
Iterative Proedures for Computing Akerman's Funtion
M. P. Ward�Martin.Ward�durham.a.ukhttp://www.dur.a.uk/�ds0mpw/July 16, 1993

Contents1 Introdution 22 Notation 23 The Transformations 33.1 Bak Expansion of a Conditional . 33.2 Forward Expansion . 33.3 Double Iteration . 43.4 Proper Inversion . 44 The Funtion 45 Method A: The \diret method" 55.1 Alternative Appliation of Method A . 76 Method B: The \postponed obligations" method 76.1 Alternative appliation of method B . 97 Method C 108 Diret Proof of Termination 138.1 Determining the number of steps . 159 Conlusion 2210 Referenes 22AbstratThis paper uses Akerman's funtion as a testbed to illustrate the operation of variousprogram transformations whih take reursive proedures to equivalent iterative forms. Thetransformations are taken from the author's DPhil thesis [19℄. In this paper we illustrate that�Department of Computer Siene University of Durham, Durham, UK
1

they an be suessfully applied to even the most onvoluted reursion. For many programs areursive funtion is the most natural and lear spei�ation while an iterative (or tail-reursive)form is the most eÆient implementation. This paper illustrates how an eÆient iterativeprogram an be developed and veri�ed by starting with a simple reursive program and usingproven transformations to remove the reursion. The resulting iterative program will be orretby onstrution, so the problem of a diret veri�ation of the iterative algorithm is avoided.This proess an also throw light on the nature of the reursive spei�ation. Several interestingproperties of Akermann's funtion and the iterative algorithms are derived in the ourse of thisdevelopment.
1 IntrodutionAkerman's funtion is de�ned for all m;n > 0 as follows:A(0; n) = n+ 1A(m; 0) = A(m� 1; 1) for m > 0A(m;n) = A(m� 1;A(m;n� 1)) for m;n > 0.Akerman's funtion was originally onstruted in order to prove that there exist omputablefuntions whih annot be de�ned using primitive reursion. The set of primitive reursive funtionsis onstruted from a small set of \elementary" funtions (the onstant funtions and the suessorfuntion \add one") extended by the use of simple reursion. Simple reursion means:If is a onstant and G and h are primitive reursive funtions, then the funtion f de�ned:f(0) = f(n+ 1) = G(h(n+ 1); f(n))is also primitive reursive.So addition an be de�ned using reursion on the suessor funtion, multipliation by repeatedaddition, and so on.Most of the funtions and proedures traditionally used to illustrate reursion removal are simplereursions; (the \Towers of Hanoi" problem is a ommon example, as is the fatorial funtion).Akermann proved [2℄ that his funtion ould not be de�ned from the suessor funtion usingprimitive reursion alone. This suggests that its form of reursion is more \ompliated" thanprimitive reursions and therefore should present a stronger test of the tehniques of reursionremoval.
2 NotationS, S1, S2 et. are statements. � is a set of formulae of �rst order logi whih inludes all the\assumptions" we are making about the funtions and relations used in programs. For example, ifwe are using the symbol \+" to represent addition then � will inlude the properties of addition,written in terms of \+", for example �8x; y: x + y = y + x�; �8x: x+ 0 = x� and so on. Note thatthe formulae must have all their variables quanti�ed.Following the notation of [4℄ and [19℄:� ` S1 6 S2 means that statement S1 is re�ned by statement S2 under the assumption thatall the formulae in � are true. This means: For eah initial state on whih S1 is guaranteed toterminate, S2 is also guaranteed to terminate and will terminate in one of the allowed �nal statesof S1.� ` S1 � S2 means � ` S1 6 S2 and � ` S2 6 S1.

2

If this is the ase then wherever we see S1 in a program we may replae it by S2 withouthanging the input/output behaviour of the program. (See [19℄ for the proof of this assertion). Inthis ase we say S1 and S2 are equivalent.We use the following notation for sequenes:� If L is a sequene then we denote the ith element of L by L[i℄.� If L has the n elements a1; a2; : : : ; an then we denote the whole sequene by han; : : : ; a2; a1i.� If L has n elements then `(L) = n.� If k is an integer between 1 and n then the sequene formed from the kth element onwards isde�ned as: L[k : :℄ = hL[n℄; : : : ; L[k℄i� The sequene formed from the �rst k elements, alled the restrition of L to k is de�ned as:L � k = hL[k℄; : : : ; L[1℄i� If L1 and L2 are sequenes then the onatenation of L1 and L2 is de�ned as:L1 ++ L22 = hL1[`(L1)℄; : : : ; L1[1℄; L2[`(L2)℄; : : : ; L2[1℄iWe have two speial statements whih are used to implement staks as sequenes. The state-ments add and remove a single element from the given stak: If L is a sequene and e an expressionthen L push � e is equivalent to the assignment: L := L ++ hei. If L is a sequene and x a variablethen x pop � L is equivalent to x := L[1℄; L := L[2 : :℄.So for example, if x is a variable and L a sequene then: L push � x; x pop � L leaves both x andL unhanged.
3 The TransformationsWe will use the following basi transformations in several of the derivations, (the formal proofs ofthese are given in [19℄):3.1 Bak Expansion of a ConditionalIf formula B is invariant over statement S then:� ` S; if B then S1 else S2 � � if B then S; S1 else S; S2 �3.2 Forward Expansion� ` if B then S1 else S2 �; S � if B then S1; S else S2; S �(These are also desribed as \moving a statement into an if statement")Our programming language inludes loops of the form do S od whih are terminated by theexeution of a statement of the form exit(n) (where n is an integer) within the loop. This statementauses immediate termination of n enlosing do loops. A sub-statement in a statement whih ifexeuted would ause termination of the statement is alled a terminal statement, its terminalvalue is the number of enlosing do loops whih would also be terminated by that statement. Forexample in: if y = 1 then x := 1 else x := 2 �3

the terminal statements are the two assignments to x, they both have terminal value zero. In:do if y = 1 then x := 1; exit else x := 2; exit(2) � odThe terminal statements are exit (with terminal value zero) and exit(2) (with terminal value one).This form of loop is disussed in [9℄, [17℄ and other plaes. Buhr [10℄ suggests that it is themost \natural" representation for many loops.De�nition 3.1 S is reduible if replaing any terminal statement exit(k), whih has terminalvalue one, by exit(k � 1) gives a terminal statement of S.Thus the last example given is a reduible statement.3.3 Double IterationIf S is reduible then � ` do do S od od � do S� 1 odwhere S� 1 is S with all the exit statements redued by one (Thus exit(2) beomes exit and exitbeomes a skip statement ie a statement whih has no e�et).3.4 Proper InversionIf every terminal statement of S1 has terminal value zero then� ` do S1; S2 od � S1; do S2; S1 odProgram transformations are used in program development in [5℄, [6℄, [12℄, [13℄ and [7℄. Theseworkers start with an appliative kernel language and add proedural onstruts by means of\de�nitional transformations". Their methods annot ope with general spei�ations and beomeumbersome and unwieldy as more onstruts (suh as loops with multiple exits and expressionswith side-e�ets) are added. In ontrast, the theory developed in [19℄ uses a proedural kernellanguage whih is more easily extended and is able to aommodate spei�ations written in termsof �rst order logi.4 The FuntionA reursive funtion to ompute Akerman's funtion is:funt A(m;n) �if m = 0 then n+ 1elsif n = 0 then A(m� 1; 1)else A(m� 1; A(m;n� 1)) �.It is easy to see that this terminates sine the pair hm;ni is dereased under the lexial orderdenoted �. The funtion learly terminates for n = m = 0 so onsider hm;ni 6= h0; 0i suh thatA terminates for all lower pairs in the lexial order. If m = 0 the result is trivial. If n = 0then hm � 1; ni � hm;ni so A(m � 1; n) terminates whene A(m;n) terminates. If n;m > 0then hm;n � 1i � hm;ni so A(m;n � 1) terminates, hene hm � 1; A(m;n � 1)i � hm;ni soA(m � 1; A(m;n � 1)) terminates and the result is proved. This proof an be made rigorous byapplying the theorem on reursive implementation of spei�ations in [19℄.This funtion is equivalent to the following proedure (whih sets r to A(m;n)):pro Ap(m;n) �if m = 0 then r := n+ 1elsif n = 0 then Ap(m� 1; 1)else Ap(m;n� 1); Ap(m� 1; r) �.4

