
Iterative Pro
edures for Computing A
kerman's Fun
tion
M. P. Ward�Martin.Ward�durham.a
.ukhttp://www.dur.a
.uk/�d
s0mpw/July 16, 1993

Contents1 Introdu
tion 22 Notation 23 The Transformations 33.1 Ba
k Expansion of a Conditional . 33.2 Forward Expansion . 33.3 Double Iteration . 43.4 Proper Inversion . 44 The Fun
tion 45 Method A: The \dire
t method" 55.1 Alternative Appli
ation of Method A . 76 Method B: The \postponed obligations" method 76.1 Alternative appli
ation of method B . 97 Method C 108 Dire
t Proof of Termination 138.1 Determining the number of steps . 159 Con
lusion 2210 Referen
es 22Abstra
tThis paper uses A
kerman's fun
tion as a testbed to illustrate the operation of variousprogram transformations whi
h take re
ursive pro
edures to equivalent iterative forms. Thetransformations are taken from the author's DPhil thesis [19℄. In this paper we illustrate that�Department of Computer S
ien
e University of Durham, Durham, UK
1

they
an be su

essfully applied to even the most
onvoluted re
ursion. For many programs are
ursive fun
tion is the most natural and
lear spe
i�
ation while an iterative (or tail-re
ursive)form is the most eÆ
ient implementation. This paper illustrates how an eÆ
ient iterativeprogram
an be developed and veri�ed by starting with a simple re
ursive program and usingproven transformations to remove the re
ursion. The resulting iterative program will be
orre
tby
onstru
tion, so the problem of a dire
t veri�
ation of the iterative algorithm is avoided.This pro
ess
an also throw light on the nature of the re
ursive spe
i�
ation. Several interestingproperties of A
kermann's fun
tion and the iterative algorithms are derived in the
ourse of thisdevelopment.
1 Introdu
tionA
kerman's fun
tion is de�ned for all m;n > 0 as follows:A(0; n) = n+ 1A(m; 0) = A(m� 1; 1) for m > 0A(m;n) = A(m� 1;A(m;n� 1)) for m;n > 0.A
kerman's fun
tion was originally
onstru
ted in order to prove that there exist
omputablefun
tions whi
h
annot be de�ned using primitive re
ursion. The set of primitive re
ursive fun
tionsis
onstru
ted from a small set of \elementary" fun
tions (the
onstant fun
tions and the su

essorfun
tion \add one") extended by the use of simple re
ursion. Simple re
ursion means:If
 is a
onstant and G and h are primitive re
ursive fun
tions, then the fun
tion f de�ned:f(0) =
f(n+ 1) = G(h(n+ 1); f(n))is also primitive re
ursive.So addition
an be de�ned using re
ursion on the su

essor fun
tion, multipli
ation by repeatedaddition, and so on.Most of the fun
tions and pro
edures traditionally used to illustrate re
ursion removal are simplere
ursions; (the \Towers of Hanoi" problem is a
ommon example, as is the fa
torial fun
tion).A
kermann proved [2℄ that his fun
tion
ould not be de�ned from the su

essor fun
tion usingprimitive re
ursion alone. This suggests that its form of re
ursion is more \
ompli
ated" thanprimitive re
ursions and therefore should present a stronger test of the te
hniques of re
ursionremoval.
2 NotationS, S1, S2 et
. are statements. � is a set of formulae of �rst order logi
 whi
h in
ludes all the\assumptions" we are making about the fun
tions and relations used in programs. For example, ifwe are using the symbol \+" to represent addition then � will in
lude the properties of addition,written in terms of \+", for example �8x; y: x + y = y + x�; �8x: x+ 0 = x� and so on. Note thatthe formulae must have all their variables quanti�ed.Following the notation of [4℄ and [19℄:� ` S1 6 S2 means that statement S1 is re�ned by statement S2 under the assumption thatall the formulae in � are true. This means: For ea
h initial state on whi
h S1 is guaranteed toterminate, S2 is also guaranteed to terminate and will terminate in one of the allowed �nal statesof S1.� ` S1 � S2 means � ` S1 6 S2 and � ` S2 6 S1.

2

If this is the
ase then wherever we see S1 in a program we may repla
e it by S2 without
hanging the input/output behaviour of the program. (See [19℄ for the proof of this assertion). Inthis
ase we say S1 and S2 are equivalent.We use the following notation for sequen
es:� If L is a sequen
e then we denote the ith element of L by L[i℄.� If L has the n elements a1; a2; : : : ; an then we denote the whole sequen
e by han; : : : ; a2; a1i.� If L has n elements then `(L) = n.� If k is an integer between 1 and n then the sequen
e formed from the kth element onwards isde�ned as: L[k : :℄ = hL[n℄; : : : ; L[k℄i� The sequen
e formed from the �rst k elements,
alled the restri
tion of L to k is de�ned as:L � k = hL[k℄; : : : ; L[1℄i� If L1 and L2 are sequen
es then the
on
atenation of L1 and L2 is de�ned as:L1 ++ L22 = hL1[`(L1)℄; : : : ; L1[1℄; L2[`(L2)℄; : : : ; L2[1℄iWe have two spe
ial statements whi
h are used to implement sta
ks as sequen
es. The state-ments add and remove a single element from the given sta
k: If L is a sequen
e and e an expressionthen L push � e is equivalent to the assignment: L := L ++ hei. If L is a sequen
e and x a variablethen x pop � L is equivalent to x := L[1℄; L := L[2 : :℄.So for example, if x is a variable and L a sequen
e then: L push � x; x pop � L leaves both x andL un
hanged.
3 The TransformationsWe will use the following basi
 transformations in several of the derivations, (the formal proofs ofthese are given in [19℄):3.1 Ba
k Expansion of a ConditionalIf formula B is invariant over statement S then:� ` S; if B then S1 else S2 � � if B then S; S1 else S; S2 �3.2 Forward Expansion� ` if B then S1 else S2 �; S � if B then S1; S else S2; S �(These are also des
ribed as \moving a statement into an if statement")Our programming language in
ludes loops of the form do S od whi
h are terminated by theexe
ution of a statement of the form exit(n) (where n is an integer) within the loop. This statement
auses immediate termination of n en
losing do loops. A sub-statement in a statement whi
h ifexe
uted would
ause termination of the statement is
alled a terminal statement, its terminalvalue is the number of en
losing do loops whi
h would also be terminated by that statement. Forexample in: if y = 1 then x := 1 else x := 2 �3

the terminal statements are the two assignments to x, they both have terminal value zero. In:do if y = 1 then x := 1; exit else x := 2; exit(2) � odThe terminal statements are exit (with terminal value zero) and exit(2) (with terminal value one).This form of loop is dis
ussed in [9℄, [17℄ and other pla
es. Buhr [10℄ suggests that it is themost \natural" representation for many loops.De�nition 3.1 S is redu
ible if repla
ing any terminal statement exit(k), whi
h has terminalvalue one, by exit(k � 1) gives a terminal statement of S.Thus the last example given is a redu
ible statement.3.3 Double IterationIf S is redu
ible then � ` do do S od od � do S� 1 odwhere S� 1 is S with all the exit statements redu
ed by one (Thus exit(2) be
omes exit and exitbe
omes a skip statement ie a statement whi
h has no e�e
t).3.4 Proper InversionIf every terminal statement of S1 has terminal value zero then� ` do S1; S2 od � S1; do S2; S1 odProgram transformations are used in program development in [5℄, [6℄, [12℄, [13℄ and [7℄. Theseworkers start with an appli
ative kernel language and add pro
edural
onstru
ts by means of\de�nitional transformations". Their methods
annot
ope with general spe
i�
ations and be
ome
umbersome and unwieldy as more
onstru
ts (su
h as loops with multiple exits and expressionswith side-e�e
ts) are added. In
ontrast, the theory developed in [19℄ uses a pro
edural kernellanguage whi
h is more easily extended and is able to a

