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Abstra
tWe des
ribe a method for extra
ting high-level spe
-i�
ations from unstru
tured sour
e 
ode. The methodis based on a theory of program re�nement and trans-formation, whi
h is used as the bases for the develop-ment of a 
atalogue of powerful semanti
s-preservingtransformations. Ea
h transformation is an opera-tion on a program whi
h has a me
hani
ally-
he
kable
orre
tness 
ondition, and whi
h has been rigorouslyproved to produ
e a semanti
ally equivalent result. Thetransformations are 
arried out in a wide spe
trumprogramming language (
alled WSL). This languagein
ludes high-level spe
i�
ations as well as low-levelprogramming 
onstru
ts. As a result, the formal re-verse engineering pro
ess (from sour
e 
ode to equiva-lent spe
i�
ations) and the redevelopment pro
ess (re-�nement of spe
i�
ations into sour
e 
ode) 
an both be
arried out within a single language and transforma-tion theory.We also dis
uss a tool (FermaT) whi
h has beendeveloped to support this approa
h to reengineering.The tool is a program transformation system, largelywritten in an extension to WSL 
alled METAWSL.Thus it is possible to use the tool in the maintenan
eof its own sour
e 
ode, and this is starting to be the
ase.1 Introdu
tionThis paper des
ribes the appli
ation of formal pro-gram transformations to un
over spe
i�
ations fromsour
e 
ode. We take as an example a small reportwriting program. Due to errors in the original design,this program had several bugs whi
h were graduallyun
overed and �xed in the usual way (pat
hes, �rst-time-through swit
hes, dupli
ated 
ode et
. et
.). Theresulting program appears to work, but has a 
omplex

and messy stru
ture whi
h makes it extremely diÆ
ultto maintain.The aim of our 
ase study is to restru
ture the pro-gram and extra
t its spe
i�
ation (a 
on
ise, high-leveldes
ription of what the program does whi
h ignoresthe low-level details of how this result is a
hieved). Itshould be noted that our aim is emphati
ally NOTthat of \Design Re
overy" in the sense of \Re
overingthe original design"|the original design is full of bugsand not worth re
overing! Instead we aim to transformthe \base metal" of unstru
tured 
ode into the \gold"of a high-level spe
i�
ation. (Stri
tly speaking, this isreally a mining operation, rather than a transmutationof elements, sin
e the \gold" is already there|it justneeds to be extra
ted!)The approa
h is based on a \Wide Spe
trumLanguage" (
alled WSL) whi
h in
ludes both high-level abstra
t spe
i�
ations and low-level program-ming 
onstru
ts within the same language. The lan-guage has been developed over the last ten years inparallel with the development of the transformationtheory: the 
atalogue of proven transformations andtransformation te
hniques whi
h form the basis forboth re�nement and reverse engineering. All thetransformations have been proved 
orre
t and haveme
hani
ally 
he
kable appli
ability 
onditions. Thismakes it possible to \en
apsulate" the mathemati
sin a transformation system: the user does not need tounderstand how to prove the 
orre
tness of a transfor-mation, he or she only needs to be able to read WSLand know the sorts of operations that 
an be appliedto it. Sin
e ea
h step in the reverse engineering pro
ess
onsists of the appli
ation of a proven transformation,whose appli
ability 
ondition has been me
hani
ally
he
ked, the extra
ted spe
i�
ation is guaranteed tobe a 
orre
t representation of the original program.Fundamental to our approa
h is the use of in�nitary�rst order logi
 (see [11℄) both to express the weakest