Note that the value of n is not needed after any inner all so it an be replaed by a global variable:pro Ap(m;n) � A1(m).pro A1(m) �if m = 0 then r := n+ 1elsif n = 0 then n := 1; A1(m� 1)else n := n� 1; A1(m); n := r; A1(m� 1) �.Within A1 we an use the same variable for n and r to get:pro Ap(m;n) � A1(m); r := n.pro A1(m) �if m = 0 then n := n+ 1elsif n = 0 then n := 1; A1(m� 1)else n := n� 1; A1(m); A1(m� 1) �.The elimination of the statement n := r between the two inner alls will be useful later.The usual �rst step in reursion removal is to replae parameters by staks. In this ase it isnot neessary sine the initial value of the parameter m an be reovered after eah reursive alland therefore an be preserved over the all of the proedure:pro A1(m) � A.A � if m = 0 then n := n+ 1elsif n = 0 then n := 1; m := m� 1; A; m := m+ 1else n := n� 1; A; m := m� 1; A; m := m+ 1 �.The inner proedure A preserves the value of m and sets n to A(m, n). Noting that we want toinrement m after the two inner alls at the ends of the seond and third branhes of the if , wetransform A to a version whih inrements m rather than preserving it;AI � if m = 0 then n := n+ 1; m := 1elsif n = 0 then n := 1; m := m� 1; AIelse n := n� 1; AI ; m := m� 1; AI �.Alternatively we may note that m is deremented between the two inner alls in the third lineand so deide to alter A so that it derements m:AD � if m = 0 then n := n+ 1; m := �1elsif n = 0 then n := 1; m := m� 1; AD; m := m+ 2else n := n� 1; AD; AD; m := m+ 2 �.We now disuss three general methods of reursion removal and apply them to the di�erentreursive forms of Akerman's funtion.
5 Method A: The \diret method"The �rst method we shall disuss is the most often used method in whih a protool stak usedto reord the urrent state of the omputation. This method is disussed in [3℄ where \ations"(parameterless proedure alls) are used as an intermediate step. The problem of reursion removalthen redues to the problem of removing non-terminal ation alls. The �rst step is to translateA1 into an ation system in whih the non-terminal ation alls are learly displayed:pro A1(m) � A; Z.A � if m = 0 then n := n+ 1; =Aelsif n = 0 then n := 1; Belse n := n� 1; A; B �.B � m := m� 1; A; C : :C : � m := m+ 1; =A:=A � skip:

5

Here Z is a statement whih auses immediate termination of the outermost all of A1. In orderto transform this to an iterative proedure we need to replae the sequene of operations (reatedby the alls of A in non-terminal positions) by an expliit sequene. We have therefore added theproedures B, C: and =A to help with this. =A is alled whenever a all of A terminates, itimmediately terminates (sine skip is a no-op) and ontrol then passes to Z, B or C: dependingon whether the most reent ativation of A to terminate was the outermost one, the �rst innerone or the seond inner one respetively. We add a protool stak on whih this information willbe reorded so that =A an read this information and all Z, B or C: diretly. This expliit alldisplaes the all whih would our if =A terminated. If the stak is empty then we all Z, if thetop element is 0 we all B, and if it is 1 we all C: :pro A1(m) � L := hi; A.A � if m = 0 then n := n+ 1; =Aelsif n = 0 then n := 1; Belse n := n� 1; L push � 0; A �.B � m := m� 1; L push � 1; A:C : � m := m+ 1; =A:=A � if L = hi then Zelse d pop � L; if d = 0 then B else C : � �.This transformation is proved for the general ase in [19℄.This results in a tail-reursive olletion of proedures: we will now transform these into a singleiterative proedure. Copy B into A and remove the reursion in A:A � do if m = 0 then n := n+ 1; exitelsif n = 0 then n := 1; m := m� 1; L push � 1else n := n� 1; L push � 0 � od; =A:Copy C: and B into =A and then opy in A and remove the reursion:=A � do if L = hi then exit �;d pop � L;if d = 0 then m := m� 1; L push � 1;do if m = 0 then n := n+ 1; exitelsif n = 0 then n := 1; m := m� 1; L push � 1else n := n� 1; L push � 0 � odelse m := m+ 1 � od:Take out the inner loop by double iteration:=A � do do if L = hi then exit(2) �;d pop � L;if d = 0 then m := m� 1; L push � 1; exitelse m := m+ 1 � od;do if m = 0 then n := n+ 1; exitelsif n = 0 then n := 1; m := m� 1; L push � 1else n := n� 1; L push � 0 � od odCopy into A and apply proper inversion:A � do do if m = 0 then n := n+ 1; exitelsif n = 0 then n := 1; m := m� 1; L push � 1else n := n� 1; L push � 0 � oddo if L = hi then exit(2) �;d pop � L;if d = 0 then m := m� 1; L push � 1; exit6

else m := m+ 1 � od od:Note that a stak of binary marks an be replaed by a single integer s, the digits in the binaryrepresentation of s represent the stak elements, with s = 1 representing the empty stak. Thusd pop � L is replaed by hs; di := hs � 2i (whih is the same as d := (s mod 2); s := (s � 2)) andL push � t beomes s := 2:s + t. This will give us an iterative proedure for Akerman's funtionwhih requires only a �xed amount of storage|whih seems a remarkable ahievement! However,we will show later that the maximum stak length is A(m;n) and therefore the maximum size ofthe integer is 2A(m;n) whih will be very large even for small values of m.5.1 Alternative Appliation of Method AThe diret method applied to AD gives:pro Ap(m;n) � L := hi; AD.AD � if m = 0 then n := n+ 1; m := �1; =ADelsif n = 0 then n := 1; m := m� 1; L push � 1; ADelse n := n� 1; L push � 0; AD �.=AD � if L = hi then r := n; Zelse d pop � L;if d = 1 then m := m+ 1; =ADelse L push � 1; AD � �.Replae the tail-reursions by loops (see [19℄ for the proofs of these transformations):AD � do while m 6= 0 doif n = 0 then n := 1; m := m� 1; L push � 1else n := n� 1; L push � 0 � od;n := n+ 1; m := �1;while L 6= hi dod push � L;if d = 1 then m := m+ 1else L push � 1; exit � od od:This is very similar to the diret method applied to AI .6 Method B: The \postponed obligations" methodHere we reord obligations to ompute proedure alls or other statements on a stak together withthe values they require. These obligations are \worked through" in turn until the stak is empty.The general ase of a reursive proedure with two inner alls an be written in the form:pro F (x) � if B then S1; F (g1(x)); S2; F (g2(x)); S3else S4 �.where S1, S2, S3, and S4 are statements whih ontain no alls to F.If x is invariant over S2 this is equivalent to:pro F (x) � var A := h0; xi;while A 6= hi dohm;xi push � A;if m = 0 ! if B then S1; A push � h3; xi; A push � h0; g2(x)i;A push � h2; xi; A push � h0; g1(x)ielse S4 �ut m = 2 ! S2ut m = 3 ! S3 � od.
7