ommodate spe
i�
ations written in termsof �rst order logi
.4 The Fun
tionA re
ursive fun
tion to
ompute A
kerman's fun
tion is:fun
t A(m;n) �if m = 0 then n+ 1elsif n = 0 then A(m� 1; 1)else A(m� 1; A(m;n� 1)) �.It is easy to see that this terminates sin
e the pair hm;ni is de
reased under the lexi
al orderdenoted �. The fun
tion
learly terminates for n = m = 0 so
onsider hm;ni 6= h0; 0i su
h thatA terminates for all lower pairs in the lexi
al order. If m = 0 the result is trivial. If n = 0then hm � 1; ni � hm;ni so A(m � 1; n) terminates when
e A(m;n) terminates. If n;m > 0then hm;n � 1i � hm;ni so A(m;n � 1) terminates, hen
e hm � 1; A(m;n � 1)i � hm;ni soA(m � 1; A(m;n � 1)) terminates and the result is proved. This proof
an be made rigorous byapplying the theorem on re
ursive implementation of spe
i�
ations in [19℄.This fun
tion is equivalent to the following pro
edure (whi
h sets r to A(m;n)):pro
 Ap(m;n) �if m = 0 then r := n+ 1elsif n = 0 then Ap(m� 1; 1)else Ap(m;n� 1); Ap(m� 1; r) �.4

Note that the value of n is not needed after any inner
all so it
an be repla
ed by a global variable:pro
 Ap(m;n) � A1(m).pro
 A1(m) �if m = 0 then r := n+ 1elsif n = 0 then n := 1; A1(m� 1)else n := n� 1; A1(m); n := r; A1(m� 1) �.Within A1 we
an use the same variable for n and r to get:pro
 Ap(m;n) � A1(m); r := n.pro
 A1(m) �if m = 0 then n := n+ 1elsif n = 0 then n := 1; A1(m� 1)else n := n� 1; A1(m); A1(m� 1) �.The elimination of the statement n := r between the two inner
alls will be useful later.The usual �rst step in re
ursion removal is to repla
e parameters by sta
ks. In this
ase it isnot ne
essary sin
e the initial value of the parameter m
an be re
overed after ea
h re
ursive
alland therefore
an be preserved over the
all of the pro
edure:pro
 A1(m) � A.A � if m = 0 then n := n+ 1elsif n = 0 then n := 1; m := m� 1; A; m := m+ 1else n := n� 1; A; m := m� 1; A; m := m+ 1 �.The inner pro
edure A preserves the value of m and sets n to A(m, n). Noting that we want toin
rement m after the two inner
alls at the ends of the se
ond and third bran
hes of the if , wetransform A to a version whi
h in
rements m rather than preserving it;AI � if m = 0 then n := n+ 1; m := 1elsif n = 0 then n := 1; m := m� 1; AIelse n := n� 1; AI ; m := m� 1; AI �.Alternatively we may note that m is de
remented between the two inner
alls in the third lineand so de
ide to alter A so that it de
rements m:AD � if m = 0 then n := n+ 1; m := �1elsif n = 0 then n := 1; m := m� 1; AD; m := m+ 2else n := n� 1; AD; AD; m := m+ 2 �.We now dis
uss three general methods of re
ursion removal and apply them to the di�erentre
ursive forms of A
kerman's fun
tion.
5 Method A: The \dire
t method"The �rst method we shall dis
uss is the most often used method in whi
h a proto
ol sta
k usedto re
ord the
urrent state of the
omputation. This method is dis
ussed in [3℄ where \a
tions"(parameterless pro
edure
alls) are used as an intermediate step. The problem of re
ursion removalthen redu
es to the problem of removing non-terminal a
tion
alls. The �rst step is to translateA1 into an a
tion system in whi
h the non-terminal a
tion
alls are
learly displayed:pro
 A1(m) � A; Z.A � if m = 0 then n := n+ 1; =Aelsif n = 0 then n := 1; Belse n := n� 1; A; B �.B � m := m� 1; A; C : :C : � m := m+ 1; =A:=A � skip:

5

Here Z is a statement whi
h
auses immediate termination of the outermost
all of A1. In orderto transform this to an iterative pro
edure we need to repla
e the sequen
e of operations (
reatedby the
alls of A in non-terminal positions) by an expli
it sequen
e. We have therefore added thepro
edures B, C: and =A to help with this. =A is
alled whenever a
all of A terminates, itimmediately terminates (sin
e skip is a no-op) and
ontrol then passes to Z, B or C: dependingon whether the most re
ent a
tivation of A to terminate was the outermost one, the �rst innerone or the se
ond inner one respe
tively. We add a proto
ol sta
k on whi
h this information willbe re
orded so that =A
an read this information and
all Z, B or C: dire
tly. This expli
it
alldispla
es the
all whi
h would o

ur if =A terminated. If the sta
k is empty then we
all Z, if thetop element is 0 we
all B, and if it is 1 we
all C: :pro
 A1(m) � L := hi; A.A � if m = 0 then n := n+ 1; =Aelsif n = 0 then n := 1; Belse n := n� 1; L push � 0; A �.B � m := m� 1; L push � 1; A:C : � m := m+ 1; =A:=A � if L = hi then Zelse d pop � L; if d = 0 then B else C : � �.This transformation is proved for the general
ase in [19℄.This results in a tail-re
ursive
olle
tion of pro
edures: we will now transform these into a singleiterative pro
edure. Copy B into A and remove the re
ursion in A:A � do if m = 0 then n := n+ 1; exitelsif n = 0 then n := 1; m := m� 1; L push � 1else n := n� 1; L push � 0 � od; =A:Copy C: and B into =A and then
opy in A and remove the re
ursion:=A � do if L = hi then exit �;d pop � L;if d = 0 then m := m� 1; L push � 1;do if m = 0 then n := n+ 1; exitelsif n = 0 then n := 1; m := m� 1; L push � 1else n := n� 1; L push � 0 � odelse m := m+ 1 � od:Take out the inner loop by double iteration:=A � do do if L = hi then exit(2) �;d pop � L;if d = 0 then m := m� 1; L push � 1; exitelse m := m+ 1 � od;do if m = 0 then n := n+ 1; exitelsif n = 0 then n := 1; m := m� 1; L push � 1else n := n� 1; L push � 0 � od odCopy into A and apply proper inversion:A � do do if m = 0 then n := n+ 1; exitelsif n = 0 then n := 1; m := m� 1; L push � 1else n := n� 1; L push � 0 � oddo if L = hi then exit(2) �;d pop � L;if d = 0 then m := m� 1; L push � 1; exit6