pre
onditions of programs [6℄ and to de�ne assertionsand guards in the kernel language. Engeler [7℄ wasthe �rst to use in�nitary logi
 to des
ribe propertiesof programs; Ba
k [1℄ used su
h a logi
 to express theweakest pre
ondition of a program as a logi
al formula.His kernel language was limited to simple iterativeprograms. We use a di�erent kernel language whi
h in-
ludes re
ursion and guards, so that Ba
k's language isa subset of ours. We show that the introdu
tion of in-�nitary logi
 as part of the language (rather than justthe metalanguage of weakest pre
onditions), togetherwith a 
ombination of proof methods using both de-notational semanti
s and weakest pre
onditions, is apowerful theoreti
al tool whi
h allows us to prove somegeneral transformations and representation theorems.The denotational semanti
s of the kernel languageis based on the semanti
s of in�nitary �rst order logi
.Kernel language statements are interpreted as fun
-tions whi
h map an initial state to a set of �nal states(the set of �nal states models the nondetermina
y inthe language: for a deterministi
 program this set will
ontain a single state). A program S1 is a re�nementof S2 if, for ea
h initial state, the set of �nal statesfor S1 is a subset of the �nal states for S2. Ba
kand von Wright [2℄ note that the re�nement relation
an be 
hara
terised using weakest pre
onditions inhigher order logi
 (where quanti�
ation over formu-lae is allowed). For any two programs S1 and S2,the program S2 is a re�nement of S1 if the formula8R:WP(S1;R) ) WP(S2;R). This approa
h tore�nement has two problems:1. It has not been proved that for all programs S andformulae R, there exists a �nite formula WP(S;R)whi
h expresses the weakest pre
ondition of S forpost
ondition R. Can proof rules justi�ed by anappeal to WP in �nitary logi
 be justi�ably appliedto arbitrary programs, for whi
h the appropriate�nite WP(S;R) may not exist? This problem doesnot o

ur with in�nitary logi
, sin
e WP(S;R)has a simple de�nition for all programs S and all(in�nitary logi
) formulae R;2. Se
ond order logi
 is in
omplete in the sense thatnot all true statements are provable. So even if there�nement is true, there may not exist a proof of it.Our approa
h to program re�nement and equivalen
esolves both of these problems. Using in�nitary logi
allows us to give a simple de�nition of the weakestpre
ondition of any statement (in
luding an arbitraryloop) for any post
ondition. In addition, we haveproved that for ea
h pair of statements S1 and S2there is a single post
ondition R su
h that S1 is are�nement of S2 i� WP(S1;R) ) WP(S2;R) and

WP(S1; true))WP(S2; true) (see [19℄). Another ad-vantage is that the in�nitary logi
 we use is 
omplete,so if there is a re�nement then there is also guaranteedto be a proof of the 
orresponding formula|althoughthe proof may be in�nitely long! However, it isperfe
tly pra
ti
al to 
onstru
t in�nitely long proofs:in fa
t the proofs of many transformations involvingre
ursion or iteration are in�nite proofs 
onstru
ted byindu
tion. Thus in�nitary logi
 is both ne
essary andsuÆ
ient for proving re�nements and transformations.We 
onsider the following 
riteria to be importantfor any pra
ti
al wide-spe
trum language and trans-formation theory:1. General spe
i�
ations in any \suÆ
iently pre
ise"notation should be in
luded in the language. ForsuÆ
iently pre
ise we will mean anything whi
h 
anbe expressed in terms of mathemati
al logi
 withsuitable notation. This will allow a wide rangeof forms of spe
i�
ation, for example Z spe
i�
a-tions [8℄ and VDM [10℄ both use the languageof mathemati
al logi
 and set theory (in di�erentnotations) to de�ne spe
i�
ations. The \Represen-tation Theorem" [19℄ proves that our spe
i�
ationstatement is suÆ
ient to spe
ify any WSL program(and therefore any 
omputable fun
tion, sin
e WSLis 
ertainly Turing 
omplete);2. Nondeterministi
 programs. Sin
e we do not wantto have to spe
ify everything about the programwe are working with (
ertainly not in the �rstversions) we need some way of spe
ifying that someexe
utions will not ne
essarily result in a parti
ularout
ome but one of an allowed range of out
omes.The implementor 
an then use this latitude toprovide a more eÆ
ient implementation whi
h stillsatis�es the spe
i�
ation;3. A well-developed 
atalogue of proven transforma-tions whi
h do not require the user to dis
harge
omplex proof obligations before they 
an be ap-plied. In parti
ular, it should be possible to in-trodu
e, analyse and reason about imperative andre
ursive 
onstru
ts without requiring loop invari-ants;4. Te
hniques to bridge the \abstra
tion gap" betweenspe
i�
ations and programs. See [23,30℄ for exam-ples;5. Appli
able to real programs|not just those in a\toy" programming language with few 
onstru
ts.This is a
hieved by the (programming) languageindependen
e and extendibility of the notation via\de�nitional transformations". See [15,17,24℄ forexamples;