where A and m are new variables loal to the proedure. See [19℄ for the proof of this transfor-mation.Here the stak elements are pairs of the form hd; vi where d is 0 if a proedure all has beenpostponed, 2 if S2 has been postponed, and 3 if S3 has been postponed. v is the value whih needsto be put in the variable x before the \obligation" (proedure all or statement exeution) an beful�lled.Note that if, as in this ase, the last mark pushed onto the stak on one line of the if is thesame value as in the guard of that line, then we know that the next iteration will selet that lineso we an avoid the push and pop by adding an inner loop:pro F (x) � var A := h0; xi :while A 6= hi dohm;xi pop � A;if m = 0 ! while B do S1; A push � h3; xi; A push � h0; g2(x)i;A push � h2; xi; x := g1(x) od; S4ut m = 2 ! S2ut m = 3 ! S3 � od.The transformation of a tail-reursive all into a goto statement (here replaed by a while loop)is disussed in [16℄.In the ase of Akermann's funtion (version A1 above) we have S2 = S3 = skip so we onlyneed to postpone obligations to exeute A and the mark an be dispensed with sine all the markshave the value 0. (This was why we identi�ed r and n above|otherwise S2 = n := r, whih annotbe postponed so we would need the marks to indiate whih statement had been postponed). Weget:pro A1(m) � L := hmi; A.A � while L 6= hi dom pop � L;if m = 0 then n := n+ 1elsif n = 0 then n := 1; L push � (m� 1)else n := n� 1; L push � (m� 1); L push � m � od.We will show later that the stak stores up to A(m;n) values whih range up to A(m;n) in size,so if all stak positions are the same size this requires A(m;n): log2A(m;n) bits of store. The �rstmethod required only A(m;n) bits for the stak.To illustrate the operation of this program we will stak n as well as m at the end of eahiteration of the loop, and immediately unstak it on the next iteration. Add another stak L':pro A1(m) � L := hmi; L0 := hni; A.A � while L 6= hi dom pop � L; n pop � L0;if m = 0 then n := n+ 1; L0 push � nelsif n = 0 then n := 1; L push � (m� 1); L0 push � nelse n := n� 1; L push � (m� 1); L push � m; L0 push � n � od.Now ombine L and L0 into one stak L00 where L00 = L ++ L0 and then replae L00 by L. We get:pro A1(m) � L := hm;ni; A.A � while L 6= hi dohm;ni pop � L;if m = 0 then n := n+ 1; L push � nelsif n = 0 then n := 1; L := L ++ hm� 1; nielse n := n� 1; L := L ++ hm� 1;m; ni � od.
8

Push the statement hm;ni pop � L inside the if , m = 0 beomes L[2℄ = 0 et. and we get:pro A1(m) �L := hm;ni;while `(L) 6= 1 doif L[2℄ = 0 then L := L[3 : :℄ ++ hL[1℄ + 1ielsif L[1℄ = 0 then L := L[3 : :℄ ++ hL[2℄� 1; 1ielse L := L[3 : :℄ ++ hL[2℄� 1; L[2℄; L[1℄ � 1i � od;r := L[1℄:It is easy to see intuitively that this terminates for every n;m > 0 and sets r to the value A(m;n):the following invariant holds over the loop: If L = han; : : : ; a1iA(m;n) = A(an; A(an�1; : : : ; A(a3; A(a2; a1)) : : :))If we de�ne the funtion Ak on sequenes of integers as follows:Ak(L) = A(an; A(an�1; : : : ; A(a3; A(a2; a1)) : : :))Ak(hxi) = xthen our invariant is A(m;n) = Ak(L). The body of the loop repeatedly applies the reursivede�nition of Akerman's funtion to the rightmost two elements of the sequene L, and so preservesthe invariant. On termination the length of L is one and so Ak(L) = L[1℄ = A(m;n), from theinvariant, so r = A(m;n). However, a diret proof of termination is not very easy, partly beause ofthe extreme ineÆieny of the proedure (whih will be demonstrated later)|it is diÆult to provetermination beause the proedure very nearly doesn't terminate! We know that it does terminatebeause we derived it by transformation from a reursive funtion whih we proved terminates.However it is instrutive to try and devise a diret proof of termination (see below).6.1 Alternative appliation of method BWe annot apply the method of postponed obligations to AI , sine the statement m := m � 1between the inner alls alters the value of m whih is used in the test. However the method an beapplied to AD. Note that we do not have any parameters to reord on the stak, but we do needto reord whether AD or the statement m := m + 2 has been postponed. Thus we need a binarystak. We get:pro Ap(m;n) � L := h0i; AD; r := n.AD � while L 6= hi dod pop � L;if d = 1 then m := m+ 2elsif m = 0 then n := n+ 1; m := �1elsif n = 0 then n := 1; m := m� 1; L push � 1; L push � 0else n := n� 1; L push � 1; L push � 0; L push � 0 � od.whih by the transformation given above beomes:pro Ap(m;n) � L := h0i; AD; r := n.AD � while L 6= hi dod pop � L;if d = 1 then m := m+ 2else while m 6= 0 doif n = 0 then n := 1; m := m� 1; L push � 1else n := n� 1; L push � 1; L push � 0 � od;n := n+ 1; m := �1 � od.
9