else m := m+ 1 � od od:Note that a sta
k of binary marks
an be repla
ed by a single integer s, the digits in the binaryrepresentation of s represent the sta
k elements, with s = 1 representing the empty sta
k. Thusd pop � L is repla
ed by hs; di := hs � 2i (whi
h is the same as d := (s mod 2); s := (s � 2)) andL push � t be
omes s := 2:s + t. This will give us an iterative pro
edure for A
kerman's fun
tionwhi
h requires only a �xed amount of storage|whi
h seems a remarkable a
hievement! However,we will show later that the maximum sta
k length is A(m;n) and therefore the maximum size ofthe integer is 2A(m;n) whi
h will be very large even for small values of m.5.1 Alternative Appli
ation of Method AThe dire
t method applied to AD gives:pro
 Ap(m;n) � L := hi; AD.AD � if m = 0 then n := n+ 1; m := �1; =ADelsif n = 0 then n := 1; m := m� 1; L push � 1; ADelse n := n� 1; L push � 0; AD �.=AD � if L = hi then r := n; Zelse d pop � L;if d = 1 then m := m+ 1; =ADelse L push � 1; AD � �.Repla
e the tail-re
ursions by loops (see [19℄ for the proofs of these transformations):AD � do while m 6= 0 doif n = 0 then n := 1; m := m� 1; L push � 1else n := n� 1; L push � 0 � od;n := n+ 1; m := �1;while L 6= hi dod push � L;if d = 1 then m := m+ 1else L push � 1; exit � od od:This is very similar to the dire
t method applied to AI .6 Method B: The \postponed obligations" methodHere we re
ord obligations to
ompute pro
edure
alls or other statements on a sta
k together withthe values they require. These obligations are \worked through" in turn until the sta
k is empty.The general
ase of a re
ursive pro
edure with two inner
alls
an be written in the form:pro
 F (x) � if B then S1; F (g1(x)); S2; F (g2(x)); S3else S4 �.where S1, S2, S3, and S4 are statements whi
h
ontain no
alls to F.If x is invariant over S2 this is equivalent to:pro
 F (x) � var A := h0; xi;while A 6= hi dohm;xi push � A;if m = 0 ! if B then S1; A push � h3; xi; A push � h0; g2(x)i;A push � h2; xi; A push � h0; g1(x)ielse S4 �ut m = 2 ! S2ut m = 3 ! S3 � od.
7

where A and m are new variables lo
al to the pro
edure. See [19℄ for the proof of this transfor-mation.Here the sta
k elements are pairs of the form hd; vi where d is 0 if a pro
edure
all has beenpostponed, 2 if S2 has been postponed, and 3 if S3 has been postponed. v is the value whi
h needsto be put in the variable x before the \obligation" (pro
edure
all or statement exe
ution)
an beful�lled.Note that if, as in this
ase, the last mark pushed onto the sta
k on one line of the if is thesame value as in the guard of that line, then we know that the next iteration will sele
t that lineso we
an avoid the push and pop by adding an inner loop:pro
 F (x) � var A := h0; xi :while A 6= hi dohm;xi pop � A;if m = 0 ! while B do S1; A push � h3; xi; A push � h0; g2(x)i;A push � h2; xi; x := g1(x) od; S4ut m = 2 ! S2ut m = 3 ! S3 � od.The transformation of a tail-re
ursive
all into a goto statement (here repla
ed by a while loop)is dis
ussed in [16℄.In the
ase of A
kermann's fun
tion (version A1 above) we have S2 = S3 = skip so we onlyneed to postpone obligations to exe
ute A and the mark
an be dispensed with sin
e all the markshave the value 0. (This was why we identi�ed r and n above|otherwise S2 = n := r, whi
h
annotbe postponed so we would need the marks to indi
ate whi
h statement had been postponed). Weget:pro
 A1(m) � L := hmi; A.A � while L 6= hi dom pop � L;if m = 0 then n := n+ 1elsif n = 0 then n := 1; L push � (m� 1)else n := n� 1; L push � (m� 1); L push � m � od.We will show later that the sta
k stores up to A(m;n) values whi
h range up to A(m;n) in size,so if all sta
k positions are the same size this requires A(m;n): log2A(m;n) bits of store. The �rstmethod required only A(m;n) bits for the sta
k.To illustrate the operation of this program we will sta
k n as well as m at the end of ea
hiteration of the loop, and immediately unsta
k it on the next iteration. Add another sta
k L':pro
 A1(m) � L := hmi; L0 := hni; A.A � while L 6= hi dom pop � L; n pop � L0;if m = 0 then n := n+ 1; L0 push � nelsif n = 0 then n := 1; L push � (m� 1); L0 push � nelse n := n� 1; L push � (m� 1); L push � m; L0 push � n � od.Now
ombine L and L0 into one sta
k L00 where L00 = L ++ L0 and then repla
e L00 by L. We get:pro
 A1(m) � L := hm;ni; A.A � while L 6= hi dohm;ni pop � L;if m = 0 then n := n+ 1; L push � nelsif n = 0 then n := 1; L := L ++ hm� 1; nielse n := n� 1; L := L ++ hm� 1;m; ni � od.
8

Push the statement hm;ni pop � L inside the if , m = 0 be
omes L[2℄ = 0 et
. and we get:pro
 A1(m) �L := hm;ni;while `(L) 6= 1 doif L[2℄ = 0 then L := L[3 : :℄ ++ hL[1℄ + 1ielsif L[1℄ = 0 then L := L[3 : :℄ ++ hL[2℄� 1; 1ielse L := L[3 : :℄ ++ hL[2℄� 1; L[2℄; L[1℄ � 1i � od;r := L[1℄:It is easy to see intuitively that this terminates for every n;m > 0 and sets r to the value A(m;n):the following invariant holds over the loop: If L = han; : : : ; a1iA(m;n) = A(an; A(an�1; : : : ; A(a3; A(a2; a1)) : : :))If we de�ne the fun
tion A
k on sequen
es of integers as follows:A
k(L) = A(an; A(an�1; : : : ; A(a3; A(a2; a1)) : : :))A
k(hxi) = xthen our invariant is A(m;n) = A
k(L). The body of the loop repeatedly applies the re
ursivede�nition of A
kerman's fun
tion to the rightmost two elements of the sequen
e L, and so preservesthe invariant. On termination the length of L is one and so A
k(L) = L[1℄ = A(m;n), from theinvariant, so r = A(m;n). However, a dire
t proof of termination is not very easy, partly be
ause ofthe extreme ineÆ
ien
y of the pro
edure (whi
h will be demonstrated later)|it is diÆ
ult to provetermination be
ause the pro
edure very nearly doesn't terminate! We know that it does terminatebe
ause we derived it by transformation from a re
ursive fun
tion whi
h we proved terminates.However it is instru
tive to try and devise a dire
t proof of termination (see below).6.1 Alternative appli
ation of method BWe
annot apply the method of postponed obligations to AI , sin
e the statement m := m � 1between the inner
alls alters the value of m whi
h is used in the test. However the method
an beapplied to AD. Note that we do not have any parameters to re
ord on the sta
k, but we do needto re
ord whether AD or the statement m := m + 2 has been postponed. Thus we need a binarysta
k. We get:pro
 Ap(m;n) � L := h0i; AD; r := n.AD � while L 6= hi dod pop � L;if d = 1 then m := m+ 2elsif m = 0 then n := n+ 1; m := �1elsif n = 0 then n := 1; m := m� 1; L push � 1; L push � 0else n := n� 1; L push � 1; L push � 0; L push � 0 � od.whi
h by the transformation given above be
omes:pro
 Ap(m;n) � L := h0i; AD; r := n.AD � while L 6= hi dod pop � L;if d = 1 then m := m+ 2else while m 6= 0 doif n = 0 then n := 1; m := m� 1; L push � 1else n := n� 1; L push � 1; L push � 0 � od;n := n+ 1; m := �1 � od.
9

