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Abstract

This paper uses Ackerman’s function as a testbed to illustrate the operation of various
program transformations which take recursive procedures to equivalent iterative forms. The
transformations are taken from the author’s DPhil thesis [19]. In this paper we illustrate that
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they can be successfully applied to even the most convoluted recursion. For many programs a
recursive function is the most natural and clear specification while an iterative (or tail-recursive)
form is the most efficient implementation. This paper illustrates how an efficient iterative
program can be developed and verified by starting with a simple recursive program and using
proven transformations to remove the recursion. The resulting iterative program will be correct
by construction, so the problem of a direct verification of the iterative algorithm is avoided.
This process can also throw light on the nature of the recursive specification. Several interesting
properties of Ackermann’s function and the iterative algorithms are derived in the course of this
development.

1 Introduction

Ackerman’s function is defined for all m,n > 0 as follows:

A(0,n)=n+1
A(m,0) = A(m —1,1) form >0
A(m,n) = A(m —1,A(m,n—1)) for m,n > 0.

Ackerman’s function was originally constructed in order to prove that there exist computable
functions which cannot be defined using primitive recursion. The set of primitive recursive functions
is constructed from a small set of “elementary” functions (the constant functions and the successor
function “add one”) extended by the use of simple recursion. Simple recursion means:

If ¢ is a constant and G and h are primitive recursive functions, then the function f defined:

f(n+1) = G(h(n+1), f(n))

is also primitive recursive.

So addition can be defined using recursion on the successor function, multiplication by repeated
addition, and so on.

Most of the functions and procedures traditionally used to illustrate recursion removal are simple
recursions; (the “Towers of Hanoi” problem is a common example, as is the factorial function).
Ackermann proved [2] that his function could not be defined from the successor function using
primitive recursion alone. This suggests that its form of recursion is more “complicated” than
primitive recursions and therefore should present a stronger test of the techniques of recursion
removal.

2 Notation

S, S1, Sy etc. are statements. A is a set of formulae of first order logic which includes all the
“assumptions” we are making about the functions and relations used in programs. For example, if
we are using the symbol “4” to represent addition then A will include the properties of addition,
written in terms of “+”, for example (Vm, yr+y=y+ ac), (Va:. z+0= a:) and so on. Note that
the formulae must have all their variables quantified.

Following the notation of [4] and [19]:

A F S; < S, means that statement S; is refined by statement So under the assumption that
all the formulae in A are true. This means: For each initial state on which S; is guaranteed to
terminate, So is also guaranteed to terminate and will terminate in one of the allowed final states
of S;.

AFS; =~ Someans AF Sy <Syand AFSy; <S5



If this is the case then wherever we see S; in a program we may replace it by S, without
changing the input/output behaviour of the program. (See [19] for the proof of this assertion). In
this case we say S; and So are equivalent.

We use the following notation for sequences:

e If L is a sequence then we denote the ith element of L by L][i].

e If L has the n elements aj,as,...,a, then we denote the whole sequence by (an,...,a2,a1).
e If L has n elements then 4(L) = n.

e If k is an integer between 1 and n then the sequence formed from the kth element onwards is
defined as:

e If L1 and L4y are sequences then the concatenation of L1 and L is defined as:

Ly H Loy = (L1[4(L1)],. .., L1[1], L2[¢(L2)], . . ., La[1])

We have two special statements which are used to implement stacks as sequences. The state-
ments add and remove a single element from the given stack: If L is a sequence and e an expression

then L 2" ¢ is equivalent to the assignment: L := L + (e). If L is a sequence and z a variable
then = &2 L is equivalent to z := L[1]; L := L[2..].

So for example, if = is a variable and L a sequence then: L b z; x £ L leaves both z and
L unchanged.

