approach to reengineering.
The tool is a program transformation system, largely
written in an extension to WSL called MeTAWSL.
Thus it is possible to use the tool in the maintenance
of its own source code, and this is starting to be the
case.

1 Introduction

This paper describes the application of formal pro-
gram transformations to uncover specifications from
source code. We take as an example a small report
writing program. Due to errors in the original design,
this program had several bugs which were gradually
uncovered and fixed in the usual way (patches, first-
time-through switches, duplicated code etc. etc.). The
resulting program appears to work, but has a complex

and messy structure which makes it extremely difficult
to maintain.

The aim of our case study is to restructure the pro-
gram and extract its specification (a concise, high-level
description of what the program does which ignores
the low-level details of how this result is achieved). It
should be noted that our aim is emphatically NOT
that of “Design Recovery” in the sense of “Recovering
the original design” —the original design is full of bugs
and not worth recovering! Instead we aim to transform
the “base metal” of unstructured code into the “gold”
of a high-level specification. (Strictly speaking, this is
really a mining operation, rather than a transmutation
of elements, since the “gold” is already there—it just
needs to be extracted!)

The approach is based on a “Wide Spectrum
Language” (called WSL) which includes both high-
level abstract specifications and low-level program-
ming constructs within the same language. The lan-
guage has been developed over the last ten years in
parallel with the development of the transformation
theory: the catalogue of proven transformations and
transformation techniques which form the basis for
both refinement and reverse engineering. All the
transformations have been proved correct and have
mechanically checkable applicability conditions. This
makes it possible to “encapsulate” the mathematics
in a transformation system: the user does not need to
understand how to prove the correctness of a transfor-
mation, he or she only needs to be able to read WSL
and know the sorts of operations that can be applied
to it. Since each step in the reverse engineering process
consists of the application of a proven transformation,
whose applicability condition has been mechanically
checked, the extracted specification is guaranteed to
be a correct representation of the original program.

Fundamental to our approach is the use of infinitary
first order logic (see [11]) both to express the weakest

preconditions of programs [6] and to define assertions
and guards in the kernel language. Engeler [7] was
the first to use infinitary logic to describe properties
of programs; Back [1] used such a logic to express the
weakest precondition of a program as a logical formula.
His kernel language was limited to simple iterative
programs. We use a different kernel language which in-
cludes recursion and guards, so that Back’s language is
a subset of ours. We show that the introduction of in-
finitary logic as part of the language (rather than just
the metalanguage of weakest preconditions), together
with a combination of proof methods using both de-
notational semantics and weakest preconditions, is a
powerful theoretical tool which allows us to prove some
general transformations and representation theorems.

The denotational semantics of the kernel language
is based on the semantics of infinitary first order logic.
Kernel language statements are interpreted as func-
tions which map an initial state to a set of final states
(the set of final states models the nondeterminacy in
the language: for a deterministic program this set will
contain a single state). A program S; is a refinement
of S, if, for each initial state, the set of final states
for S; is a subset of the final states for S,. Back
and von Wright [2] note that the refinement relation
can be characterised using weakest preconditions in
higher order logic (where quantification over formu-
lae is allowed). For any two programs S; and S,
the program S, is a refinement of S; if the formula
VR.WP(S;,R) = WP(S,,R). This approach to

refinement has two problems:

1. It has not been proved that for all programs S and
formulae R, there exists a finite formula WP(S,R)
which expresses the weakest precondition of S for
postcondition R. Can proof rules justified by an
appeal to WP in finitary logic be justifiably applied
to arbitrary programs, for which the appropriate
finite WP(S, R) may not exist? This problem does
not occur with infinitary logic, since WP(S,R)
has a simple definition for all programs S and all
(infinitary logic) formulae R;

2. Second order logic is incomplete in the sense that
not all true statements are provable. So even if the
refinement is true, there may not exist a proof of it.