7 Method CThe previous reursion removal methods are very general in their appliation. However, one problemwith general methods is that using them it is not always possible to exploit regularities in theproblem whih an lead to more eÆient algorithms. This is beause a general method has topreserve the sequene of operations arried out by the reursive proedure. To get a more eÆientversion of the proedure we make use of the fat that in all the previous methods the funtion Ais alulated many times over for many of the smaller pairs of values n and m. We an avoid thisrealulation by maintaining a table of all the values alulated so far and then heking eah pair ofvalues to see if the result is in the table before attempting to alulate it. This method is disussedin [8℄, [7℄ and [1℄ whih desribes \Memorised" funtions. (LISP funtions whih remember theresults of all previous alls and an hek if a new all is the same as a previous one: if it is then thefuntion returns the stored value instead of re-alulating it). In our ase A(m;n) > 0 for all m, nso we an initialise the table to zero and maintain the invariant: T [m;n℄ > 0) T [m;n℄ = A(m;n).Thus, before alulating a value we look in the table: if the value in the table is non-zero thenwe take the result from the table, if the table value is zero then we alulate the value and plaethe result in the table. We de�ne a sub-proedure A2(m;n) whih when alled will return withthe value T [m;n℄ orretly �lled in. Thus if A2(m;n) is alled with T [m;n℄ already �lled in it hasnothing to do.pro Ap(m;n) � T [�; �℄ := 0; A2(m;n); r := T [m;n℄.pro A2(m;n) �if T [n;m℄ = 0then if m = 0 then T [m;n℄ := n+ 1elsif n = 0 then A2(m� 1; 1); T [m; 0℄ := T [m� 1; 1℄else A2(m;n� 1); A2(m� 1; T [m;n � 1℄);T [m;n℄ := T [m� 1; T [m;n � 1℄℄ � �.Notie that to alulate A(m;n) for n > 0 we need to alulate A(m;n� 1), A(m:n� 2), : : : ,A(m; 0)|thus the proedure will �ll in the whole olumn from 0 to n (whih has the value A(m;n)).We also need A(m � 1; A(m;n � 1)) so by a similar argument we see that the m � 1th olumn is�lled in up to position A(m;n � 1) whih also has value A(m;n). Continuing in this way we seethat all the olumns will be �lled in until their �nal value is A(m;n). A more diret way of doingthis, whih will also remove the reursion, is to start �lling in olumn 1 one spae at a time (usingthe fat that A(1; n) = A(0; A(1; n� 1)) = A(1; n� 1)+ 1 and A(1; 0) = A(0; 1) = 0+ 1 = 1), aftereah step we �ll in another spae in eah later olumn if this is possible: ie we keep the olumns tothe right of the �rst �lled in as far as we are able. As soon as the nth position in the mth olumnis �lled we know we have the required result.If pos[i℄ is the last position �lled for olumn i then we maintain:2 6 i 6 m) �pos[i� 1℄ < T [i; pos[i℄℄ _ �pos[i℄ < 0 ^ pos[i� 1℄ < 1��This an be done sine whenever pos[i � 1℄ = T [i; pos[i℄℄ we know: A(i; pos[i℄ + 1) = A(i �1; A(i; pos[i℄)) = A(i � 1; T [i; pos[i℄℄) = A(i � 1; pos[i � 1℄) = T [i � 1; pos[i � 1℄℄. so we an setT [i; pos[i℄ + 1℄ := T [i� 1; pos[i� 1℄℄ and pos[i℄ := pos[i℄ + 1 and maintain the invariant.Also if we set pos[i� 1℄ to 1 then we know:A(i; 0) = A(i� 1; 1) = A(i� 1; pos[i� 1℄) = T [i� 1; pos[i� 1℄℄:so we an set pos[i℄ := 0 and T [i; pos[i℄℄ := T [i� 1; pos[i� 1℄℄.This leads to the proedure:pro Ap(m;n) �if m = 0 then r := n+ 1else T [�; �℄ := 0; pos[�℄ := �1; T [0; 1℄ := 1; pos[1℄ := 0; A �.10

A � while pos[m℄ 6= n dopos[1℄ := pos[1℄ + 1; T [1; pos[1℄℄ := T [1; pos[1℄� 1℄ + 1;(fillinthenextpositioninolumn1);for i := 2 to m step 1 do(hek if any of olumns 2 to m an be extended);if pos[i� 1℄ = 1then pos[i℄ := 0; T [i; pos[i℄℄ := T [i� 1; pos[i� 1℄℄elsif pos[i� 1℄ = T [i; pos[i℄℄then pos[i℄ := pos[i℄ + 1; T [i; pos[i℄℄ := T [i� 1; pos[i� 1℄℄ � od od.We an make the inner loop more eÆient sine one we have failed to extend a olumn (or if weextend a olumn to position 0 only) we will not be able to extend any of the olumns to the rightof it so we an terminate the inner loop.Note also that all aesses to T are of the form T [i; pos[i℄℄: only the �nal value in a olumn isaessed, earlier values being no longer needed. So we only need to store the �nal value in eaholumn. We store these in an array val[�℄ where val[i℄ = T [i; pos[i℄℄ and then remove T from theprogram sine it is never aessed. With these improvements our proedure beomes:pro Ap(m;n) �if m = 0 then r := n+ 1else val[�℄ := 0; pos[�℄ := �1; val[1℄ := 1; pos[1℄ := 0; A �.A � while pos[m℄ 6= n dopos[1℄ := pos[1℄ + 1; val[1℄ := val[1℄ + 1;i := 2;do if i > m then exit �;if pos[i� 1℄ = 1then pos[i℄ := 0; val[i℄ := val[i� 1℄; exitelsif pos[i� 1℄ = val[i℄then pos[i℄ := pos[i℄ + 1; val[i℄ := val[i� 1℄else exit �;i := i+ 1; od od.We now add another variable j whih reords how many olumns have any values in them. Thismeans that the initial assignments val[�℄ := 0 and pos[�℄ := �1 an be replaed by the simpleassignment j := 1. We have the invariant:1 6 j 6 m ^ 8k: �1 6 k 6 j) val[k℄ = A(k; pos[k℄)�Note that within the inner loop we have:8k: �2 6 k 6 i) val[k � 1℄ = val[k℄�so we an replae val[i℄ := val[i � 1℄ by val[i℄ := val[1℄. (Representing val[1℄ by a salar may makethis assignment slightly more eÆient). The result is:pro Ap(m;n) �if m = 0 then r := n+ 1else val[1℄ := 1; pos[1℄ := 0; j := 1; A �.A � do if j = m then if pos[m℄ = n then exit � �;(to avoid aessing pos[m℄ until it has been assigned);pos[1℄ := pos[1℄ + 1; val[1℄ := val[1℄ + 1;i := 2;do if i > m then exit �;if pos[i� 1℄ = 1then pos[i℄ := 0; j := i; val[i℄ := val[1℄; exit
11

elsif pos[i� 1℄ = val[i℄then pos[i℄ := pos[i℄ + 1; val[i℄ := val[1℄else exit �;i := i+ 1; od od.From this proedure we an prove diretly (by indution on n) that:fm = 1g; val[1℄ := 1; pos[1℄ := 0; j := 1; A� fm = 1g; j := 1; val[1℄ := n+ 2; pos[1℄ := nTaking out the m = 1 ase therefore gives:pro A(m;n) �if m = 0 then r := n+ 1elsif m = 1 then r := n+ 2else val[2℄ := 3; pos[2℄ := 0; j := 2; A �.A � do if j = m then if pos[m℄ = n then exit � �;pos[2℄ := pos[2℄ + 1; val[2℄ := val[2℄ + 2;i := 3;do if i > m then exit �;if pos[i� 1℄ = 1then pos[i℄ := 0; j := i; val[i℄ := val[2℄; exitelsif pos[i� 1℄ = val[i℄then pos[i℄ := pos[i℄ + 1; val[i℄ := val[2℄else exit �;i := i+ 1; od od.We an use this version to prove (again by indution on n) that:fm = 2g; val[2℄ := 2; pos[2℄ := 0; j := 2; A� fm = 2g; j := 2; val[2℄ := 2:n+ 3; pos[2℄ := nTaking out the m = 2 ase and m = 3 ase in the same way we get:pro A(m;n) �if m = 0 then r := n+ 1elsif m = 1 then r := n+ 2elsif m = 2 then r := 2:n+ 3elsif m = 3 then r := 2n+3 � 3else val[4℄ := 13; pos[4℄ := 0; j := 4; A �.A � do if j = m then if pos[m℄ = n then exit � �;pos[4℄ := pos[4℄ + 1; val[4℄ := 2val[4℄+3 � 3;i := 4;do if i > m then exit �;if pos[i� 1℄ = 1then pos[i℄ := 0; j := i; val[i℄ := val[4℄; exitelsif pos[i� 1℄ = val[i℄then pos[i℄ := pos[i℄ + 1; val[i℄ := val[4℄else exit �;i := i+ 1; od od.For m > 4 this version will alulate A(m;n) in approximately LOG(A(m;n)) + 1 steps where:LOG(x) = the smallest k st. k log2 x 6 16= �k:�klog2 x 6 16 ^ 8l > k: l log2 x > 16�
12