6. S
alable to large programs: this implies a languagewhi
h is expressive enough to allow automati
translation from existing programming languages,together with the ability to 
ope with unstru
turedprograms and a high degree of 
omplexity. See [25℄for example.A system whi
h meets all these requirements wouldhave immense pra
ti
al importan
e in the followingareas:� Improving the maintainability (and hen
e extend-ing the lifetime) of existing mission-
riti
al softwaresystems;� Translating programs to modern programming lan-guages, for example from obsolete Assembler lan-guages to modern high-level languages;� Developing and maintaining safety-
riti
al appli
a-tions. Su
h systems 
an be developed by trans-forming high-level spe
i�
ations down to eÆ
ientlow level 
ode with a very high degree of 
on�den
ethat the 
ode 
orre
tly implements every part of thespe
i�
ation. When enhan
ements or modi�
ationsare required, these 
an be 
arried out on the ap-propriate spe
i�
ation, followed by \re-running" asmu
h of the formal development as possible. Alter-natively, the 
hanges 
ould be made at a lower level,with formal inverse engineering used to determinethe impa
t on the formal spe
i�
ation;� Extra
ting reusable 
omponents from 
urrent sys-tems, deriving their spe
i�
ations and storingthe spe
i�
ation, implementation and developmentstrategy in a repository for subsequent reuse. Theuse of the join 
onstru
t as an indexing me
hanismis dis
ussed in [22℄.2 The Example ProgramOur example program was sele
ted to illustratehow design errors and poor design, leads to a buggyprogram with a poor stru
ture. Fixing the bugsin the usual way (pat
hes, \ha
ks", \programmingtri
ks" et
.) further degrades the stru
ture until theprogram be
omes extremely diÆ
ult to understand,despite its short length. We aim to demonstrate the re-sults a
hievable by applying program transformations,based on formal logi
, to su
h unpromising material.The program is a simple report printer whi
h printsa management report showing the net 
hanges of sto
kitems in a warehouse. It reads a sorted transa
tion �le,
onsisting of a list of re
ords, ea
h of whi
h 
ontainsthe name of the sto
k item, and the amount brought inor taken out of the warehouse. Re
eipts are denoted bypositive numbers and dispat
hes by negative numbers.

The program should print the name and net 
hangefor ea
h item whi
h has experien
ed a net 
hange insto
k, and also note the number of items whose sto
klevels have 
hanged.The (�
tional) history of this program, from theinitial impressive-looking �ve-level hierar
hi
al fun
-tional de
omposition, through four \qui
k �xes" in-
luding a �rst-time-through swit
h, a pat
h on top ofa pat
h, and an example of \defensive programming"(set the swit
h twi
e in a row, just to be sure it isreally set) is eloquently des
ribed in [3℄, so we willonly present the �nal version:pro
 Management Report �var SW1 := 0; SW2 := 0 :Produ
e Heading;read(stu�);while NOT eof(stu�) doif First Re
ord In Groupthen if SW1 = 1then Pro
ess End Of Prev Group�;SW1 := 1;Pro
ess Start Of New Group;Pro
ess Re
ord;SW2 := 1elsePro
ess Re
ord; SW2 := 1�;read(stu�)od;if SW2 = 1 then Pro
ess End Of Last Group�;Produ
e Summaryend.Although this program is quite small, it is extremelydiÆ
ult to follow the logi
 and 
onvin
e yourself thatit is 
orre
t. In the next se
tion we introdu
e ourapproa
h to this sort of problem, whi
h is based onInverse Engineering.3 Program Re�nementand TransformationThe WSL language in
ludes both spe
i�
ation 
on-stru
ts, su
h as the general assignment, and program-ming 
onstru
ts. One aim of our program transfor-mation work is to develop programs by re�ning aspe
i�
ation, expressed in �rst order logi
 and settheory, into an eÆ
ient algorithm. This is similar tothe \re�nement 
al
ulus" approa
h of Morgan et al[9,12℄; however, our wide spe
trum language has beenextended to in
lude general a
tion systems and loops