Our approach to program refinement and equivalence
solves both of these problems. Using infinitary logic
allows us to give a simple definition of the weakest
precondition of any statement (including an arbitrary
loop) for any postcondition. In addition, we have
proved that for each pair of statements S; and S,
there is a single postcondition R such that S; is a
refinement of S, iff WP(S;,R) = WP(S;,R) and

WP(S;,true) = WP(S;, true) (see [19]). Another ad-
vantage is that the infinitary logic we use is complete,
so if there is a refinement then there is also guaranteed
to be a proof of the corresponding formula—although
the proof may be infinitely long! However, it is
perfectly practical to construct infinitely long proofs:
in fact the proofs of many transformations involving
recursion or iteration are infinite proofs constructed by
induction. Thus infinitary logic is both necessary and
sufficient for proving refinements and transformations.

We consider the following criteria to be important
for any practical wide-spectrum language and trans-
formation theory:

1. General specifications in any “sufficiently precise”
notation should be included in the language. For
sufficiently precise we will mean anything which can
be expressed in terms of mathematical logic with
suitable notation. This will allow a wide range
of forms of specification, for example Z specifica-
tions [8] and VDM [10] both use the language
of mathematical logic and set theory (in different
notations) to define specifications. The “Represen-
tation Theorem” [19] proves that our specification
statement is sufficient to specify any WSL program
(and therefore any computable function, since WSL
is certainly Turing complete);

2. Nondeterministic programs. Since we do not want

to have to specify everything about the program
we are working with (certainly not in the first
versions) we need some way of specifying that some
executions will not necessarily result in a particular
outcome but one of an allowed range of outcomes.
The implementor can then use this latitude to
provide a more efficient implementation which still
satisfies the specification;

3. A well-developed catalogue of proven transforma-

tions which do not require the user to discharge
complex proof obligations before they can be ap-
plied. In particular, it should be possible to in-
troduce, analyse and reason about imperative and
recursive constructs without requiring loop invari-
ants;

4. Techniques to bridge the “abstraction gap” between

specifications and programs. See [23,30] for exam-
ples;

5. Applicable to real programs—not just those in a

“toy” programming language with few constructs.
This is achieved by the (programming) language
independence and extendibility of the notation via
“definitional transformations”. See [15,17,24] for
examples;

6. Scalable to large programs: this implies a language
which is expressive enough to allow automatic
translation from existing programming languages,
together with the ability to cope with unstructured
programs and a high degree of complexity. See [25]
for example.

A system which meets all these requirements would
have immense practical importance in the following
areas:

e Improving the maintainability (and hence extend-
ing the lifetime) of existing mission-critical software
systems;

e Translating programs to modern programming lan-
guages, for example from obsolete Assembler lan-
guages to modern high-level languages;

e Developing and maintaining safety-critical applica-
tions. Such systems can be developed by trans-
forming high-level specifications down to efficient
low level code with a very high degree of confidence
that the code correctly implements every part of the
specification. When enhancements or modifications
are required, these can be carried out on the ap-
propriate specification, followed by “re-running” as
much of the formal development as possible. Alter-
natively, the changes could be made at a lower level,
with formal inverse engineering used to determine
the impact on the formal specification;

e Extracting reusable components from current sys-
tems, deriving their specifications and storing
the specification, implementation and development
strategy in a repository for subsequent reuse. The
use of the join construct as an indexing mechanism
is discussed in [22].

2 The Example Program

Our example program was selected to illustrate
how design errors and poor design, leads to a buggy
program with a poor structure. Fixing the bugs
in the usual way (patches, “hacks”, “programming
tricks” etc.) further degrades the structure until the
program becomes extremely difficult to understand,
despite its short length. We aim to demonstrate the re-
sults achievable by applying program transformations,
based on formal logic, to such unpromising material.

The program is a simple report printer which prints
a management report showing the net changes of stock
items in a warehouse. It reads a sorted transaction file,
consisting of a list of records, each of which contains
the name of the stock item, and the amount brought in
or taken out of the warehouse. Receipts are denoted by
positive numbers and dispatches by negative numbers.

The program should print the name and net change
for each item which has experienced a net change in
stock, and also note the number of items whose stock
levels have changed.