3 The Transformations
We will use the following basic transformations in several of the derivations, (the formal proofs of

these are given in [19]):

3.1 Back Expansion of a Conditional

If formula B is invariant over statement S then:

AFS; if Bthen Sy else S, fi ~ if BthenS; S; else S; Ss fi
3.2 Forward Expansion
Al if Bthen Sy else S, fi; S ~ if B then Sq; S else Sy; S fi

(These are also described as “moving a statement into an if statement”)

Our programming language includes loops of the form do S od which are terminated by the
execution of a statement of the form exit(n) (where n is an integer) within the loop. This statement
causes immediate termination of n enclosing do loops. A sub-statement in a statement which if
executed would cause termination of the statement is called a terminal statement, its terminal
value is the number of enclosing do loops which would also be terminated by that statement. For
example in:

if y=1thenz:=1else z :=2 fi



the terminal statements are the two assignments to z, they both have terminal value zero. In:
do if y = 1 then z := 1; exit else z := 2; exit(2) fi od

The terminal statements are exit (with terminal value zero) and exit(2) (with terminal value one).

This form of loop is discussed in [9], [17] and other places. Buhr [10] suggests that it is the
most “natural” representation for many loops.

Definition 3.1 S is reducible if replacing any terminal statement exit(k), which has terminal
value one, by exit(k — 1) gives a terminal statement of S.

Thus the last example given is a reducible statement.

3.3 Double lteration
If S is reducible then

At+dodoSodod ~ doS -1 od

where S — 1 is S with all the exit statements reduced by one (Thus exit(2) becomes exit and exit
becomes a skip statement ie a statement which has no effect).

3.4 Proper Inversion

If every terminal statement of S; has terminal value zero then
A Fdo Sl; Sg od ~ S1; do Sg; Sl od

Program transformations are used in program development in [5], [6], [12], [13] and [7]. These
workers start with an applicative kernel language and add procedural constructs by means of
“definitional transformations”. Their methods cannot cope with general specifications and become
cumbersome and unwieldy as more constructs (such as loops with multiple exits and expressions
with side-effects) are added. In contrast, the theory developed in [19] uses a procedural kernel
language which is more easily extended and is able to accommodate specifications written in terms
of first order logic.

4 The Function

A recursive function to compute Ackerman’s function is:
funct A(m,n) =
if m=0thenn+1
elsif n = 0 then A(m —1,1)
else A(m — 1, A(m,n — 1)) fi.

It is easy to see that this terminates since the pair (m,n) is decreased under the lexical order
denoted <. The function clearly terminates for n = m = 0 so consider (m,n) # (0,0) such that
A terminates for all lower pairs in the lexical order. If m = 0 the result is trivial. If n = 0
then (m — 1,n) < (m,n) so A(m — 1,n) terminates whence A(m,n) terminates. If n,m > 0
then (m,n — 1) < (m,n) so A(m,n — 1) terminates, hence (m — 1, A(m,n — 1)) < (m,n) so
A(m — 1, A(m,n — 1)) terminates and the result is proved. This proof can be made rigorous by
applying the theorem on recursive implementation of specifications in [19].

This function is equivalent to the following procedure (which sets r to A(m,n)):
proc A,(m,n) =
if m=0thenr:=n+1
elsif n =0 then A,(m — 1,1)
else A,(m,n—1); Ap(m —1,r) fi.



Note that the value of n is not needed after any inner call so it can be replaced by a global variable:
proc A,(m,n) = Ai(m).
proc A;(m) =
ifm=0thenr:=n+1
elsif n =0 then n:=1; A;(m — 1)
elsen:=n—1; Aj(m); n:=r; Ay(m—1) fi.

Within A; we can use the same variable for n and r to get:
proc A,(m,n) = Ai(m); r:=n.
proc A;(m) =
if m=0thenn:=n+1
elsif n = 0 then n :=1; A;(m — 1)
else n:=n—1; Aj(m); Ay(m—1) fi.

The elimination of the statement n := r between the two inner calls will be useful later.