7 Method CThe previous re
ursion removal methods are very general in their appli
ation. However, one problemwith general methods is that using them it is not always possible to exploit regularities in theproblem whi
h
an lead to more eÆ
ient algorithms. This is be
ause a general method has topreserve the sequen
e of operations
arried out by the re
ursive pro
edure. To get a more eÆ
ientversion of the pro
edure we make use of the fa
t that in all the previous methods the fun
tion Ais
al
ulated many times over for many of the smaller pairs of values n and m. We
an avoid thisre
al
ulation by maintaining a table of all the values
al
ulated so far and then
he
king ea
h pair ofvalues to see if the result is in the table before attempting to
al
ulate it. This method is dis
ussedin [8℄, [7℄ and [1℄ whi
h des
ribes \Memorised" fun
tions. (LISP fun
tions whi
h remember theresults of all previous
alls and
an
he
k if a new
all is the same as a previous one: if it is then thefun
tion returns the stored value instead of re-
al
ulating it). In our
ase A(m;n) > 0 for all m, nso we
an initialise the table to zero and maintain the invariant: T [m;n℄ > 0) T [m;n℄ = A(m;n).Thus, before
al
ulating a value we look in the table: if the value in the table is non-zero thenwe take the result from the table, if the table value is zero then we
al
ulate the value and pla
ethe result in the table. We de�ne a sub-pro
edure A2(m;n) whi
h when
alled will return withthe value T [m;n℄
orre
tly �lled in. Thus if A2(m;n) is
alled with T [m;n℄ already �lled in it hasnothing to do.pro
 Ap(m;n) � T [�; �℄ := 0; A2(m;n); r := T [m;n℄.pro
 A2(m;n) �if T [n;m℄ = 0then if m = 0 then T [m;n℄ := n+ 1elsif n = 0 then A2(m� 1; 1); T [m; 0℄ := T [m� 1; 1℄else A2(m;n� 1); A2(m� 1; T [m;n � 1℄);T [m;n℄ := T [m� 1; T [m;n � 1℄℄ � �.Noti
e that to
al
ulate A(m;n) for n > 0 we need to
al
ulate A(m;n� 1), A(m:n� 2), : : : ,A(m; 0)|thus the pro
edure will �ll in the whole
olumn from 0 to n (whi
h has the value A(m;n)).We also need A(m � 1; A(m;n � 1)) so by a similar argument we see that the m � 1th
olumn is�lled in up to position A(m;n � 1) whi
h also has value A(m;n). Continuing in this way we seethat all the
olumns will be �lled in until their �nal value is A(m;n). A more dire
t way of doingthis, whi
h will also remove the re
ursion, is to start �lling in
olumn 1 one spa
e at a time (usingthe fa
t that A(1; n) = A(0; A(1; n� 1)) = A(1; n� 1)+ 1 and A(1; 0) = A(0; 1) = 0+ 1 = 1), afterea
h step we �ll in another spa
e in ea
h later
olumn if this is possible: ie we keep the
olumns tothe right of the �rst �lled in as far as we are able. As soon as the nth position in the mth
olumnis �lled we know we have the required result.If pos[i℄ is the last position �lled for
olumn i then we maintain:2 6 i 6 m) �pos[i� 1℄ < T [i; pos[i℄℄ _ �pos[i℄ < 0 ^ pos[i� 1℄ < 1��This
an be done sin
e whenever pos[i � 1℄ = T [i; pos[i℄℄ we know: A(i; pos[i℄ + 1) = A(i �1; A(i; pos[i℄)) = A(i � 1; T [i; pos[i℄℄) = A(i � 1; pos[i � 1℄) = T [i � 1; pos[i � 1℄℄. so we
an setT [i; pos[i℄ + 1℄ := T [i� 1; pos[i� 1℄℄ and pos[i℄ := pos[i℄ + 1 and maintain the invariant.Also if we set pos[i� 1℄ to 1 then we know:A(i; 0) = A(i� 1; 1) = A(i� 1; pos[i� 1℄) = T [i� 1; pos[i� 1℄℄:so we
an set pos[i℄ := 0 and T [i; pos[i℄℄ := T [i� 1; pos[i� 1℄℄.This leads to the pro
edure:pro
 Ap(m;n) �if m = 0 then r := n+ 1else T [�; �℄ := 0; pos[�℄ := �1; T [0; 1℄ := 1; pos[1℄ := 0; A �.10

A � while pos[m℄ 6= n dopos[1℄ := pos[1℄ + 1; T [1; pos[1℄℄ := T [1; pos[1℄� 1℄ + 1;(fillinthenextpositionin
olumn1);for i := 2 to m step 1 do(
he
k if any of
olumns 2 to m
an be extended);if pos[i� 1℄ = 1then pos[i℄ := 0; T [i; pos[i℄℄ := T [i� 1; pos[i� 1℄℄elsif pos[i� 1℄ = T [i; pos[i℄℄then pos[i℄ := pos[i℄ + 1; T [i; pos[i℄℄ := T [i� 1; pos[i� 1℄℄ � od od.We
an make the inner loop more eÆ
ient sin
e on
e we have failed to extend a
olumn (or if weextend a
olumn to position 0 only) we will not be able to extend any of the
olumns to the rightof it so we
an terminate the inner loop.Note also that all a

esses to T are of the form T [i; pos[i℄℄: only the �nal value in a
olumn isa

essed, earlier values being no longer needed. So we only need to store the �nal value in ea
h
olumn. We store these in an array val[�℄ where val[i℄ = T [i; pos[i℄℄ and then remove T from theprogram sin
e it is never a

essed. With these improvements our pro
edure be
omes:pro
 Ap(m;n) �if m = 0 then r := n+ 1else val[�℄ := 0; pos[�℄ := �1; val[1℄ := 1; pos[1℄ := 0; A �.A � while pos[m℄ 6= n dopos[1℄ := pos[1℄ + 1; val[1℄ := val[1℄ + 1;i := 2;do if i > m then exit �;if pos[i� 1℄ = 1then pos[i℄ := 0; val[i℄ := val[i� 1℄; exitelsif pos[i� 1℄ = val[i℄then pos[i℄ := pos[i℄ + 1; val[i℄ := val[i� 1℄else exit �;i := i+ 1; od od.We now add another variable j whi
h re
ords how many
olumns have any values in them. Thismeans that the initial assignments val[�℄ := 0 and pos[�℄ := �1
an be repla
ed by the simpleassignment j := 1. We have the invariant:1 6 j 6 m ^ 8k: �1 6 k 6 j) val[k℄ = A(k; pos[k℄)�Note that within the inner loop we have:8k: �2 6 k 6 i) val[k � 1℄ = val[k℄�so we
an repla
e val[i℄ := val[i � 1℄ by val[i℄ := val[1℄. (Representing val[1℄ by a s
alar may makethis assignment slightly more eÆ
ient). The result is:pro
 Ap(m;n) �if m = 0 then r := n+ 1else val[1℄ := 1; pos[1℄ := 0; j := 1; A �.A � do if j = m then if pos[m℄ = n then exit � �;(to avoid a

essing pos[m℄ until it has been assigned);pos[1℄ := pos[1℄ + 1; val[1℄ := val[1℄ + 1;i := 2;do if i > m then exit �;if pos[i� 1℄ = 1then pos[i℄ := 0; j := i; val[i℄ := val[1℄; exit
11

elsif pos[i� 1℄ = val[i℄then pos[i℄ := pos[i℄ + 1; val[i℄ := val[1℄else exit �;i := i+ 1; od od.From this pro
edure we
an prove dire
tly (by indu
tion on n) that:fm = 1g; val[1℄ := 1; pos[1℄ := 0; j := 1; A� fm = 1g; j := 1; val[1℄ := n+ 2; pos[1℄ := nTaking out the m = 1
ase therefore gives:pro
 A(m;n) �if m = 0 then r := n+ 1elsif m = 1 then r := n+ 2else val[2℄ := 3; pos[2℄ := 0; j := 2; A �.A � do if j = m then if pos[m℄ = n then exit � �;pos[2℄ := pos[2℄ + 1; val[2℄ := val[2℄ + 2;i := 3;do if i > m then exit �;if pos[i� 1℄ = 1then pos[i℄ := 0; j := i; val[i℄ := val[2℄; exitelsif pos[i� 1℄ = val[i℄then pos[i℄ := pos[i℄ + 1; val[i℄ := val[2℄else exit �;i := i+ 1; od od.We
an use this version to prove (again by indu
tion on n) that:fm = 2g; val[2℄ := 2; pos[2℄ := 0; j := 2; A� fm = 2g; j := 2; val[2℄ := 2:n+ 3; pos[2℄ := nTaking out the m = 2
ase and m = 3
ase in the same way we get:pro
 A(m;n) �if m = 0 then r := n+ 1elsif m = 1 then r := n+ 2elsif m = 2 then r := 2:n+ 3elsif m = 3 then r := 2n+3 � 3else val[4℄ := 13; pos[4℄ := 0; j := 4; A �.A � do if j = m then if pos[m℄ = n then exit � �;pos[4℄ := pos[4℄ + 1; val[4℄ := 2val[4℄+3 � 3;i := 4;do if i > m then exit �;if pos[i� 1℄ = 1then pos[i℄ := 0; j := i; val[i℄ := val[4℄; exitelsif pos[i� 1℄ = val[i℄then pos[i℄ := pos[i℄ + 1; val[i℄ := val[4℄else exit �;i := i+ 1; od od.For m > 4 this version will
al
ulate A(m;n) in approximately LOG(A(m;n)) + 1 steps where:LOG(x) = the smallest k st. k log2 x 6 16= �k:�klog2 x 6 16 ^ 8l > k: l log2 x > 16�
12