The (fictional) history of this program, from the
initial impressive-looking five-level hierarchical func-
tional decomposition, through four “quick fixes” in-
cluding a first-time-through switch, a patch on top of
a patch, and an example of “defensive programming”
(set the switch twice in a row, just to be sure it is
really set) is eloquently described in [3], so we will
only present the final version:

proc Management_Report =
var SW1:=0,SW2:=0:
Produce_Heading;
read(stuff);
while NOT eof(stuff) do
if First_Record_In_Group
then if SW1 =1
then Process End_Of_Prev_Group
fi;
SW1:=1;
Process_Start_Of_New_Group;
Process_Record;

SW2:=1
else
Process_Record; SW2 :=1
fi;
read(stuff)
od;

if SW2 =1 then Process_End_Of_Last_Group

fi;

Produce_Summary

end.

Although this program is quite small, it is extremely
difficult to follow the logic and convince yourself that
it is correct. In the next section we introduce our
approach to this sort of problem, which is based on
Inverse Engineering.

3 Program Refinement
and Transformation

The WSL language includes both specification con-
structs, such as the general assignment, and program-
ming constructs. One aim of our program transfor-
mation work is to develop programs by refining a
specification, expressed in first order logic and set
theory, into an efficient algorithm. This is similar to
the “refinement calculus” approach of Morgan et al
[9,12]; however, our wide spectrum language has been
extended to include general action systems and loops

with multiple exits. These extensions are essential for
our second, and equally important aim, which is to use
program transformations for reverse engineering from
programs to specifications.

Refinement is defined in terms of the denotational
semantics of the language: the semantics of a program
S is a function which maps from an initial state to a
final set of states. The set of final states represents all
the possible output states of the program for the given
input state. Using a set of states enables us to model
nondeterministic programs and partially defined (or
incomplete) specifications. For programs S; and S,
we say S; is refined by S, (or S, is a refinement
of S7), and write S; < Sj, if S, is more defined
and more deterministic than S;. If S; < S, and
S, < S; then we say S; is equivalent to S, and
write S;1 =~ S,. Equivalence is thus defined in terms
of the external “black box” behaviour of the program.
A transformation is an operation which maps any
program satisfying the applicability conditions of the
transformation to an equivalent program. See [14]
and [16] for a description of the semantics of WSL
and the methods used for proving the correctness of
refinements and transformations. We use the term
abstraction to denote the opposite of refinement: for
example the “most abstract” program is the non-
terminating program abort, since any program is a
refinement of abort.

A transformation is an operation which maps any
program satisfying the applicability conditions of the
transformation to an equivalent program. See [14]
and [16] for a description of the semantics of WSL
and the methods used for proving the correctness of
refinements and transformations.

4 Inverse Engineering

Inverse engineering is the process of extracting
high-level abstract specifications from source code us-
ing program transformations. By developing our pro-
gram transformation theory in a wide spectrum lan-
guage, we are able to use transformations not only for
restructuring at the same abstraction level, but also
for crossing levels of abstraction: transforming from
low-level code to high-level abstract specifications (see
[23]). Because the transformations are proved to be
correct, they can be applied without needing to under-
stand the program first, and with a very high degree
of confidence that the resulting specifications correctly
represent the initial program. Similar transformations
can be used to refine the specifications (either imme-
diately or after modifications and enhancements) back
to executable source code, which may be in a different

programming language. It is therefore possible to use
this method to migrate code between programming
languages: including migrating from Assembler code
to a high-level language (see [25]). The refinement
of extracted specifications back to executable code
can be made largely automatic, and this means it
is possible to maintain the specifications rather than
the source code. Changes and enhancements can be
applied at the right level of abstraction, without diving
into details of the implementation.

5 FermaT: A tool for
Inverse Engineering

FermaT is a program transformation system based
on the theory of program refinement and equivalence
developed in [14,19] and applied to software develop-
ment in [13,24] and to reverse engineering in [23,25].
The transformation system is intended as a practical
tool for software maintenance, program comprehen-
sion, reverse engineering and program development.

The first prototype transformation system, called
the “Maintainer’s Assistant”, was written in LISP [5,
28]. Tt included a large number of transformations,
but was vey much an “academic prototype” whose aim
was to test the ideas rather than be a practical tool.
In particular, little attention was paid to the time and
space efficiency of the implementation. Despite these
drawbacks, the tool proved to be highly successful
and capable of reverse-engineering moderately sized
assembler modules (up to 80,000 lines) into equivalent
high-level language programs.