The usual first step in recursion removal is to replace parameters by stacks. In this case it is
not necessary since the initial value of the parameter m can be recovered after each recursive call
and therefore can be preserved over the call of the procedure:
proc A;(m) = A.

A =ifm=0thenn:=n+1
elsif n=0thenn:=1;, m:=m—-1; A; m:=m+1
elsen:=n—1;, A;m:=m—-1; A, m:=m+1 fi.

The inner procedure A preserves the value of m and sets n to A(m, n). Noting that we want to
increment m after the two inner calls at the ends of the second and third branches of the if , we
transform A to a version which increments m rather than preserving it;
Ay =ifm=0thenn:=n+1;, m:=1
elsif n=0thenn:=1;, m:=m—1; Ay
elsen:=n—1; A;; m:=m —1; A; fi.

Alternatively we may note that m is decremented between the two inner calls in the third line
and so decide to alter A so that it decrements m:
Ap =ifm=0thenn:=n+1; m:= -1
elsifn=0thenn:=1;, m:=m—1; Ap; m:=m+ 2
elsen:=n—1; Ap; Ap; m:=m+ 2 fi.

We now discuss three general methods of recursion removal and apply them to the different
recursive forms of Ackerman’s function.

5 Method A: The “direct method”

The first method we shall discuss is the most often used method in which a protocol stack used
to record the current state of the computation. This method is discussed in [3] where “actions”
(parameterless procedure calls) are used as an intermediate step. The problem of recursion removal
then reduces to the problem of removing non-terminal action calls. The first step is to translate
A into an action system in which the non-terminal action calls are clearly displayed:
proc A;(m) = A; Z.
A =ifm=0thenn:=n+1; /A

elsif n =0thenn:=1; B

elsen:=n—1; A; B fi.

B=m:=m-1; A; C: .
C: =m:=m+1; /A
/A = skip.



Here Z is a statement which causes immediate termination of the outermost call of A;. In order
to transform this to an iterative procedure we need to replace the sequence of operations (created
by the calls of A in non-terminal positions) by an ezplicit sequence. We have therefore added the
procedures B, C: and /A to help with this. /A is called whenever a call of A terminates, it
immediately terminates (since skip is a no-op) and control then passes to Z, B or C: depending
on whether the most recent activation of A to terminate was the outermost one, the first inner
one or the second inner one respectively. We add a protocol stack on which this information will
be recorded so that /A can read this information and call Z, B or C: directly. This explicit call
displaces the call which would occur if /A terminated. If the stack is empty then we call Z, if the
top element is 0 we call B, and if it is 1 we call C: :
proc Ai(m) = L:=(); A.

A =ifm=0thenn:=n+1; /A
elsif n =0thenn:=1; B
else n:=n — 1; LHO; A fi.
m:=m — 1; Liﬂl; A.
C: =m:=m+1; /A
/A =if L =) then Z
else d & L; if d =0 then B else C: fi fi.

B =

This transformation is proved for the general case in [19].
This results in a tail-recursive collection of procedures: we will now transform these into a single
iterative procedure. Copy B into A and remove the recursion in A:
A =do if m =0 then n :=n+ 1; exit
elsif n =0thenn:=1;, m:=m —1; Lt
elsen:=n—1; L "0 fi od; JA.

Copy C: and B into /A and then copy in A and remove the recursion:
/A = doif L = () then exit fi;
d & L;
if d=0thenm:=m —1; Lwl;
do if m = 0 then n := n + 1; exit
elsif n=0thenn:=1;, m:=m — 1; L2
else n:=n — 1; L0 fiod
else m := m + 1 fi od.
Take out the inner loop by double iteration:
/A = do do if L = () then exit(2) fi;
d & L;
if d =0 then m :=m — 1; L 1; exit
else m :=m + 1 fi od,;
do if m = 0 then n := n + 1; exit
elsif n=0thenn:=1;, m:=m — 1; L2
elsen:=n—1; L 2" 0 fi od od

Copy into A and apply proper inversion:
A =do doif m =0 then n:=n + 1; exit
elsif n =0thenn:=1;, m:=m —1; Lt
else n:=n—1; L0 fi od
do if L = () then exit(2) fi;
d& L;
ifd =0 then m :=m — 1; Lt 1; exit



else m :=m + 1 fi od od.