with multiple exits. These extensions are essential forour se
ond, and equally important aim, whi
h is to useprogram transformations for reverse engineering fromprograms to spe
i�
ations.Re�nement is de�ned in terms of the denotationalsemanti
s of the language: the semanti
s of a programS is a fun
tion whi
h maps from an initial state to a�nal set of states. The set of �nal states represents allthe possible output states of the program for the giveninput state. Using a set of states enables us to modelnondeterministi
 programs and partially de�ned (orin
omplete) spe
i�
ations. For programs S1 and S2we say S1 is re�ned by S2 (or S2 is a re�nementof S1), and write S1 � S2, if S2 is more de�nedand more deterministi
 than S1. If S1 � S2 andS2 � S1 then we say S1 is equivalent to S2 andwrite S1 � S2. Equivalen
e is thus de�ned in termsof the external \bla
k box" behaviour of the program.A transformation is an operation whi
h maps anyprogram satisfying the appli
ability 
onditions of thetransformation to an equivalent program. See [14℄and [16℄ for a des
ription of the semanti
s of WSLand the methods used for proving the 
orre
tness ofre�nements and transformations. We use the termabstra
tion to denote the opposite of re�nement: forexample the \most abstra
t" program is the non-terminating program abort, sin
e any program is are�nement of abort.A transformation is an operation whi
h maps anyprogram satisfying the appli
ability 
onditions of thetransformation to an equivalent program. See [14℄and [16℄ for a des
ription of the semanti
s of WSLand the methods used for proving the 
orre
tness ofre�nements and transformations.4 Inverse EngineeringInverse engineering is the pro
ess of extra
tinghigh-level abstra
t spe
i�
ations from sour
e 
ode us-ing program transformations. By developing our pro-gram transformation theory in a wide spe
trum lan-guage, we are able to use transformations not only forrestru
turing at the same abstra
tion level, but alsofor 
rossing levels of abstra
tion: transforming fromlow-level 
ode to high-level abstra
t spe
i�
ations (see[23℄). Be
ause the transformations are proved to be
orre
t, they 
an be applied without needing to under-stand the program �rst, and with a very high degreeof 
on�den
e that the resulting spe
i�
ations 
orre
tlyrepresent the initial program. Similar transformations
an be used to re�ne the spe
i�
ations (either imme-diately or after modi�
ations and enhan
ements) ba
kto exe
utable sour
e 
ode, whi
h may be in a di�erent

programming language. It is therefore possible to usethis method to migrate 
ode between programminglanguages: in
luding migrating from Assembler 
odeto a high-level language (see [25℄). The re�nementof extra
ted spe
i�
ations ba
k to exe
utable 
ode
an be made largely automati
, and this means itis possible to maintain the spe
i�
ations rather thanthe sour
e 
ode. Changes and enhan
ements 
an beapplied at the right level of abstra
tion, without divinginto details of the implementation.5 FermaT: A tool forInverse EngineeringFermaT is a program transformation system basedon the theory of program re�nement and equivalen
edeveloped in [14,19℄ and applied to software develop-ment in [13,24℄ and to reverse engineering in [23,25℄.The transformation system is intended as a pra
ti
altool for software maintenan
e, program 
omprehen-sion, reverse engineering and program development.The �rst prototype transformation system, 
alledthe \Maintainer's Assistant", was written in LISP [5,28℄. It in
luded a large number of transformations,but was vey mu
h an \a
ademi
 prototype" whose aimwas to test the ideas rather than be a pra
ti
al tool.In parti
ular, little attention was paid to the time andspa
e eÆ
ien
y of the implementation. Despite thesedrawba
ks, the tool proved to be highly su