that is: the number of appli
ations of log2 to A(m;n) required to bring it below 16. For exam-ple, this pro
edure will
al
ulate A(4; 2) = 265536 � 3 in 3 steps (sin
e log2 265536 = 65536 andlog2 65536 = 16; hen
e LOG(265536� 3) = 2). Compare this with the approximately 2131073=3 stepsrequired by method A. Similarly method E
al
ulates A(6; 0) =65536 2 � 3 in 65533 steps ratherthan about 2=3:(655362)2 steps (see below for the justi�
ation of these �gures). Even with modernhigh-speed
omputers this is a useful improvement!8 Dire
t Proof of TerminationTo derive a dire
t proof of termination we need to �nd a well-founded order relation on sequen
essu
h that L is de
reased under this order by the exe
ution of the body of the loop. However asimple lexi
al order on the elements of the sequen
e will not suÆ
e.If we ignore the (trivial)
ase m = 0 and n = 0 then it is easy to see that the invarianthL[2℄; L[1℄i 6= h0; 0i is maintained by the loop and sin
e A(0; n) = n+1 and A is in
reasing in botharguments we have:A
k(L) > A(0; A(0; : : : ; A(0; 1) : : :)) = `(L) (`(L)� 1 zeros)This follows be
ause if L[1℄ = 0 then we must have L[2℄ > 0 and so A(L[2℄; L[1℄) = A(L[2℄ �1; 1) > A(0; 1), all other
ases follow from the monotoni
ity of A in both arguments.So `(L) 6 A(m0; n0) is invariant where m0 and n0 are the initial values of m and n.Consider the �nal sequen
e of \pops" from the sta
k (ie the �nal sequen
e of iterations in whi
hthe �rst alternative is sele
ted for exe
ution ea
h time), we
laim that just before this sequen
eof pops the sta
k had the form h0; : : : ; 0; 1i with sta
k length A. It must be h0; : : : ; 0; xi withx > 0 sin
e if say the k + 1th element were non-zero, say y, then after k pops we would haveh0; : : : ; 0; y; x+ki and the next iteration would be a \push". x = 1 sin
e the only way to get a zeroin L[2℄ is by putting a 1 in L[1℄ in the se
ond alternative of the if .A
k(L) = `(L) if L is of the form h0; : : : ; 0; 1i so the sta
k is A elements long at this point. It
an never be more than A elements long be
ause of the invariant above.Our order relation on sequen
es will be a lexi
al order on the sequen
e of pairs:
Ord(L) =DF hhL(`(L));A
k(L � (`(L)� 1))i;hL(`(L)� 1);A
k(L � (`(L)� 2))i;hL(`(L)� 2);A
k(L � (`(L)� 3))i;: : :iSo for example: Ord(h3; 4; 5; 6i) = hh3; A(4; A(5; 6))i;h4; A(5; 6)i;h5; 6i;0; 0; : : :iwhere the sequen
e is �lled out with zeros to have A elements and zero is
onsidered less than anypair. Then our well-founded order on sequen
es is L1 � L2 i� Ord(L1) < Ord(L2).We now show that the exe
ution of the loop body de
reases L under this order: If L =hxk; : : : ; x1; 0; ni where k > 0 then L0 = hxk; : : : ; x1; n + 1i (the value of L after exe
ution ofthe loop body) and `(L0) = `(L)� 1. The �rst k � 1 pairs of Ord(L) and Ord(L0) are equal sin
eA
k(h0; ni) = A
k(hn+ 1i)13

The kth pairs are: Ord(L)[k℄ = hL[3℄;A
k(L � 2)i = hx1; A(0; n)i= hx1; n+ 1i = hL0[2℄;A
k(L0 � 1)i = Ord(L)[k℄The k + 1th pairs are:Ord(L)[k + 1℄ = hL[2℄;A
k(L � 1)i = h0; ni> 0 = hL0[1℄;A
k(L0 � 0)i = Ord(L)[k + 1℄sin
e A
k(L0 � 0) is unde�ned.If L = hxk; : : : ; x1;m; 0i then L0 = hxk; : : : ; x1;m� 1; 1i and `(L0) = `(L) The �rst k � 1 pairsof Ord(L) and Ord(L0) are equal sin
eA
k(hm; 0i) = A
k(hm� 1; 1i)The kth pairs are:Ord(L)[k℄ = hL[3℄;A
k(L � 2)i = hx1; A(m; 0)i= hx1; A(m� 1; 1)i = hL0[3℄;A
k(L0 � 2)i = Ord(L)[k℄The k + 1th pairs are:Ord(L)[k + 1℄ = hL[2℄;A
k(L � 1)i = hm; 0i> hm� 1; 1i = hL0[2℄;A
k(L0 � 1)i = Ord(L)[k + 1℄If L = hxk; : : : ; x1;m; ni then L0 = hxk; : : : ; x1;m � 1;m; n � 1i and `(L0) = `(L) + 1 The �rstk � 1 pairs of Ord(L) and Ord(L0) are equal sin
eA
k(hm;ni) = A
k(hm� 1;m; n� 1i):The kth pairs are:Ord(L)[k℄ = hL[3℄;A
k(L � 2)i = hx1; A(m;n)i= hx1; A(m� 1; A(m;n� 1))i = hL0[4℄;A
k(L0 � 3)i = Ord(L)[k℄The k + 1th pairs are:Ord(L)[k + 1℄ = hL[2℄;A
k(L � 1)i = hm;ni> hm� 1; A(m;n� 1)i = hL0[3℄;A
k(L0 � 2)i = Ord(L)[k + 1℄In
identally, for the next pairs we have:Ord(L)[k + 2℄ = hL[1℄;A
k(L � 0)i = 0< hm;n� 1i = hL0[2℄;A
k(L0 � 1)i = Ord(L)[k + 2℄but this doesn't matter be
ause we are using a lexi
al order so the k + 1th pairs take pre
eden
e.Hen
e L is de
reased and termination is proved.If we also use the fa
t that L(i) 6 A is an invariant, then the following integer fun
tion of L isde
reased:If L = han; : : : ; a1i thent(L) = A2A�4an + A2A�5A
k(L � (n� 1)) + A2A�6an�1 + A2A�7A
k(L � (n� 2))+ � � � + A2A�2n+2a3 + A2a�2n+1A(a2; a1) + A2A�2na114