Note that a stack of binary marks can be replaced by a single integer s, the digits in the binary
representation of s represent the stack elements, with s = 1 representing the empty stack. Thus
d &2 L is replaced by (s,d) := (s =+ 2) (which is the same as d := (s mod 2); s := (s + 2)) and
L 2" ¢ becomes s := 2.5 + ¢. This will give us an iterative procedure for Ackerman’s function
which requires only a fixed amount of storage—which seems a remarkable achievement! However,
we will show later that the maximum stack length is A(m,n) and therefore the maximum size of
the integer is 24(™") which will be very large even for small values of m.

5.1 Alternative Application of Method A

The direct method applied to Ap gives:
proc A,(m,n) = L:=(); Ap.
Ap =ifm=0thenn:=n+1;, m:=-1; /Ap
elsif n =0thenn:=1;, m:=m—1; L{ﬂl; Ap
else n:=n — 1; LHO; Ap fi.
/Ap =if L= () thenr:=n; Z
elsed &£ ;
ifd=1thenm:=m+1; /Ap
else L 2" 1, Ap fi fi.

Replace the tail-recursions by loops (see [19] for the proofs of these transformations):
Ap = do while m # 0 do
ifn=0thenn:=1;, m:=m—1; L&21
else n:=n—1; L 2= 0 fi od;
n:=n+1;, m:= —1;
while L # () do
d& L,
ifd=1thenm:=m+1
else L & 1; exit fi od od.

This is very similar to the direct method applied to Aj.

6 Method B: The “postponed obligations” method

Here we record obligations to compute procedure calls or other statements on a stack together with
the values they require. These obligations are “worked through” in turn until the stack is empty.
The general case of a recursive procedure with two inner calls can be written in the form:

proc F(z) = if B then Si; F(g1(z)); S2; F(g2(z)); Ss

else Sy fi.

where S1, So, S3, and S4 are statements which contain no calls to F.

If x is invariant over Sy this is equivalent to:
proc F(z) = var A:=(0,z);
while A # () do
(m, ) by
if m =0 — if B then S;; 4 £ (3,z); A 2= (0, go(x));
AER(2,2); AT (0,9:1(2))
else S, fi
Om=2— Sy
Om =3 — S3 fi od.



where A and m are new variables local to the procedure. See [19] for the proof of this transfor-
mation.

Here the stack elements are pairs of the form (d,v) where d is 0 if a procedure call has been
postponed, 2 if S, has been postponed, and 3 if Sg has been postponed. v is the value which needs
to be put in the variable x before the “obligation” (procedure call or statement execution) can be
fulfilled.

Note that if, as in this case, the last mark pushed onto the stack on one line of the if is the
same value as in the guard of that line, then we know that the next iteration will select that line
so we can avoid the push and pop by adding an inner loop:
proc F(z) =var A:=(0,z) :

while A # () do
(m,z) < A;
if m =0 — while B do S1; 4 £ (3,z); A & (0, go(x));
At (2,z); := gi1(z) od; Sy
Om=2— Sy
Om =3 — S; fi od.

The transformation of a tail-recursive call into a goto statement (here replaced by a while loop)
is discussed in [16].

In the case of Ackermann’s function (version A; above) we have Sy = S3 = skip so we only
need to postpone obligations to execute A and the mark can be dispensed with since all the marks
have the value 0. (This was why we identified r and n above—otherwise So = n := r, which cannot
be postponed so we would need the marks to indicate which statement had been postponed). We
get:

proc Ai(m) = L:= (m); A.
A = while L # () do
m &2 L;

if m=0thenn:=n+1
elsif n = 0 then n := 1; Lw(m—l)
elsen:=n—1; L= (m—1); L& m fi od.