that is: the number of appliations of log2 to A(m;n) required to bring it below 16. For exam-ple, this proedure will alulate A(4; 2) = 265536 � 3 in 3 steps (sine log2 265536 = 65536 andlog2 65536 = 16; hene LOG(265536� 3) = 2). Compare this with the approximately 2131073=3 stepsrequired by method A. Similarly method E alulates A(6; 0) =65536 2 � 3 in 65533 steps ratherthan about 2=3:(655362)2 steps (see below for the justi�ation of these �gures). Even with modernhigh-speed omputers this is a useful improvement!8 Diret Proof of TerminationTo derive a diret proof of termination we need to �nd a well-founded order relation on sequenessuh that L is dereased under this order by the exeution of the body of the loop. However asimple lexial order on the elements of the sequene will not suÆe.If we ignore the (trivial) ase m = 0 and n = 0 then it is easy to see that the invarianthL[2℄; L[1℄i 6= h0; 0i is maintained by the loop and sine A(0; n) = n+1 and A is inreasing in botharguments we have:Ak(L) > A(0; A(0; : : : ; A(0; 1) : : :)) = `(L) (`(L)� 1 zeros)This follows beause if L[1℄ = 0 then we must have L[2℄ > 0 and so A(L[2℄; L[1℄) = A(L[2℄ �1; 1) > A(0; 1), all other ases follow from the monotoniity of A in both arguments.So `(L) 6 A(m0; n0) is invariant where m0 and n0 are the initial values of m and n.Consider the �nal sequene of \pops" from the stak (ie the �nal sequene of iterations in whihthe �rst alternative is seleted for exeution eah time), we laim that just before this sequeneof pops the stak had the form h0; : : : ; 0; 1i with stak length A. It must be h0; : : : ; 0; xi withx > 0 sine if say the k + 1th element were non-zero, say y, then after k pops we would haveh0; : : : ; 0; y; x+ki and the next iteration would be a \push". x = 1 sine the only way to get a zeroin L[2℄ is by putting a 1 in L[1℄ in the seond alternative of the if .Ak(L) = `(L) if L is of the form h0; : : : ; 0; 1i so the stak is A elements long at this point. Itan never be more than A elements long beause of the invariant above.Our order relation on sequenes will be a lexial order on the sequene of pairs:
Ord(L) =DF hhL(`(L));Ak(L � (`(L)� 1))i;hL(`(L)� 1);Ak(L � (`(L)� 2))i;hL(`(L)� 2);Ak(L � (`(L)� 3))i;: : :iSo for example: Ord(h3; 4; 5; 6i) = hh3; A(4; A(5; 6))i;h4; A(5; 6)i;h5; 6i;0; 0; : : :iwhere the sequene is �lled out with zeros to have A elements and zero is onsidered less than anypair. Then our well-founded order on sequenes is L1 � L2 i� Ord(L1) < Ord(L2).We now show that the exeution of the loop body dereases L under this order: If L =hxk; : : : ; x1; 0; ni where k > 0 then L0 = hxk; : : : ; x1; n + 1i (the value of L after exeution ofthe loop body) and `(L0) = `(L)� 1. The �rst k � 1 pairs of Ord(L) and Ord(L0) are equal sineAk(h0; ni) = Ak(hn+ 1i)13

The kth pairs are: Ord(L)[k℄ = hL[3℄;Ak(L � 2)i = hx1; A(0; n)i= hx1; n+ 1i = hL0[2℄;Ak(L0 � 1)i = Ord(L)[k℄The k + 1th pairs are:Ord(L)[k + 1℄ = hL[2℄;Ak(L � 1)i = h0; ni> 0 = hL0[1℄;Ak(L0 � 0)i = Ord(L)[k + 1℄sine Ak(L0 � 0) is unde�ned.If L = hxk; : : : ; x1;m; 0i then L0 = hxk; : : : ; x1;m� 1; 1i and `(L0) = `(L) The �rst k � 1 pairsof Ord(L) and Ord(L0) are equal sineAk(hm; 0i) = Ak(hm� 1; 1i)The kth pairs are:Ord(L)[k℄ = hL[3℄;Ak(L � 2)i = hx1; A(m; 0)i= hx1; A(m� 1; 1)i = hL0[3℄;Ak(L0 � 2)i = Ord(L)[k℄The k + 1th pairs are:Ord(L)[k + 1℄ = hL[2℄;Ak(L � 1)i = hm; 0i> hm� 1; 1i = hL0[2℄;Ak(L0 � 1)i = Ord(L)[k + 1℄If L = hxk; : : : ; x1;m; ni then L0 = hxk; : : : ; x1;m � 1;m; n � 1i and `(L0) = `(L) + 1 The �rstk � 1 pairs of Ord(L) and Ord(L0) are equal sineAk(hm;ni) = Ak(hm� 1;m; n� 1i):The kth pairs are:Ord(L)[k℄ = hL[3℄;Ak(L � 2)i = hx1; A(m;n)i= hx1; A(m� 1; A(m;n� 1))i = hL0[4℄;Ak(L0 � 3)i = Ord(L)[k℄The k + 1th pairs are:Ord(L)[k + 1℄ = hL[2℄;Ak(L � 1)i = hm;ni> hm� 1; A(m;n� 1)i = hL0[3℄;Ak(L0 � 2)i = Ord(L)[k + 1℄Inidentally, for the next pairs we have:Ord(L)[k + 2℄ = hL[1℄;Ak(L � 0)i = 0< hm;n� 1i = hL0[2℄;Ak(L0 � 1)i = Ord(L)[k + 2℄but this doesn't matter beause we are using a lexial order so the k + 1th pairs take preedene.Hene L is dereased and termination is proved.If we also use the fat that L(i) 6 A is an invariant, then the following integer funtion of L isdereased:If L = han; : : : ; a1i thent(L) = A2A�4an + A2A�5Ak(L � (n� 1)) + A2A�6an�1 + A2A�7Ak(L � (n� 2))+ � � � + A2A�2n+2a3 + A2a�2n+1A(a2; a1) + A2A�2na114