sin
e n 6 A.This also gives an upper bound for the number of iterations, namely 2A2A�3.This small example shows one of the problems with the method of program development andveri�
ation using pre-and post-
onditions as proposed in [14℄, [15℄ and [11℄. The te
hniques
anonly demonstrate partial
orre
tness (ie the program is
orre
t provided it terminates). The proofof termination has to be
arried out independently upon the �nal program, and this
an requiresome ingenuity: as in the
ase above! A dire
t proof of termination (and of
orre
tness) of thepro
edure arising from the �rst method (Method A) would appear to be mu
h more diÆ
ult. Any
ontributions are wel
ome!8.1 Determining the number of stepsTo investigate the number of steps the iterative algorithm requires in more detail, we de�neSA(m;n) to be the number of steps required to
ompute A(m;n). This
an be shown to bethe same as the number of re
ursive
alls the re
ursive pro
edure requires by inserting
 :=
 + 1at the beginning of ea
h arm of the if . If
 = 0 initially then the �nal value of
 is the number ofre
ursive
alls. If we follow the statement through the transformations, we see that
 is in
rementedon
e in the loop so the �nal value is the number of iterations. Hen
e SA(m;n) is also the numberof appli
ations of the de�nition required to expand A(m;n) into an integer.Clearly SA(0; n) = 1, sin
e the pro
edure terminates after a single iteration.In
omputing A(m; 0) with m > 0 the �rst iteration
hanges L from hm; 0i to hm� 1; 1i whi
his then
hanged to hA(m� 1; 1)iin SA(m� 1; 1) steps ieSA(m; 0) = SA(m� 1; 1) + 1 for m > 0
n m: 0 1 2 3 4 5 60 1 2 3 5 13 65533 655362� 31 2 3 5 13 65533 655362� 32 3 4 7 29 265536 � 33 4 5 9 61 62� 34 5 6 11 125 72� 35 6 7 13 253 82� 36 7 8 15 509 92� 37 8 9 17 1021 102� 38 9 10 19 2045 112� 39 10 11 21 4093 122� 310 11 12 23 8189 132� 311 12 13 25 16381 152� 312 13 14 27 32765 162� 313 14 15 29 65533 172� 3...n n+ 1 n+ 2 2n+ 3 2n+3 � 3 (n+3)2� 3Figure 1: A Table of Values for A(m;n)where nx = xxx:::x (n times).In
omputing A(m;n) with m > 0, n > 0 the �rst iteration
hanges L from hm;ni to hm �1;m; n � 1i whi
h is then
hanged to hm � 1; A(m;n � 1)i in SA(m;n � 1) steps and then
e tohA(m� 1;m; n� 1)i = hA(m;n)i in SA(m� 1; A(m;n� 1)) steps so:

15

SA(m;n) = SA(m;n� 1) + SA(m� 1; A(m;n� 1)) + 1 for m > 0; n > 0So we have the re
ursive de�nition:SA(0; n) = 1SA(m; 0) = SA(m� 1; 1) + 1SA(m;n) = SA(m;n � 1) + SA(m� 1; A(m;n� 1)) + 1From this de�nition we �nd that for n > 0:SA(1; n) = SA(0; (n� 1) + 2) + SA(1; n� 1) + 1= SA(1; 0) + 2n= 2(n+ 1)
SA(2; n) = SA(1; 2(n� 1) + 3) + SA(2; n� 1) + 1= SA(2; 0) + X16m6n(4m+ 5)= 2n2 + 7n+ 5
SA(3; n) = SA(2; 2(n�1)+3 � 3) + SA(3; n� 1) + 1= X16m6n�22m+5 � 5:2m+2 + 3�+ SA(3; 0)= 128=3:4n � 40:2n + 3n+ 37=3
SA(4; n) = SA(3; A(4; n � 1)) + SA(4; n� 1) + 1= SA(3;(n+2) 2� 3) + 1 + SA(4; n � 1)= 128=3:4(n+2)2 � 40:2(n+2)2 + 3((n+2)2� 3) + 37=3 + 1 + SA(4; n� 1)= 2=3:((n+3)2)2 � 5:(n+3)2 + 3:(n+2)2 + 13=3 + SA(4; n � 1�= 2=3:A(4; n)2 � A(4; n) + 3:A(4; n� 1) + 13=3 + SA(4; n� 1)For example:SA(4; 1) = SA(4; 0) + SA(3; A(4; 0)) + 1= SA(3; 1) + 1 + SA(3; 13) + 1= 108 + SA(3; 13) = 108 + 128=3:413 � 40:213 + 3:13 + 37=3 = 2862984010SA(4; 1) = 2=3:A(4; 1)2 � A(4; 1) + 3:A(4; 0) + 13=3 + SA(4; 0)= 2=3:655332 � 65533 + 3:13 + 13=3 + 107 = 2862984010By indu
tion on n:SA(4; n) = X16m6n�2=3:A(4;m)2 � A(4;m) + 3:A(4;m� 1)�+ 13=3:n+ SA(4; 0)

= X06k6n�1�2=3:A(4; n� k)2 + 2:A(4; n� k)�� 3:A(4; n) + 13=3:n+ 146
A(4; n) = (n+3)2� 3 = 2(n+2)2 � 3so

16

log2(A(4; n) + 3) = (n+2)2 = A(4; n� 1) + 3and log2 log2(A(4; n) + 3) = (n+1)2 = A(4; n� 2) + 3if n > 2, and so on.De�ne k log2 x =DF log2 log2 : : : log2 x (k appli
ations)Then by indu
tion on k we see thatk log2(A(4; n) + 3) = A(4; n� k) + 3 if n > k(A(4; n� k) + 3)2 = A(4; n� k)2 + 6:A(4; n� k) + 9so A(4; n� k)2 = (klog2(A(4; n) + 3))2 � 6:k log2(A(4; n) + 3) + 9and SA(4; n) = X06k6n�1�2=3:(klog2(A(4; n) + 3))2 � 4:k log2(A(4; n) + 3) + 6+ 2:k log2(A(4; n) + 3)� 6�� 3:A(4; n) + 13=3:n+ 146= X06k6n�1�2=3:k log2(A(4; n) + 3))2 � 2:k log2(A(4; n) + 3)�� 3:A(4; n) + 13=3:n+ 146For n > 2 this meansSA(4; n) � 2=3:A(4; n)2 � A(4; n) + 2=3:(log2(A(4; n) + 3))2� 2: log2(A(4; n) + 3) + 13=3:n+ 146to order (log2 log2A(4; n))2 (this is exa
t for n = 2)Similarly:SA(5; n) = 2=3: X06k6A(5;n�1)�1�(klog2(A(4; A(5; n� 1)) + 3))2
� 2:k log2(A(4; A(5; n� 1)) + 3)�� 3:A(4; A(5; n� 1)) + 13=3:A(5; n� 1) + 146+ SA(5; n� 1) + 1Now A(4; A(5; n� 1)) = A(5; n) so this is= 2=3: X06k6A(5;n�1)�1�(klog2(A(5; n) + 3))2 � 2:k log2(A(5; n) + 3)�� 3:A(5; n) + 5=3:A(5; n� 1) + 146+ SA(5; n� 1) + 1So by indu
tion on n:SA(5; n) = X16m6n� X06k6A(5;m�1)�1�2=3:(klog2(A(5;m) + 3))2 � 2:k log2(A(5;m) + 3)�
� 3:A(5;m) + 5=3:A(5;m� 1)�+ 146n+ 262984011Finally by indu
tion on m for m > 4 and n > 1:

SA(m;n) � 2=3:A(m;n)2 � A(m;n) + 2=3:(log2(A(m;n) + 3))2 � 2: log2(A(m;n) + 3)to order (log2 log2A(m;n))2
17