We will show later that the stack stores up to A(m,n) values which range up to A(m,n) in size,
so if all stack positions are the same size this requires A(m,n).logy A(m,n) bits of store. The first
method required only A(m,n) bits for the stack.

To illustrate the operation of this program we will stack n as well as m at the end of each
iteration of the loop, and immediately unstack it on the next iteration. Add another stack L’:
proc Ai{(m) = L:=(m); L' := (n); A.

A = while L # () do
m&EX Ly n & L,
ifm=0thenn:=n+1; L' & n
elsifn=0thenn:=1; L& (m—1); I’ &2 p
elsen:=n—1; L 2= (m —1); L2 m: L' 2" 5 fi od.

Now combine L and L' into one stack L” where L = L + L' and then replace L” by L. We get:
proc Ai(m) = L:=(m,n); A.
A = while L # () do
(m,n) & L;
if m=0thenn:=n+1; L&y
elsifn=0thenn:=1; L:=L H# (m—1,n)
elsen:=n—1; L:= L+ (m—1,m,n) fi od.



Push the statement (m,n) ¢~ L inside the if , m = 0 becomes L[2] = 0 etc. and we get:
proc Ai(m) =
L := (m,n);
while £(L) # 1 do
if L[2] =0 then L:=L[3..] # (L[1] + 1)
elsif L[1] =0 then L:= L[3..] # (L[2] — 1,1)
else L:=L[3..] # (L[2] — 1,L[2],L[1] — 1) fi od,;

r:= L[1].

It is easy to see intuitively that this terminates for every n,m > 0 and sets r to the value A(m,n):
the following invariant holds over the loop: If L = (ap,...,a1)

A(m,n) = A(an, A(an—1,...,A(as, A(az,a1))...))
If we define the function Ack on sequences of integers as follows:

Ack(L) = A(an, A(an-1,-..,A(as, A(az,a1))...))
Ack((z)) ==z

then our invariant is A(m,n) = Ack(L). The body of the loop repeatedly applies the recursive
definition of Ackerman’s function to the rightmost two elements of the sequence L, and so preserves
the invariant. On termination the length of L is one and so Ack(L) = L[1] = A(m,n), from the
invariant, so r = A(m,n). However, a direct proof of termination is not very easy, partly because of
the extreme inefficiency of the procedure (which will be demonstrated later)—it is difficult to prove
termination because the procedure very nearly doesn’t terminate! We know that it does terminate
because we derived it by transformation from a recursive function which we proved terminates.
However it is instructive to try and devise a direct proof of termination (see below).

6.1 Alternative application of method B

We cannot apply the method of postponed obligations to Ay, since the statement m := m — 1
between the inner calls alters the value of m which is used in the test. However the method can be
applied to Ap. Note that we do not have any parameters to record on the stack, but we do need
to record whether Ap or the statement m := m + 2 has been postponed. Thus we need a binary
stack. We get:

proc A,(m,n) = L:=(0); Ap; r:=n.

Ap = while L # () do

d & L;
if d=1then m:=m+ 2
elsif m=0thenn:=n+1; m:= -1

elsifn:0thenn::1;m::mfl;Lwl;L}ﬂO
elsen:=n—1; L& 1, L 220, L 20 fi od.

which by the transformation given above becomes:
proc A,(m,n) = L:=(0); Ap; r:=n.
Ap = while L # () do

d & L;

if d=1then m:=m+ 2

else while m # 0 do
ifn=0thenn:=1;, m:=m — 1; L
elsen:=n—1; Liﬂl; L& fi od;
n:=n+1; m:= —1 fi od.