sine n 6 A.This also gives an upper bound for the number of iterations, namely 2A2A�3.This small example shows one of the problems with the method of program development andveri�ation using pre-and post-onditions as proposed in [14℄, [15℄ and [11℄. The tehniques anonly demonstrate partial orretness (ie the program is orret provided it terminates). The proofof termination has to be arried out independently upon the �nal program, and this an requiresome ingenuity: as in the ase above! A diret proof of termination (and of orretness) of theproedure arising from the �rst method (Method A) would appear to be muh more diÆult. Anyontributions are welome!8.1 Determining the number of stepsTo investigate the number of steps the iterative algorithm requires in more detail, we de�neSA(m;n) to be the number of steps required to ompute A(m;n). This an be shown to bethe same as the number of reursive alls the reursive proedure requires by inserting := + 1at the beginning of eah arm of the if . If = 0 initially then the �nal value of is the number ofreursive alls. If we follow the statement through the transformations, we see that is inrementedone in the loop so the �nal value is the number of iterations. Hene SA(m;n) is also the numberof appliations of the de�nition required to expand A(m;n) into an integer.Clearly SA(0; n) = 1, sine the proedure terminates after a single iteration.In omputing A(m; 0) with m > 0 the �rst iteration hanges L from hm; 0i to hm� 1; 1i whihis then hanged to hA(m� 1; 1)iin SA(m� 1; 1) steps ieSA(m; 0) = SA(m� 1; 1) + 1 for m > 0
n m: 0 1 2 3 4 5 60 1 2 3 5 13 65533 655362� 31 2 3 5 13 65533 655362� 32 3 4 7 29 265536 � 33 4 5 9 61 62� 34 5 6 11 125 72� 35 6 7 13 253 82� 36 7 8 15 509 92� 37 8 9 17 1021 102� 38 9 10 19 2045 112� 39 10 11 21 4093 122� 310 11 12 23 8189 132� 311 12 13 25 16381 152� 312 13 14 27 32765 162� 313 14 15 29 65533 172� 3...n n+ 1 n+ 2 2n+ 3 2n+3 � 3 (n+3)2� 3Figure 1: A Table of Values for A(m;n)where nx = xxx:::x (n times).In omputing A(m;n) with m > 0, n > 0 the �rst iteration hanges L from hm;ni to hm �1;m; n � 1i whih is then hanged to hm � 1; A(m;n � 1)i in SA(m;n � 1) steps and thene tohA(m� 1;m; n� 1)i = hA(m;n)i in SA(m� 1; A(m;n� 1)) steps so:

15

SA(m;n) = SA(m;n� 1) + SA(m� 1; A(m;n� 1)) + 1 for m > 0; n > 0So we have the reursive de�nition:SA(0; n) = 1SA(m; 0) = SA(m� 1; 1) + 1SA(m;n) = SA(m;n � 1) + SA(m� 1; A(m;n� 1)) + 1From this de�nition we �nd that for n > 0:SA(1; n) = SA(0; (n� 1) + 2) + SA(1; n� 1) + 1= SA(1; 0) + 2n= 2(n+ 1)
SA(2; n) = SA(1; 2(n� 1) + 3) + SA(2; n� 1) + 1= SA(2; 0) + X16m6n(4m+ 5)= 2n2 + 7n+ 5
SA(3; n) = SA(2; 2(n�1)+3 � 3) + SA(3; n� 1) + 1= X16m6n�22m+5 � 5:2m+2 + 3�+ SA(3; 0)= 128=3:4n � 40:2n + 3n+ 37=3
SA(4; n) = SA(3; A(4; n � 1)) + SA(4; n� 1) + 1= SA(3;(n+2) 2� 3) + 1 + SA(4; n � 1)= 128=3:4(n+2)2 � 40:2(n+2)2 + 3((n+2)2� 3) + 37=3 + 1 + SA(4; n� 1)= 2=3:((n+3)2)2 � 5:(n+3)2 + 3:(n+2)2 + 13=3 + SA(4; n � 1�= 2=3:A(4; n)2 � A(4; n) + 3:A(4; n� 1) + 13=3 + SA(4; n� 1)For example:SA(4; 1) = SA(4; 0) + SA(3; A(4; 0)) + 1= SA(3; 1) + 1 + SA(3; 13) + 1= 108 + SA(3; 13) = 108 + 128=3:413 � 40:213 + 3:13 + 37=3 = 2862984010SA(4; 1) = 2=3:A(4; 1)2 � A(4; 1) + 3:A(4; 0) + 13=3 + SA(4; 0)= 2=3:655332 � 65533 + 3:13 + 13=3 + 107 = 2862984010By indution on n:SA(4; n) = X16m6n�2=3:A(4;m)2 � A(4;m) + 3:A(4;m� 1)�+ 13=3:n+ SA(4; 0)

= X06k6n�1�2=3:A(4; n� k)2 + 2:A(4; n� k)�� 3:A(4; n) + 13=3:n+ 146
A(4; n) = (n+3)2� 3 = 2(n+2)2 � 3so

16

log2(A(4; n) + 3) = (n+2)2 = A(4; n� 1) + 3and log2 log2(A(4; n) + 3) = (n+1)2 = A(4; n� 2) + 3if n > 2, and so on.De�ne k log2 x =DF log2 log2 : : : log2 x (k appliations)Then by indution on k we see thatk log2(A(4; n) + 3) = A(4; n� k) + 3 if n > k(A(4; n� k) + 3)2 = A(4; n� k)2 + 6:A(4; n� k) + 9so A(4; n� k)2 = (klog2(A(4; n) + 3))2 � 6:k log2(A(4; n) + 3) + 9and SA(4; n) = X06k6n�1�2=3:(klog2(A(4; n) + 3))2 � 4:k log2(A(4; n) + 3) + 6+ 2:k log2(A(4; n) + 3)� 6�� 3:A(4; n) + 13=3:n+ 146= X06k6n�1�2=3:k log2(A(4; n) + 3))2 � 2:k log2(A(4; n) + 3)�� 3:A(4; n) + 13=3:n+ 146For n > 2 this meansSA(4; n) � 2=3:A(4; n)2 � A(4; n) + 2=3:(log2(A(4; n) + 3))2� 2: log2(A(4; n) + 3) + 13=3:n+ 146to order (log2 log2A(4; n))2 (this is exat for n = 2)Similarly:SA(5; n) = 2=3: X06k6A(5;n�1)�1�(klog2(A(4; A(5; n� 1)) + 3))2
� 2:k log2(A(4; A(5; n� 1)) + 3)�� 3:A(4; A(5; n� 1)) + 13=3:A(5; n� 1) + 146+ SA(5; n� 1) + 1Now A(4; A(5; n� 1)) = A(5; n) so this is= 2=3: X06k6A(5;n�1)�1�(klog2(A(5; n) + 3))2 � 2:k log2(A(5; n) + 3)�� 3:A(5; n) + 5=3:A(5; n� 1) + 146+ SA(5; n� 1) + 1So by indution on n:SA(5; n) = X16m6n� X06k6A(5;m�1)�1�2=3:(klog2(A(5;m) + 3))2 � 2:k log2(A(5;m) + 3)�
� 3:A(5;m) + 5=3:A(5;m� 1)�+ 146n+ 262984011Finally by indution on m for m > 4 and n > 1:

SA(m;n) � 2=3:A(m;n)2 � A(m;n) + 2=3:(log2(A(m;n) + 3))2 � 2: log2(A(m;n) + 3)to order (log2 log2A(m;n))2
17