essfuland 
apable of reverse-engineering moderately sizedassembler modules (up to 80,000 lines) into equivalenthigh-level language programs.The system is based on semanti
 preserving trans-formations in a wide spe
trum language (
alled WSL).The language in
ludes both low-level programming
onstru
ts and high-level non-exe
utable spe
i�
a-tions. This means that re�nement from a spe
i�
a-tion to an implementation, and reverse-engineering todetermine the behaviour of an existing program 
anboth be 
arried out by means of semanti
-preservingtransformations within a single language.For the next version of the tool (i.e. FermaT itself)we de
ided to extend WSL to add domain-spe
i�

onstru
ts, 
reating a language for writing programtransformations. This was 
alled METAWSL. Theextensions in
lude an abstra
t data type for repre-senting programs as tree stru
tures and 
onstru
ts forpattern mat
hing, pattern �lling and iterating over
omponents of a program stru
ture. The \transfor-mation engine" of FermaT is implemented entirelyin METAWSL. The implementation of METAWSL in-volves a parser for METAWSL (written in rdp, apubli
 domain re
ursive des
ent parser pa
kage), an



interpreter for METAWSL written in C, a translatorfrom METAWSL to C (written in METAWSL and in-terpreted to translate itself), a small C runtime library(for the main abstra
t data types) and a WSL runtimelibrary (for the high-level METAWSL 
onstru
ts su
has ifmat
h, forea
h, �ll et
.). One aim was so that thetool 
ould be used to maintain its own sour
e 
ode:and this has already proved possible, with transfor-mations being applied to simplify the sour
e 
ode forother transformations! Another aim was to test ourtheories on language oriented programming (see [18℄):we expe
ted to see a redu
tion in the total amountof sour
e 
ode required to implement a more eÆ
ient,more powerful and more rugged system. We also anti
-ipated noti
eable improvements in maintainability andportability. These expe
tations have been ful�lled,and we are a
hieving a high degree of fun
tionalityfrom a small total amount of easily maintainable 
ode:the 
urrent prototype 
onsists of around 16,000 linesof METAWSL and C 
ode, while the previous versionrequired over 100,000 lines of LISP.The FermaT design is based on a re
ursive appli
a-tion of language oriented programming, involving two\layers" of domain-spe
i�
 languages. These are:1. A fairly high-level, general purpose language, basedon the exe
utable 
onstru
ts of WSL [14,19℄ to-gether with an abstra
t data type (ADT) for re
ord-ing, analysing and manipulating programs and frag-ments of programs. This is implemented in LISP,using a WSL to LISP translator together with a\LISP runtime library" of fun
tions and pro
eduresto implement the ADT. The ADT in
ludes fa
ilitiesfor loading and saving programs, moving around (itre
ords the \
urrent sele
tion" within the 
urrentprogram), and editing operations. This 
onsistsof less than 2000 lines of LISP: the entire rest ofthe transformation engine is written in WSL andMETAWSL 
ode. Hen
e porting the system to an-other language (and a C version is 
urrently underdevelopment) would entail writing at the most afew thousand lines of 
ode;2. On top of the \base" WSL language we have im-plemented a very high-level, domain-spe
i�
 lan-guage for writing program transformations, 
alledMETAWSL. This in
ludes high level 
onstru
tswhi
h do most of the work involved in writing trans-formations: see below for an example. METAWSLis implemented almost entirely in WSL; there are afew extensions to the WSL to LISP translator anda number of WSL libraries whi
h are 
ompiled intoLISP and linked to the translated METAWSL.