The system is based on semantic preserving trans-
formations in a wide spectrum language (called WSL).
The language includes both low-level programming
constructs and high-level non-executable specifica-
tions. This means that refinement from a specifica-
tion to an implementation, and reverse-engineering to
determine the behaviour of an existing program can
both be carried out by means of semantic-preserving
transformations within a single language.

For the next version of the tool (i.e. FermaT itself)
we decided to extend WSL to add domain-specific
constructs, creating a language for writing program
transformations. This was called MeTAWSL. The
extensions include an abstract data type for repre-
senting programs as tree structures and constructs for
pattern matching, pattern filling and iterating over
components of a program structure. The “transfor-
mation engine” of Fermal is implemented entirely
in MeTAWSL. The implementation of MeTAWSL in-
volves a parser for MeTAWSL (written in rdp, a
public domain recursive descent parser package), an

interpreter for Me7TAWSL written in C, a translator
from MeTAWSL to C (written in MeTAWSL and in-
terpreted to translate itself), a small C runtime library
(for the main abstract data types) and a WSL runtime
library (for the high-level MeTAWSL constructs such
as ifmatch, foreach, fill etc.). One aim was so that the
tool could be used to maintain its own source code:
and this has already proved possible, with transfor-
mations being applied to simplify the source code for
other transformations! Another aim was to test our
theories on language oriented programming (see [18]):
we expected to see a reduction in the total amount
of source code required to implement a more efficient,
more powerful and more rugged system. We also antic-
ipated noticeable improvements in maintainability and
portability. These expectations have been fulfilled,
and we are achieving a high degree of functionality
from a small total amount of easily maintainable code:
the current prototype consists of around 16,000 lines
of MeTAWSL and C code, while the previous version
required over 100,000 lines of LISP.

The FermaT design is based on a recursive applica-
tion of language oriented programming, involving two
“layers” of domain-specific languages. These are:

1. A fairly high-level, general purpose language, based
on the executable constructs of WSL [14,19] to-
gether with an abstract data type (ADT) for record-
ing, analysing and manipulating programs and frag-
ments of programs. This is implemented in LISP,
using a WSL to LISP translator together with a
“LISP runtime library” of functions and procedures
to implement the ADT. The ADT includes facilities
for loading and saving programs, moving around (it
records the “current selection” within the current
program), and editing operations. This consists
of less than 2000 lines of LISP: the entire rest of
the transformation engine is written in WSL and
MeTAWSL code. Hence porting the system to an-
other language (and a C version is currently under
development) would entail writing at the most a
few thousand lines of code;

2. On top of the “base” WSL language we have im-
plemented a very high-level, domain-specific lan-
guage for writing program transformations, called
MeTAWSL. This includes high level constructs
which do most of the work involved in writing trans-
formations: see below for an example. Mg7TAWSL
is implemented almost entirely in WSL; there are a
few extensions to the WSL to LISP translator and
a number of WSL libraries which are compiled into
LISP and linked to the translated Mg7T.4WSL.

MeTAWSL encapsulates much of the expertise de-
veloped over the last 10 years of research in program
transformation theory and transformation systems.
As a result, this expertise is readily available to the
programmers, some of whom have only recently joined
the project. Working in Mg7AWSL, it takes only
a small amount of training before new programmers
become effective at implementing transformations and
enhancing the functionality of existing transforma-
tions.

6 Inverse Engineering
the Example Program

In this section we show how FermaT copes with the
example program of Section 2. The first three stages
were carried out on a prototype of Fermal, start-
ing with the original program and applying general-
purpose transformations. The final stage (going to
an abstract specification) was carried out manually
because the necessary transformations are still being
implemented in the tool.