Proof: For m > 4, n > 1:SA(m+ 1; n) = SA(m;A(m+ 1; n� 1)) + SA(m+ 1; n� 1) + 1� 2=3:A(m;A(m+ 1; n� 1))2 � A(m;A(m+ 1; n� 1))+ 2=3:(log2(A(m;A(m+ 1; n� 1)) + 3))2� 2: log2(A(m;A(m+ 1; n� 1)) + 3)+ SA(m+ 1; n� 1) + 1to order (log2 log2A(m;A(m+ 1; n� 1)))2(by indution hypothesis) A(m+ 1; n) = A(m;A(m+ 1; n� 1)) so this is� 2=3:A(m+ 1; n)2 � A(m+ 1; n)+ 2=3:(log2(A(m+ 1; n) + 3))2� 2: log2(A(m+ 1; n) + 3)+ SA(m+ 1; n� 1) + 1to order (log2 log2A(m+ 1; n))2.Now SA(m + 1; n � 1) is of the order A(m+ 1; n � 1)2 whih is negligible in omparison with(log2 log2A(m+ 1; n))2 (sine m+ 1 > 4) so this term an be negleted. We get:
SA(m+ 1; n) � 2=3:A(m+ 1; n)2 �A(m+ 1; n) + 2=3:(log2(A(m+ 1; n) + 3))2� 2: log2(A(m+ 1; n) + 3)to order (log2 log2A(m+ 1; n))2 as required.n m: 0 1 2 3 4 50 1 2 5 15 107 28629840111 1 4 14 106 28629840102 1 6 27 541 � 2131073=33 1 8 44 24324 1 10 65 103075 1 12 90 424386 1 14 119 1722337 1 16 152 6939648 1 18 189 27859999 1 20 230 1116437010 1 22 275 4469832511 1 24 324 17887509612 1 26 377 71566409113 1 28 434 2862983902...n 1 2(n+ 1) 2n2 + 7n+ 5 128=3:4n � 40:2n + 3n+ 37=3Figure 2: A Table of Values for SA(m;n)As an example, to test the auray of our approximation for SA(m;n), we alulate:A(4; 1) = 655332=3:A(4; 1)2 = 2863049392 + 2=32=3:(log2(A(4; 1) + 3))2 = 2=3:(log2 65536)2 = 2=3:162 = 512=3 = 170 + 2=32 log2(A(4; 1) + 3) = 2: log2 65536 = 3218

So 2=3:A(4; 1)2 � A(4; 1) + 2=3:(log2(A(4; 1) + 3))2 � 2: log2(A(4; 1) + 3) = 2862983998 + 1=3So the error is 11 + 2=3 and the answer is orret to 8 signi�ant �gures. Note that:(log2 log2(A(4; 1) + 3))2 = 16so our estimate �ts here as well.This is beause the extra terms (involving log2) whih should not have been inluded withm = 4, n = 1 are nearly anelled out by the terms 13=3:n+ 146 whih were omitted.
SA(4; 2) = SA(4; 1) + SA(3; A(4; 1)) + 1= SA(4; 1) + SA(3; 65533) + 1= 2862984010 + 128=3:465533 � 40:265533 + 3:65533 + 37=3 + 1= 128=3:465533 � 40:265533 + 2863180622 + 1=3
A(4; 2) = 265536 � 3 = 8:265533 � 32=3:A(4; 2)2 = 2=3:(265536 � 3)2= 128=3:465533 � 32:265533 + 62=3:(log2(A(4; 2) + 3))2 = 2=3:(log2 265536)2 = 2=3:232log2(A(4; 2) + 3) = log2 265536 = 65536So 2=3:A(4; 2)2 �A(4; 2) + 2=3:(log2(A(4; 2) + 3))2 � 2: log2(A(4; 2) + 3)= 128=3:465533 � 40:265533 + 2863180467 + 2=3So the error is 154 + 2=3 Note that (log2 log2(A(4; 2) + 3))2 = (log2 log2(265536))2 = 256 |so ourestimate �ts here as well.Form = 4 with n > 2 andm = 5, withn > 0 andm > 5 for all n the term in (log2 log2A(m;n))2is by far the largest negleted and has a oeÆient less than one, so the error is smaller than this.As we have seen the error is also smaller than this for m = 4, n = 1, 2 and so for m = 5, n = 0, soto sum up:The error is less than (log2 log2A(m;n))2 for m = 4, n > 0 and for m > 4 and all n.For example A(4; 3) =6 2� 3 so SA(4; 3) is roughly 2=3:(62)2 = 2=3:(222222)2 = 2=3:(2265536)2 =2=3:2265537 log10 SA(4; 3) � log10(2=3) + 265537 > 1 � 2:1019728Now (log2 log2(A(4; 3) + 3))2 = 655362 = 232 (whih has ten digits).So our estimate will give SA(4; 3) orret to 1 � 2:1019728 � 10 signi�ant digits.To alulate the number of iterations around the inner loops for the �rst iterative proedure(Method A) we insert statements := + 1 in four plaes in the original proedure:pro Ap(m;n) � := 0; A1(m); r := n.pro A1(m) �if m = 0 then := + 1; n := n+ 1elsif n = 0 then := + 1; n := 1; A1(m� 1)else := + 1; n := n� 1; A1(m); A1(m� 1); := + 1; �.Following these through the transformations gives:19

A � do if m = 0 then := + 1; n := n+ 1; exitelsif n = 0 then := + 1; n := 1; m := m� 1; L push � 1else := + 1; n := n� 1; L push � 0 � oddo do if L = hi then exit(2) �;d pop � L;if d = 0 then m := m� 1; L push � 1;do if m = 0 then := + 1; n := n+ 1; exitelsif n = 0 then := + 1; n := 1; m := m� 1; L push � 1else := + 1; n := n� 1; L push � 0 � odelse := + 1; m := m+ 1 � od od.where is inremented for eah innermost loop.As for the other version we let SB(m;n) be the number of steps (�nal value of):SB(0; n) = 1SB(m; 0) = SB(m� 1; 1) + 1SB(m;n) = SB(m;n� 1) + SA(m� 1; A(m;n� 1)) + 2The only di�erene is that the third equation has +2 instead of +1.From this de�nition we get, for n > 0:SB(1; n) = 3n+ 2SB(2; n) = 3n2 + 10n+ 6SB(3; n) = 3:22n+4 � 8:2n+2 + 5 + SB(3; n� 1)So by indution on n:SB(3; n) = X16m6n�3:22m+4 � 8:2m+2 + 5�+ SB(3; 0)= 4n+3 � 2n+6 + 5n+ 20
SB(4; n) = SB(3; A(4; n� 1)) + SB(4; n� 1) + 2= SB(3;(n+2) 2� 3) + 2 + SB(4; n� 1)By indution on n:SB(4; n) = X16m6n��A(4;m) + 3�2 � 8:�A(4;m) + 3�+ 5:�A(4;m� 1) + 3��+ 7:n+ SB(4; 0)
SB(4; n) = X06k6n�1�(klog2(A(4; n) + 3))2 � 3:k log2(A(4; n) + 3)�� 5:A(4; n) + 7:n+ 219Finally by indution on m for m > 4 and n > 1 (as for SA):SB(m;n) � A(m;n)2 � 2:A(m;n) + (log2(A(m;n) + 3))2 � 3: log2(A(m;n) + 3)to within (log2 log2A(m;n))2.The error in the estimate for SB(4; 1) is (log2 65536)2� 3: log2(65536)� 7� 219 = �18 that is,the estimate is 18 less than it should be.So even here it is no more than (log2 log2(A(4; 1) + 3))2 + 2.The estimate for SB(4; 1) is: 41 + 219 = 233 more than it should be (log2 log2(A(4; 2) + 3))2 =256 so the estimate �ts here also.