7 Method C

The previous recursion removal methods are very general in their application. However, one problem
with general methods is that using them it is not always possible to exploit regularities in the
problem which can lead to more efficient algorithms. This is because a general method has to
preserve the sequence of operations carried out by the recursive procedure. To get a more efficient
version of the procedure we make use of the fact that in all the previous methods the function A
is calculated many times over for many of the smaller pairs of values n and m. We can avoid this
recalculation by maintaining a table of all the values calculated so far and then checking each pair of
values to see if the result is in the table before attempting to calculate it. This method is discussed
in [8], [7] and [1] which describes “Memorised” functions. (LISP functions which remember the
results of all previous calls and can check if a new call is the same as a previous one: if it is then the
function returns the stored value instead of re-calculating it). In our case A(m,n) > 0 for all m, n
so we can initialise the table to zero and maintain the invariant: T'[m,n| > 0 = T'[m,n| = A(m,n).
Thus, before calculating a value we look in the table: if the value in the table is non-zero then
we take the result from the table, if the table value is zero then we calculate the value and place
the result in the table. We define a sub-procedure Ag(m,n) which when called will return with
the value T'[m, n| correctly filled in. Thus if Ay(m,n) is called with T'[m, n] already filled in it has
nothing to do.
proc A,(m,n)
proc Ay(m,n)
if T'[n,m|] =0
then if m = 0 then T'[m,n| :=n+1
elsif n = 0 then Ay(m —1,1); T[m,0] :=T[m — 1,1]
else Ax(m,n — 1); Ag(m — 1,T[m,n — 1]);
Tm,n] :=T[m — 1,T[m,n — 1]] fi fi.

T[*,*] := 0; Ag(m,n); r:=T[m,n]|.

Notice that to calculate A(m,n) for n > 0 we need to calculate A(m,n — 1), A(m.n —2), ...,
A(m, 0)—thus the procedure will fill in the whole column from 0 to n (which has the value A(m,n)).
We also need A(m — 1, A(m,n — 1)) so by a similar argument we see that the m — 1th column is
filled in up to position A(m,n — 1) which also has value A(m,n). Continuing in this way we see
that all the columns will be filled in until their final value is A(m,n). A more direct way of doing
this, which will also remove the recursion, is to start filling in column 1 one space at a time (using
the fact that A(1,n) = A(0,A(1,n—1)) = A(1,n—1)+1 and A(1,0) = A(0,1) =0+ 1 = 1), after
each step we fill in another space in each later column if this is possible: ie we keep the columns to
the right of the first filled in as far as we are able. As soon as the nth position in the mth column
is filled we know we have the required result.

If pos[i] is the last position filled for column 7 then we maintain:
2 <i<m= (posfi — 1] < T[i,pos[i]] V (pos[i] <0 A pos[i — 1] < 1))

This can be done since whenever pos[i — 1] = T[i, pos|i]] we know: A(Z,pos[i] + 1) = A(i —
1, A(i, pos[i])) = A(i — 1,T[i,pos[i]]) = A(i — 1,pos[i — 1]) = T[i — 1,pos[i — 1]]. so we can set
Ti,pos[i] + 1] := T[i — 1, pos|i — 1]] and pos|i] := pos[i] + 1 and maintain the invariant.

Also if we set pos[i — 1] to 1 then we know:
A(:,0) = A(t — 1,1) = A(s — 1, pos[i — 1]) = T'[i — 1, pos[i — 1]].

so we can set pos[i] := 0 and T'[z, pos[i]] := T[i — 1, pos[i — 1]].
This leads to the procedure:
proc A,(m,n) =
ifm=0thenr:=n+1
else T'[, %] := 0; pos[*] := —1; T[0,1] := 1; pos[1] := 0; A fi.
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A = while pos|m| # n do

pos[1] := pos[1] 4+ 1; T'[1, pos[1]] := T'[1, pos[1] — 1] + 1;
(fillinthenextpositionincolumnl);
for i := 2 to m step 1 do

(check if any of columns 2 to m can be extended);

if posji —1] =1

then pos|i] := 0; T'[i, posi]] := T[i — 1, pos[i — 1]]
elsif pos[i — 1] = T'[i, pos]i]]
then pos[i] := pos[i| + 1; T'[i, pos[i]] := T'[i — 1, pos[i — 1]] fi od od.