6.1 First Stage:
Restructure and Simplify

The first stage involves applying some general-
purpose restructuring and simplification transforma-
tions. The selection of the transformations by the
user is based on some simple heuristics, developed
from our experience of using the tool. It is likely
that these heuristics could be largely automated in
the future: in fact it is a feature of the development
of the various prototypes which led up to FermaT
that experience with each version enabled us to elicit
more knowledge about the process of restructuring and
reverse engineering through formal transformations.
This knowledge was then incorporated in the next
version of the tool, in the form of more powerful
transformations and program manipulation functions.

In the first stage we are able to remove both
switches and re-express the convoluted control flow
as a simple double-nested loop. It is an important
feature of our method that the user of the system
does not need to understand the purpose of a block
of code before transforming it. The system takes
care of all correctness conditions and clerical details of
applying the transformation, as well as automatically
pretty-printing the result. The system and support-
ing theoretical work together guarantee the semantic
equivalence of each version of the program: thus, once
an understandable version has been produced, the
user can understand that version of the program, and

be confident that the original program has the same
semantics.

proc Management_Report =
Produce_Heading;
read(stuff);
while NOT eof(stuff) do
Process_Start_Of_New_Group;
do Process_Record;
read(stuff);
if eof (stuff) OR First_Record_In_Group
then exit
fi
od;
Process_End_Of_Prev_Group
od;
Produce_ Summary.

6.2 Second Stage:
Abstract Data Types

The second stage, after restructuring, is to examine
the low-level procedures and data structures and re-
express them at a higher level of abstraction, making
use of abstract data types where appropriate. This
step can also be carried out via formal transforma-
tions: some human input is required in selecting the
abstract equivalents, though the simpler cases (stacks,
sequential and random access files etc.) can be au-
tomated. The next version of the program replaces
each procedure call with the abstract specification of
the procedure body. This version is therefore more
complete than the previous one (the “missing” code
in the procedure bodies is now included):

proc Management_Report =
var i:= 0, last := “” record := “”,changed :=0:
write(“Management Report ... ”);
last :=record; i:=1+ 1; record := recordslil;
while 1 < {(records) do
total := 0;
do total := total + record.number;
last := record;
i: =1+ 1; record := recordslil;
if 1 > {(records) OR
last.name = record.name
then exit
fi
od;
if total # 0
then write(last.name, total);
changed := changed + 1

w»

fi

od;
write(“Changed items:”,changed);
end.

6.3 Third Stage:
Restructure and Simplify

Having moved to a higher level of abstraction, some
further simplification and restructuring becomes pos-
sible. We can get rid of another local variable, and
convert both loops to while loops. This version is at a
intermediate level of abstraction, it uses a higher level
data structure than the original source code, but still
carries out roughly the same operations.

proc Management_Report =
var i:= 0,changed :=0:

write(“Management Report ... ”);

while 1 < {(records) do
total := records[i].number;
i=141;
while 1 < {(records) AND

records[i — 1].name = records[i].name do
total := total + records[i].number;

1:=141
od;
if total # 0

then write(records[i — 1].name, total);
changed := changed + 1
fi
od;
write(“Changed items:”,changed);
end.

6.4 Fourth Stage:
Specification Level

For the final step, we replace the loops by higher-
level operators which describe the effect of the double
loop more clearly. Our notation for list operations is
based on [4]. * is a “map” operator which takes a
unary function and applies it to each element of a list.
/ is a “reduce” operator which takes a binary function
and applies it to a list, for example +/1 returns the
sum of the elements of list 1. The split function takes
a list and a binary condition and returns a list of lists,
formed by splitting the original list into non-empty
sections at the points where the condition is false.
proc Management_Report =

begin

var q := split(records, same_name?) :
g := summarise * (;
q := filter(q, change?);
write(“Management Report ... ”);

write * (;
write(“Changed items:”, {(q))
end
where

funct same_name?(x,y) =
X.name = y.name.
funct summarise(g) =
(g[1].name, +/(.number * g)).
funct change?(g) =
gl2] #0.
end
Our specification may therefore be written informally
as follows:

1. First split the list of records into sections, where
the records in each section all have the same name;

2. Then summarise each section to produce a list of
summary pairs. The summarise function returns a
pair consisting of the name (common to all records
in the section) and the sum of all the number
components of the records;

3. Then filter out the summaries with zero totals
(these should not appear on the report);

4. The print a report consisting of a header, the list
of summaries (one per line) and the number of
summaries listed.

This specification illustrates very clearly the relation-
ship between the input data and the final report. It
also shows explicitly that the “Changed items” num-
ber is precisely the number of summaries listed, which
in turn is the number of items whose stock has changed
since the last report. This fact would require a careful
analysis of the program plus some inductive reasoning
if it was to be deduced from the original version of the
program.