20

n m: 0 1 2 3 4 50 1 2 6 20 154 42944432501 1 5 19 153 42944432492 1 8 38 798 � 2131073=33 1 11 63 36194 1 14 94 154005 1 17 131 635336 1 20 174 2580987 1 23 223 10404398 1 26 278 41779809 1 29 339 1674451310 1 32 406 6704339811 1 25 479 26830445912 1 28 558 107347976013 1 41 643 4294443093...n 1 3:n+ 2 3n2 + 10n+ 6 4n+3 � 2n+6 + 5n+ 20Figure 3: A Table of Values for SB(m;n)
We an use this information to dedue how many times eah alternative in the if statement ofthe seond method is hosen, and hene how many times eah elementary statement is exeutedfor both methods. We add \ounting statements" as follows:pro Ap(m;n) �if m = 0 then D := D + 1; r := n+ 1elsif n = 0 then T := T + 1; Ap(m� 1; 1)else I := I + 1; J := J + 1; Ap(m;n� 1); Ap(m� 1; r) �.With these additions, the seond method gives:pro A1(m) � L := hmi; A.A � while L 6= hi dom pop � L;if m = 0 then D := D + 1; n := n+ 1elsif n = 0 then T := T + 1; n := 1; L push � (m� 1)else I := I + 1; J := J + 1; n := n� 1; L push � (m� 1); L push � m � od.Note that the stak length is dereased when the �rst alternative is hosen; it remains the samewhen the seond is hosen and is inreased when the third is hosen. Hene `(L) = I�D is invariantover the loop. The loop terminates when `(L) = 0, so on termination we have I = D. The sumD + T + I is inreased exatly one on every loop, so on termination D + T + I = SA(n;m). Thesum D+ T + I + J is inreased one when the �rst or seond alternative is hosen and twie whenthe third is hosen, so D + T + I + J = SB(n;m). I and J are inreased together so I = J isinvariant. So if we let: A = A(n;m)andB = log2A(n;m) Then from above:2:I + T = 2=3:A2 � A+ 2=3:B2 �B (1)3:I + T = A2 � 2:A+B2 � 3:B (2)Hene: I = 1=3:A2 � A+ 1=3:B2 �B (2)� (1)T = A+ 3:B 3.(1)� 2.(2)Inserting ounting statements as follows: 21

pro Ap(m;n) �if m = 0 then D := D + 1; r := n+ 1elsif n = 0 then T := T + 1; Ap(m� 1; 1)else I := I + 1; Ap(m;n� 1); J := J + 1; Ap(m� 1; r); K := K + 1 �.(where K = I throughout) and applying the �rst method gives:A � do do if m = 0 then D := D + 1; n := n+ 1; exitelsif n = 0 then T := T + 1; n := 1; m := m� 1; L push � 1else I := I + 1; n := n� 1; L push � 0 � oddo if L = hi then exit(2) �;d pop � L;if d = 0 then J := J + 1; m := m� 1; L push � 1; exitelse K := K + 1; m := m+ 1 � od od.So by using Kirho�'s law we an ount how many times eah statement is exeuted.The totals for various kinds of statements are given in Figure 4Statement Method B Method A A� Btest variable 3:I + 2:T 5:I + 2:T 2:Iin/de variable 3:I + T 4:I + T In := 1 T T 0test stak = hi 2:I + T 2:I �Tpush 2:I + T 2:I + T 0pop 2:I + T 2:I + T 0exit 0 I IFigure 4: Exeution Counts for Various Statement Types
9 ConlusionIn this paper we have illustrated several program transformations for reursion removal by applyingthem to the reursion inherent in Akermann's funtion. Sine many programs are most learlyspei�ed using some form of reursion but most eÆiently written using iterative onstruts, itis very useful to have a set of proven transformations whih will translate reursive spei�ationsinto eÆient iterative algorithms. The transformation theory of [19℄ on whih this paper is basedhas also proved valuable in the analysis of existing programs by transforming the program into aspei�ation whih is easier to understand and modify [18℄.
10 Referenes[1℄ Harold Abelson, Gerald Jay Sussman & Julie Sussman, Struture and Interpretation of ComputerPrograms, MIT Press, Cambridge, MA, 1985.[2℄ W. Akermann, \Zum Hilbertshen Aufbau der reellen Zahlen," Math. Ann. 99 (1928), 118{133.[3℄ J. Arsa, \Syntati Soure to Soure Program Transformations and Program Manipulation," Comm.ACM 22 (Jan., 1982), 43{54.[4℄ R. J. R. Bak, Corretness Preserving Program Re�nements, Mathematial Centre Trats#131,Mathematish Centrum, Amsterdam, 1980.[5℄ F. L. Bauer, Programming as an Evolutionary Proess, Let. Notes in Comp. Si.#46, Springer-Verlag,New York{Heidelberg{Berlin, 1976.

22

[6℄ F. L. Bauer, \Program Development By Stepwise Transformations|the Projet CIP," in ProgramConstrution, G. Goos & H. Hartmanis, eds., Let. Notes in Comp. Si.#69, Springer-Verlag, NewYork{Heidelberg{Berlin, 1979, 237{266.[7℄ F. L. Bauer & H. Wossner, Algorithmi Language and Program Development, Springer-Verlag, NewYork{Heidelberg{Berlin, 1982.[8℄ R. Bird, \Tabulation Tehniques for Reursive Programs," Comput. Surveys 12 (1980), 403{417.[9℄ G. V. Bohmann, \Multiple exits from a loop without the goto," Comm. ACM 16 (July, 1973), 443{444.[10℄ P. A. Buhr, \A Case for Teahing Multi-exit Loops to Beginning Programmers," SIGPLAN Noties 20(Nov., 1985), 14{22.[11℄ D. Gries, The Siene of Programming , Springer-Verlag, New York{Heidelberg{Berlin, 1981.[12℄ M. GriÆths, Program Prodution by Suessive Transformation, Let. Notes in Comp. Si.#46,Springer-Verlag, New York{Heidelberg{Berlin, 1976.[13℄ M. GriÆths, Development of the Shorr-Waite Algorithm, Let. Notes in Comp. Si.#69,Springer-Verlag, New York{Heidelberg{Berlin, 1979.[14℄ C. A. R. Hoare, \An Axiomati Basis for Computer Programming," Comm. ACM (1969).[15℄ C. A. R. Hoare, \Proedures and parameters: An axiomati approah," in Symposium on Semantis ofAlgorithmi Languages, E. Engeler, ed., Let. Notes in Math.#188, Springer-Verlag, NewYork{Heidelberg{Berlin, 1971, 102{116.[16℄ D. E. Knuth, \Strutured Programming with the GOTO Statement," Comput. Surveys 6 (1974),261{301.[17℄ D. Taylor, \An Alternative to Current Looping Syntax," SIGPLAN Noties 19 (De., 1984), 48{53.[18℄ M. Ward, \Transforming a Program into a Spei�ation," Durham University, Tehnial Report 88/1,1988, hhttp://www.dur.a.uk/�ds0mpw/martin/papers/TR-88-1.ps.gzi.[19℄ M. Ward, \Proving Program Re�nements and Transformations," Oxford University, DPhil Thesis, 1989.

23