We can make the inner loop more efficient since once we have failed to extend a column (or if we
extend a column to position 0 only) we will not be able to extend any of the columns to the right
of it so we can terminate the inner loop.

Note also that all accesses to T' are of the form T'[i, pos[i]]: only the final value in a column is
accessed, earlier values being no longer needed. So we only need to store the final value in each
column. We store these in an array val[*] where val[i] = T'[¢, pos|i]] and then remove T from the
program since it is never accessed. With these improvements our procedure becomes:
proc A,(m,n) =

ifm=0thenr:=n+1
else val[x] := 0; pos[] := —1; val[l] := 1; pos[1] := 0; A fi.
A = while pos|m| # n do
pos[1] := pos[1] + 1; val[l] := val[l] 4+ 1;
1:=2;
do if i > m then exit fi;
if posi —1] =1
then pos[i] := 0; val[i] := val[i — 1]; exit
elsif pos[i — 1] = val[i]
then pos[i] := pos[i] 4+ 1; val[i] := val[i — 1]
else exit fi;
i:=1+ 1; od od.

We now add another variable 5 which records how many columns have any values in them. This
means that the initial assignments val[x] := 0 and pos[*] := —1 can be replaced by the simple
assignment j := 1. We have the invariant:

1<j<m A Vk (1<k<j= vallk] = Ak, pos[k]))
Note that within the inner loop we have:
Vk. (2 < k <i=vallk — 1] = val[k])

so we can replace val[i] := val[i — 1] by val[i] := val[l]. (Representing val[1] by a scalar may make
this assignment slightly more efficient). The result is:
proc A,(m,n) =
ifm=0thenr:=n+1
else val[l] := 1; pos[l] :=0; j:=1; A fi.
A = do if j = m then if pos[m] = n then exit fi fi;
(to avoid accessing pos[m] until it has been assigned);
pos[1] := pos[1] + 1; val[1] := val[1] + 1;
1:=2;
do if ¢ > m then exit fi;
if pos[i —1] =1
then posi] := 0; j := ¢; val[i] := val[l]; exit

11



elsif pos[i — 1] = val[i]
then pos[i] := pos[i| + 1; valli] := val[1]
else exit fi;

i:=1+1; od od.

From this procedure we can prove directly (by induction on n) that:

{m =1}; val[l] :=1; pos[1] :=0; j:=1; A
~ {m=1}; j:=1; val[l] :=n+2; pos[l] :=n

Taking out the m = 1 case therefore gives:
proc A(m,n) =
ifm=0thenr:=n+1
elsif m =1 then r :=n 42
else val[2] := 3; pos[2] := 0; j:= 2; A fi.
A = do if j = m then if posjm] = n then exit fi fi;
pos[2] := pos[2] + 1; val[2] := val[2] + 2;
1:=3;
do if ¢ > m then exit fi;
if posji —1] =1

then pos[i] := 0; j := i; val[i] := val[2]; exit
elsif pos[i — 1] = vall[i]
then pos[i] := pos[i| + 1; vali] := val[2]

else exit fi;
i:=1+1; od od.