7 Conclusions

Our approach to reengineering, based on inverse
engineering followed by formal refinement, has proved
very successful with a number of challenging small-
scale case study programs [13,20,21,23,24]. The the-
oretical work has been developed further to accom-
modate real time and parallel programs with some
success [29,30]. More recently, the development of
industrial-strength tool support has allowed us to
tackle large JOVIAL restructuring projects, IBM 370
Assembler restructuring projects for modules of up
to 20,000 lines, and Assembler to COBOL migration
projects [26,27]. Durham Software Engineering Ltd
and Durham University are actively developing the
tool with translators to and from various languages

(including C and COBOL) which will extend the mi-
gration and reengineering capabilities of the tool. For
the Assembler restructuring and migration projects we
have developed techniques for unscrambling the (often
convoluted) control flow between subroutines: this has
to cope with subroutines which overwrite or modify
the stored return address, routines which call other
subroutines directly (without storing a return address)
and so on. In addition, we have developed techniques
for changing the data model from a monolithic block
of memory, accessed via pointers (which is essentially
how assembler code treats its data) to the equivalent
high-level data structures and operations.

References

[1] R. J. R. Back, Correctness Preserving Program Re-
finements, Mathematical Centre Tracts #131, Mathe-
matisch Centrum, Amsterdam, 1980.

[2] R. J. R. Back & J. von Wright, “Refinement Concepts
Formalised in Higher-Order Logic,” Formal Aspects of
Computing 2 (1990), 247-272.

[3] G. D. Bergland, “A Guided Tour of Program Design
Methodologies,” Computer 14, 18-37.

[4] R. Bird, “Lectures on Constructive Functional Pro-
gramming,” Oxford University, Technical Monograph
PRG-69, Sept., 1988.

[6] T. Bull, “An Introduction to the WSL Program Trans-
former,” Conference on Software Maintenance 26th—
29th November 1990, San Diego (Nov., 1990).

[6] E. W. Dijkstra, A Discipline of Programming, Pren-
tice-Hall, Englewood Cliffs, NJ, 1976.

[7] E. Engeler, Formal Languages: Automata and Struc-
tures, Markham, Chicago, 1968.

[8] I. J. Hayes, Specification Case Studies, Prentice-Hall,
Englewood Cliffs, NJ, 1987.

[9] C. A. R. Hoare, L. J. Hayes, H. E. Jifeng, C. C. Mor-
gan, A. W. Roscoe, J. W. Sanders, I. H. Sgrensen, J.
M. Spivey & B. A. Sufrin, “Laws of Programming,”
Comm. ACM 30 (Aug., 1987), 672—686.

[10] C. B. Jones, Systematic Software Development using
VDM, Prentice-Hall, Englewood Cliffs, NJ, 1986.

[11] C. R. Karp, Languages with Expressions of Infinite
Length, North-Holland, Amsterdam, 1964.

[12] C. C. Morgan, Programming from Specifications, Pren-
tice-Hall, Englewood Cliffs, NJ, 1994, Second Edition.

[13] H. A. Priestley & M. Ward, “A Multipurpose Back-
tracking Algorithm,” J. Symb. Comput. 18 (1994), 1-
40, (http: // www. dur. ac. uk/ ~dcsOmpw/ martin/
papers/backtr-t.ps.gz).

[14] M. Ward, “Proving Program Refinements and Trans-
formations,” Oxford University, DPhil Thesis, 1989.

[15] M. Ward, “Derivation of a Sorting Algorithm,”
Durham University, Technical Report, 1990, (http:
// www. dur. ac. uk/ ~dcsOmpw/ martin/ papers/
sorting-t.ps.gz).