Proof: For m > 4, n > 1:SA(m+ 1; n) = SA(m;A(m+ 1; n� 1)) + SA(m+ 1; n� 1) + 1� 2=3:A(m;A(m+ 1; n� 1))2 � A(m;A(m+ 1; n� 1))+ 2=3:(log2(A(m;A(m+ 1; n� 1)) + 3))2� 2: log2(A(m;A(m+ 1; n� 1)) + 3)+ SA(m+ 1; n� 1) + 1to order (log2 log2A(m;A(m+ 1; n� 1)))2(by indu
tion hypothesis) A(m+ 1; n) = A(m;A(m+ 1; n� 1)) so this is� 2=3:A(m+ 1; n)2 � A(m+ 1; n)+ 2=3:(log2(A(m+ 1; n) + 3))2� 2: log2(A(m+ 1; n) + 3)+ SA(m+ 1; n� 1) + 1to order (log2 log2A(m+ 1; n))2.Now SA(m + 1; n � 1) is of the order A(m+ 1; n � 1)2 whi
h is negligible in
omparison with(log2 log2A(m+ 1; n))2 (sin
e m+ 1 > 4) so this term
an be negle
ted. We get:
SA(m+ 1; n) � 2=3:A(m+ 1; n)2 �A(m+ 1; n) + 2=3:(log2(A(m+ 1; n) + 3))2� 2: log2(A(m+ 1; n) + 3)to order (log2 log2A(m+ 1; n))2 as required.n m: 0 1 2 3 4 50 1 2 5 15 107 28629840111 1 4 14 106 28629840102 1 6 27 541 � 2131073=33 1 8 44 24324 1 10 65 103075 1 12 90 424386 1 14 119 1722337 1 16 152 6939648 1 18 189 27859999 1 20 230 1116437010 1 22 275 4469832511 1 24 324 17887509612 1 26 377 71566409113 1 28 434 2862983902...n 1 2(n+ 1) 2n2 + 7n+ 5 128=3:4n � 40:2n + 3n+ 37=3Figure 2: A Table of Values for SA(m;n)As an example, to test the a

ura
y of our approximation for SA(m;n), we
al
ulate:A(4; 1) = 655332=3:A(4; 1)2 = 2863049392 + 2=32=3:(log2(A(4; 1) + 3))2 = 2=3:(log2 65536)2 = 2=3:162 = 512=3 = 170 + 2=32 log2(A(4; 1) + 3) = 2: log2 65536 = 3218

So 2=3:A(4; 1)2 � A(4; 1) + 2=3:(log2(A(4; 1) + 3))2 � 2: log2(A(4; 1) + 3) = 2862983998 + 1=3So the error is 11 + 2=3 and the answer is
orre
t to 8 signi�
ant �gures. Note that:(log2 log2(A(4; 1) + 3))2 = 16so our estimate �ts here as well.This is be
ause the extra terms (involving log2) whi
h should not have been in
luded withm = 4, n = 1 are nearly
an
elled out by the terms 13=3:n+ 146 whi
h were omitted.
SA(4; 2) = SA(4; 1) + SA(3; A(4; 1)) + 1= SA(4; 1) + SA(3; 65533) + 1= 2862984010 + 128=3:465533 � 40:265533 + 3:65533 + 37=3 + 1= 128=3:465533 � 40:265533 + 2863180622 + 1=3
A(4; 2) = 265536 � 3 = 8:265533 � 32=3:A(4; 2)2 = 2=3:(265536 � 3)2= 128=3:465533 � 32:265533 + 62=3:(log2(A(4; 2) + 3))2 = 2=3:(log2 265536)2 = 2=3:232log2(A(4; 2) + 3) = log2 265536 = 65536So 2=3:A(4; 2)2 �A(4; 2) + 2=3:(log2(A(4; 2) + 3))2 � 2: log2(A(4; 2) + 3)= 128=3:465533 � 40:265533 + 2863180467 + 2=3So the error is 154 + 2=3 Note that (log2 log2(A(4; 2) + 3))2 = (log2 log2(265536))2 = 256 |so ourestimate �ts here as well.Form = 4 with n > 2 andm = 5, withn > 0 andm > 5 for all n the term in (log2 log2A(m;n))2is by far the largest negle
ted and has a
oeÆ
ient less than one, so the error is smaller than this.As we have seen the error is also smaller than this for m = 4, n = 1, 2 and so for m = 5, n = 0, soto sum up:The error is less than (log2 log2A(m;n))2 for m = 4, n > 0 and for m > 4 and all n.For example A(4; 3) =6 2� 3 so SA(4; 3) is roughly 2=3:(62)2 = 2=3:(222222)2 = 2=3:(2265536)2 =2=3:2265537 log10 SA(4; 3) � log10(2=3) + 265537 > 1 � 2:1019728Now (log2 log2(A(4; 3) + 3))2 = 655362 = 232 (whi
h has ten digits).So our estimate will give SA(4; 3)
orre
t to 1 � 2:1019728 � 10 signi�
ant digits.To
al
ulate the number of iterations around the inner loops for the �rst iterative pro
edure(Method A) we insert statements
 :=
+ 1 in four pla
es in the original pro
edure:pro
 Ap(m;n) �
 := 0; A1(m); r := n.pro
 A1(m) �if m = 0 then
 :=
+ 1; n := n+ 1elsif n = 0 then
 :=
+ 1; n := 1; A1(m� 1)else
 :=
+ 1; n := n� 1; A1(m); A1(m� 1);
 :=
+ 1; �.Following these through the transformations gives:19

A � do if m = 0 then
 :=
+ 1; n := n+ 1; exitelsif n = 0 then
 :=
+ 1; n := 1; m := m� 1; L push � 1else
 :=
+ 1; n := n� 1; L push � 0 � oddo do if L = hi then exit(2) �;d pop � L;if d = 0 then m := m� 1; L push � 1;do if m = 0 then
 :=
+ 1; n := n+ 1; exitelsif n = 0 then
 :=
+ 1; n := 1; m := m� 1; L push � 1else
 :=
+ 1; n := n� 1; L push � 0 � odelse
 :=
+ 1; m := m+ 1 � od od.where
 is in
remented for ea
h innermost loop.As for the other version we let SB(m;n) be the number of steps (�nal value of
):SB(0; n) = 1SB(m; 0) = SB(m� 1; 1) + 1SB(m;n) = SB(m;n� 1) + SA(m� 1; A(m;n� 1)) + 2The only di�eren
e is that the third equation has +2 instead of +1.From this de�nition we get, for n > 0:SB(1; n) = 3n+ 2SB(2; n) = 3n2 + 10n+ 6SB(3; n) = 3:22n+4 � 8:2n+2 + 5 + SB(3; n� 1)So by indu
tion on n:SB(3; n) = X16m6n�3:22m+4 � 8:2m+2 + 5�+ SB(3; 0)= 4n+3 � 2n+6 + 5n+ 20
SB(4; n) = SB(3; A(4; n� 1)) + SB(4; n� 1) + 2= SB(3;(n+2) 2� 3) + 2 + SB(4; n� 1)By indu
tion on n:SB(4; n) = X16m6n��A(4;m) + 3�2 � 8:�A(4;m) + 3�+ 5:�A(4;m� 1) + 3��+ 7:n+ SB(4; 0)
SB(4; n) = X06k6n�1�(klog2(A(4; n) + 3))2 � 3:k log2(A(4; n) + 3)�� 5:A(4; n) + 7:n+ 219Finally by indu
tion on m for m > 4 and n > 1 (as for SA):SB(m;n) � A(m;n)2 � 2:A(m;n) + (log2(A(m;n) + 3))2 � 3: log2(A(m;n) + 3)to within (log2 log2A(m;n))2.The error in the estimate for SB(4; 1) is (log2 65536)2� 3: log2(65536)� 7� 219 = �18 that is,the estimate is 18 less than it should be.So even here it is no more than (log2 log2(A(4; 1) + 3))2 + 2.The estimate for SB(4; 1) is: 41 + 219 = 233 more than it should be (log2 log2(A(4; 2) + 3))2 =256 so the estimate �ts here also.