METAWSL en
apsulates mu
h of the expertise de-veloped over the last 10 years of resear
h in programtransformation theory and transformation systems.As a result, this expertise is readily available to theprogrammers, some of whom have only re
ently joinedthe proje
t. Working in METAWSL, it takes onlya small amount of training before new programmersbe
ome e�e
tive at implementing transformations andenhan
ing the fun
tionality of existing transforma-tions.6 Inverse Engineeringthe Example ProgramIn this se
tion we show how FermaT 
opes with theexample program of Se
tion 2. The �rst three stageswere 
arried out on a prototype of FermaT, start-ing with the original program and applying general-purpose transformations. The �nal stage (going toan abstra
t spe
i�
ation) was 
arried out manuallybe
ause the ne
essary transformations are still beingimplemented in the tool.6.1 First Stage:Restru
ture and SimplifyThe �rst stage involves applying some general-purpose restru
turing and simpli�
ation transforma-tions. The sele
tion of the transformations by theuser is based on some simple heuristi
s, developedfrom our experien
e of using the tool. It is likelythat these heuristi
s 
ould be largely automated inthe future: in fa
t it is a feature of the developmentof the various prototypes whi
h led up to FermaTthat experien
e with ea
h version enabled us to eli
itmore knowledge about the pro
ess of restru
turing andreverse engineering through formal transformations.This knowledge was then in
orporated in the nextversion of the tool, in the form of more powerfultransformations and program manipulation fun
tions.In the �rst stage we are able to remove bothswit
hes and re-express the 
onvoluted 
ontrol 
owas a simple double-nested loop. It is an importantfeature of our method that the user of the systemdoes not need to understand the purpose of a blo
kof 
ode before transforming it. The system takes
are of all 
orre
tness 
onditions and 
leri
al details ofapplying the transformation, as well as automati
allypretty-printing the result. The system and support-ing theoreti
al work together guarantee the semanti
equivalen
e of ea
h version of the program: thus, on
ean understandable version has been produ
ed, theuser 
an understand that version of the program, and



be 
on�dent that the original program has the samesemanti
s.pro
 Management Report �Produ
e Heading;read(stu�);while NOT eof(stu�) doPro
ess Start Of New Group;do Pro
ess Re
ord;read(stu�);if eof(stu�) OR First Re
ord In Groupthen exit�od;Pro
ess End Of Prev Groupod;Produ
e Summary.6.2 Se
ond Stage:Abstra
t Data TypesThe se
ond stage, after restru
turing, is to examinethe low-level pro
edures and data stru
tures and re-express them at a higher level of abstra
tion, makinguse of abstra
t data types where appropriate. Thisstep 
an also be 
arried out via formal transforma-tions: some human input is required in sele
ting theabstra
t equivalents, though the simpler 
ases (sta
ks,sequential and random a

ess �les et
.) 
an be au-tomated. The next version of the program repla
esea
h pro
edure 
all with the abstra
t spe
i�
ation ofthe pro
edure body. This version is therefore more
omplete than the previous one (the \missing" 
odein the pro
edure bodies is now in
luded):pro
 Management Report �var i := 0; last := \"; re
ord := \"; 
hanged := 0 :write(\Management Report : : : ");last := re
ord; i := i+ 1; re
ord := re
ords[i℄;while i 6 `(re
ords) dototal := 0;do total := total+ re
ord:number;last := re
ord;i := i+ 1; re
ord := re
ords[i℄;if i > `(re
ords) ORlast:name 6= re
ord:namethen exit�od;if total 6= 0then write(last:name; total);
hanged := 
hanged+ 1�

od;write(\Changed items:"; 
hanged);end.6.3 Third Stage:Restru
ture and SimplifyHaving moved to a higher level of abstra
tion, somefurther simpli�
ation and restru
turing be
omes pos-sible. We 
an get rid of another lo
al variable, and
onvert both loops to while loops. This version is at aintermediate level of abstra
tion, it uses a higher leveldata stru
ture than the original sour
e 
ode, but still
arries out roughly the same operations.pro
 Management Report �var i := 0; 
hanged := 0 :write(\Management Report : : : ");while i 6 `(re
ords) dototal := re
ords[i℄:number;i := i+ 1;while i 6 `(re
ords) ANDre
ords[i- 1℄:name = re
ords[i℄:name dototal := total+ re
ords[i℄:number;i := i+ 1od;if total 6= 0then write(re
ords[i- 1℄:name; total);
hanged := 
hanged+ 1�od;write(\Changed items:"; 
hanged);end.6.4 Fourth Stage:Spe
i�
ation LevelFor the �nal step, we repla
e the loops by higher-level operators whi
h des
ribe the e�e
t of the doubleloop more 
learly. Our notation for list operations isbased on [4℄. � is a \map" operator whi
h takes aunary fun
tion and applies it to ea
h element of a list.= is a \redu
e" operator whi
h takes a binary fun
tionand applies it to a list, for example +=l returns thesum of the elements of list l. The split fun
tion takesa list and a binary 
ondition and returns a list of lists,formed by splitting the original list into non-emptyse
tions at the points where the 
ondition is false.pro
 Management Report �beginvar q := split(re
ords; same name?) :q := summarise � q;q := �lter(q; 
hange?);write(\Management Report : : : ");



write � q;write(\Changed items:"; `(q))endwherefun
t same name?(x; y) �x:name = y:name.fun
t summarise(g) �hg[1℄:name;+=(:number � g)i.fun
t 
hange?(g) �g[2℄ 6= 0.endOur spe
i�
ation may therefore be written informallyas follows:1. First split the list of re
ords into se
tions, wherethe re
ords in ea
h se
tion all have the same name;2. Then summarise ea
h se
tion to produ
e a list ofsummary pairs. The summarise fun
tion returns apair 
onsisting of the name (
ommon to all re
ordsin the se
tion) and the sum of all the number
omponents of the re
ords;3. Then �lter out the summaries with zero totals(these should not appear on the report);4. The print a report 
onsisting of a header, the listof summaries (one per line) and the number ofsummaries listed.This spe
i�
ation illustrates very 
learly the relation-ship between the input data and the �nal report. Italso shows expli
itly that the \Changed items" num-ber is pre
isely the number of summaries listed, whi
hin turn is the number of items whose sto
k has 
hangedsin
e the last report. This fa
t would require a 
arefulanalysis of the program plus some indu
tive reasoningif it was to be dedu
ed from the original version of theprogram.7 Con
lusionsOur approa
h to reengineering, based on inverseengineering followed by formal re�nement, has provedvery su

essful with a number of 
hallenging small-s
ale 
ase study programs [13,20,21,23,24℄. The the-oreti
al work has been developed further to a

om-modate real time and parallel programs with somesu

ess [29,30℄. More re
ently, the development ofindustrial-strength tool support has allowed us tota
kle large JOVIAL restru
turing proje
ts, IBM 370Assembler restru
turing proje
ts for modules of upto 20,000 lines, and Assembler to COBOL migrationproje
ts [26,27℄. Durham Software Engineering Ltdand Durham University are a
tively developing thetool with translators to and from various languages

(in
luding C and COBOL) whi
h will extend the mi-gration and reengineering 
apabilities of the tool. Forthe Assembler restru
turing and migration proje
ts wehave developed te
hniques for uns
rambling the (often
onvoluted) 
ontrol 
ow between subroutines: this hasto 
ope with subroutines whi
h overwrite or modifythe stored return address, routines whi
h 
all othersubroutines dire
tly (without storing a return address)and so on. In addition, we have developed te
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hanging the data model from a monolithi
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