[16]

[17]

21]

22]

23]

M. Ward, “Specifications and Programs in a Wide
Spectrum Language,” Submitted to J. Assoc. Comput.
Mach., 1991.

M. Ward, “A Recursion Removal Theorem,” Springer-
Verlag, Proceedings of the 5th Refinement Workshop,
London, 8th-11th January, New York-Heidelberg—
Berlin, 1992, (http: // www. dur. ac. uk/ ~dcsOmpw/
martin/papers/ref-ws-5.ps.gz).

M. Ward, “Language Oriented Programming,”
Software—Concepts and Tools15(1994), 147-161,
(http: //www. dur. ac. uk/~dcsOmpw/martin/papers/
middle-out-t.ps.gz).

M. Ward, “Foundations for a Practical Theory of
Program Refinement and Transformation,” Durham
University, Technical Report, 1994.

M. Ward, “Reverse Engineering through Formal Trans-
formation Knuths “Polynomial Addition” Algorithm,”
Comput. J.37(1994), 795-813, (http: //www.dur. ac.
uk/~dcsOmpw/martin/ papers/poly-t.ps.gz).

M. Ward, “Program Analysis by Formal Transforma-
tion,” Comput. J.39 (1996).

M. Ward, “Using Formal Transformations to Con-
struct a Component Repository,” in Software Reuse:
the European Approach, Springer-Verlag, New York—
Heidelberg—Berlin, Feb., 1991, (http: //www. dur. ac.
uk/~dcsOmpw/martin/ papers/reuse.ps.gz).

M. Ward, “Abstracting a Specification from Code,” J.
Software Maintenance: Research and Practice 5 (June,
1993), 101-122, (http: //www. dur. ac. uk/ ~dcsOmpw/
martin/papers/prog-spec.ps.gz).

24]

[25]

[26]

(27]

(28]

(30]

M. Ward, “Derivation of Data Intensive Algorithms by
Formal Transformation,” IEEE Trans. Software Eng.
22 (Sept., 1996), 665—686, (http: // www. dur. ac. uk/
~dcsOmpw/ martin/ papers/sw-alg.ps.gz).

M. Ward & K. H. Bennett, “A Practical Program
Transformation System For Reverse Engineering,”
Working Conference on Reverse Engineering, May 21—
23, 1993, Baltimore MA (1993), (http: //www.dur.ac.
uk/~dcsOmpw/martin/ papers/icse.ps.gz).

M. Ward & K. H. Bennett, “Formal Methods to Aid the
Evolution of Software,” International Journal of Soft-
ware Engineering and Knowledge Engineering 5 (1995),
25-47, (http: // www. dur. ac. uk/ ~dcsOmpw/ martin/
papers/evolution-t.ps.gz).

M. Ward & K. H. Bennett, “Formal Methods
for Legacy Systems,” J. Software Maintenance: Re-
search and Practice7 (May, 1995), 203-219, (http:
// www. dur. ac. uk/ ~dcsOmpw/ martin/ papers/
legacy-t.ps.gz).

M. Ward, F. W. Calliss & M. Munro, “The Main-
tainer’s Assistant,” Conference on Software Mainte-
nance 16th-19th October 1989, Miami Florida (1989),
(http: //www. dur. ac. uk/~dcsOmpw/martin/ papers/
MA-89.ps.gz).

E. J. Younger & M. Ward, “Understanding Concurrent
Programs using Program Transformations,” Proceed-
ings of the 1993 2nd Workshop on Program Com-
prehension, 8th-9th July, Capri, Italy (1993), (http:
// wuww. dur. ac. uk/ ~dcsOmpw/ martin/ papers/
cap.ps.gz).

E. J. Younger & M. Ward, “Inverse Engineering a
simple Real Time program,” J. Software Maintenance:
Research and Practice 6 (1993), 197-234.

Transformation

Library

The
Maintainer

Program

Transformer

Translator

@

X-Windows

Select

ASCII

Structure
Editor

Edit

Front End

Block Diagram of the FermaT tool.

Browser
Interface

Representation

of WSL code

Internal

High-Level
WSL to
Z

Low-Level

WSL to
Source