20

n m: 0 1 2 3 4 50 1 2 6 20 154 42944432501 1 5 19 153 42944432492 1 8 38 798 � 2131073=33 1 11 63 36194 1 14 94 154005 1 17 131 635336 1 20 174 2580987 1 23 223 10404398 1 26 278 41779809 1 29 339 1674451310 1 32 406 6704339811 1 25 479 26830445912 1 28 558 107347976013 1 41 643 4294443093...n 1 3:n+ 2 3n2 + 10n+ 6 4n+3 � 2n+6 + 5n+ 20Figure 3: A Table of Values for SB(m;n)
We
an use this information to dedu
e how many times ea
h alternative in the if statement ofthe se
ond method is
hosen, and hen
e how many times ea
h elementary statement is exe
utedfor both methods. We add \
ounting statements" as follows:pro
 Ap(m;n) �if m = 0 then D := D + 1; r := n+ 1elsif n = 0 then T := T + 1; Ap(m� 1; 1)else I := I + 1; J := J + 1; Ap(m;n� 1); Ap(m� 1; r) �.With these additions, the se
ond method gives:pro
 A1(m) � L := hmi; A.A � while L 6= hi dom pop � L;if m = 0 then D := D + 1; n := n+ 1elsif n = 0 then T := T + 1; n := 1; L push � (m� 1)else I := I + 1; J := J + 1; n := n� 1; L push � (m� 1); L push � m � od.Note that the sta
k length is de
reased when the �rst alternative is
hosen; it remains the samewhen the se
ond is
hosen and is in
reased when the third is
hosen. Hen
e `(L) = I�D is invariantover the loop. The loop terminates when `(L) = 0, so on termination we have I = D. The sumD + T + I is in
reased exa
tly on
e on every loop, so on termination D + T + I = SA(n;m). Thesum D+ T + I + J is in
reased on
e when the �rst or se
ond alternative is
hosen and twi
e whenthe third is
hosen, so D + T + I + J = SB(n;m). I and J are in
reased together so I = J isinvariant. So if we let: A = A(n;m)andB = log2A(n;m) Then from above:2:I + T = 2=3:A2 � A+ 2=3:B2 �B (1)3:I + T = A2 � 2:A+B2 � 3:B (2)Hen
e: I = 1=3:A2 � A+ 1=3:B2 �B (2)� (1)T = A+ 3:B 3.(1)� 2.(2)Inserting
ounting statements as follows: 21

pro
 Ap(m;n) �if m = 0 then D := D + 1; r := n+ 1elsif n = 0 then T := T + 1; Ap(m� 1; 1)else I := I + 1; Ap(m;n� 1); J := J + 1; Ap(m� 1; r); K := K + 1 �.(where K = I throughout) and applying the �rst method gives:A � do do if m = 0 then D := D + 1; n := n+ 1; exitelsif n = 0 then T := T + 1; n := 1; m := m� 1; L push � 1else I := I + 1; n := n� 1; L push � 0 � oddo if L = hi then exit(2) �;d pop � L;if d = 0 then J := J + 1; m := m� 1; L push � 1; exitelse K := K + 1; m := m+ 1 � od od.So by using Kir
ho�'s law we
an
ount how many times ea
h statement is exe
uted.The totals for various kinds of statements are given in Figure 4Statement Method B Method A A� Btest variable 3:I + 2:T 5:I + 2:T 2:Iin
/de
 variable 3:I + T 4:I + T In := 1 T T 0test sta
k = hi 2:I + T 2:I �Tpush 2:I + T 2:I + T 0pop 2:I + T 2:I + T 0exit 0 I IFigure 4: Exe
ution Counts for Various Statement Types
9 Con
lusionIn this paper we have illustrated several program transformations for re
ursion removal by applyingthem to the re
ursion inherent in A
kermann's fun
tion. Sin
e many programs are most
learlyspe
i�ed using some form of re
ursion but most eÆ
iently written using iterative
onstru
ts, itis very useful to have a set of proven transformations whi
h will translate re
ursive spe
i�
ationsinto eÆ
ient iterative algorithms. The transformation theory of [19℄ on whi
h this paper is basedhas also proved valuable in the analysis of existing programs by transforming the program into aspe
i�
ation whi
h is easier to understand and modify [18℄.
10 Referen
es[1℄ Harold Abelson, Gerald Jay Sussman & Julie Sussman, Stru
ture and Interpretation of ComputerPrograms, MIT Press, Cambridge, MA, 1985.[2℄ W. A
kermann, \Zum Hilberts
hen Aufbau der reellen Zahlen," Math. Ann. 99 (1928), 118{133.[3℄ J. Arsa
, \Synta
ti
 Sour
e to Sour
e Program Transformations and Program Manipulation," Comm.ACM 22 (Jan., 1982), 43{54.[4℄ R. J. R. Ba
k, Corre
tness Preserving Program Re�nements, Mathemati
al Centre Tra
ts#131,Mathematis
h Centrum, Amsterdam, 1980.[5℄ F. L. Bauer, Programming as an Evolutionary Pro
ess, Le
t. Notes in Comp. S
i.#46, Springer-Verlag,New York{Heidelberg{Berlin, 1976.

22

[6℄ F. L. Bauer, \Program Development By Stepwise Transformations|the Proje
t CIP," in ProgramConstru
tion, G. Goos & H. Hartmanis, eds., Le
t. Notes in Comp. S
i.#69, Springer-Verlag, NewYork{Heidelberg{Berlin, 1979, 237{266.[7℄ F. L. Bauer & H. Wossner, Algorithmi
 Language and Program Development, Springer-Verlag, NewYork{Heidelberg{Berlin, 1982.[8℄ R. Bird, \Tabulation Te
hniques for Re
ursive Programs," Comput. Surveys 12 (1980), 403{417.[9℄ G. V. Bo
hmann, \Multiple exits from a loop without the goto," Comm. ACM 16 (July, 1973), 443{444.[10℄ P. A. Buhr, \A Case for Tea
hing Multi-exit Loops to Beginning Programmers," SIGPLAN Noti
es 20(Nov., 1985), 14{22.[11℄ D. Gries, The S
ien
e of Programming , Springer-Verlag, New York{Heidelberg{Berlin, 1981.[12℄ M. GriÆths, Program Produ
tion by Su

essive Transformation, Le
t. Notes in Comp. S
i.#46,Springer-Verlag, New York{Heidelberg{Berlin, 1976.[13℄ M. GriÆths, Development of the S
horr-Waite Algorithm, Le
t. Notes in Comp. S
i.#69,Springer-Verlag, New York{Heidelberg{Berlin, 1979.[14℄ C. A. R. Hoare, \An Axiomati
 Basis for Computer Programming," Comm. ACM (1969).[15℄ C. A. R. Hoare, \Pro
edures and parameters: An axiomati
 approa
h," in Symposium on Semanti
s ofAlgorithmi
 Languages, E. Engeler, ed., Le
t. Notes in Math.#188, Springer-Verlag, NewYork{Heidelberg{Berlin, 1971, 102{116.[16℄ D. E. Knuth, \Stru
tured Programming with the GOTO Statement," Comput. Surveys 6 (1974),261{301.[17℄ D. Taylor, \An Alternative to Current Looping Syntax," SIGPLAN Noti
es 19 (De
., 1984), 48{53.[18℄ M. Ward, \Transforming a Program into a Spe
i�
ation," Durham University, Te
hni
al Report 88/1,1988, hhttp://www.dur.a
.uk/�d
s0mpw/martin/papers/TR-88-1.ps.gzi.[19℄ M. Ward, \Proving Program Re�nements and Transformations," Oxford University, DPhil Thesis, 1989.

23