We can use this version to prove (again by induction on n) that:

{m = 2}; val[2] := 2; pos[2] :=0; j:=2; A
~ {m=2}; j:=2; val[2] :=2.n+ 3; pos[2] :=n

Taking out the m = 2 case and m = 3 case in the same way we get:
proc A(m,n) =
ifm=0thenr:=n+1
elsif m =1thenr:=n+2
elsif m = 2 then r :=2.n + 3
elsif m = 3 then r := 273 _ 3
else val[4] := 13; pos[4] := 0; j :=4; A fi.
A = do if j = m then if pos[m] = n then exit fi fi;
pos[4] := pos[4] + 1; val[4] := 2vell4+3 _ 3,
1:=4;
do if i > m then exit fi;
if posfi —1] =1
then pos[i] := 0; j := 4; val[i] := val[4]; exit
elsif pos[i — 1] = val[i]
then pos|i] := pos[i] + 1; val[i] := val[4]
else exit fi;
1:=1+1; od od.

For m > 4 this version will calculate A(m,n) in approximately LOG(A(m,n)) + 1 steps where:

LOG(z) = the smallest k st. *logy, z < 16
= uk.(klong <16 A VI > k.llong > 16)

12



that is: the number of applications of logy to A(m,n) required to bring it below 16. For exam-
ple, this procedure will calculate A(4,2) = 26%536 — 3 in 3 steps (since log, 295536 = 65536 and
log, 65536 = 16; hence LOG(26°%36 — 3) = 2). Compare this with the approximately 2131973 /3 steps
required by method A. Similarly method E calculates A(6,0) =5%%36 2 — 3 in 65533 steps rather
than about 2/3.(655362)2 steps (see below for the justification of these figures). Even with modern
high-speed computers this is a useful improvement!

8 Direct Proof of Termination

To derive a direct proof of termination we need to find a well-founded order relation on sequences
such that L is decreased under this order by the execution of the body of the loop. However a
simple lexical order on the elements of the sequence will not suffice.

If we ignore the (trivial) case m = 0 and n = 0 then it is easy to see that the invariant
(L[2], L[1]) # (0,0) is maintained by the loop and since A(0,n) = n+1 and A is increasing in both
arguments we have:

Ack(L) > A(0, A(0,..., A(0,1)...)) = &(L) (£(L) — 1 zeros)

This follows because if L[1] = 0 then we must have L[2] > 0 and so A(L[2], L[1]) = A(L[2] —
1,1) > A(0,1), all other cases follow from the monotonicity of A in both arguments.

So £(L) < A(mo,no) is invariant where mg and ng are the initial values of m and n.

Consider the final sequence of “pops” from the stack (ie the final sequence of iterations in which
the first alternative is selected for execution each time), we claim that just before this sequence
of pops the stack had the form (0,...,0,1) with stack length A. It must be (0,...,0,z) with
x > 0 since if say the k + 1th element were non-zero, say y, then after & pops we would have
(0,...,0,y,z+ k) and the next iteration would be a “push”. z = 1 since the only way to get a zero
in L[2] is by putting a 1 in L[1] in the second alternative of the if .

Ack(L) = ¢(L) if L is of the form (0,...,0,1) so the stack is A elements long at this point. It
can never be more than A elements long because of the invariant above.

Our order relation on sequences will be a lexical order on the sequence of pairs:

Ord(L) =pr ((L(4(L)), Ack(L I (£(L) — 1))),
(L(E(L) — 1), Ack(L
(U(L) — 2), Ack(L
)

So for example:

Ord((3,4,5,6)) = ((3, A(4, A(5,6))),
(4, A(5,6)),
<5’6>’

0,0,...)

where the sequence is filled out with zeros to have A elements and zero is considered less than any
pair. Then our well-founded order on sequences is L1 < Ly iff Ord(L;) < Ord(Lz).

We now show that the execution of the loop body decreases L under this order: If L =
(Tgy...,21,0,n) where k > 0 then L' = (z,...,z1,n + 1) (the value of L after execution of
the loop body) and #(L') = £(L) — 1. The first k — 1 pairs of Ord(L) and Ord(L’) are equal since

Ack((0,n)) = Ack({n + 1))
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The kth pairs are:

Ord(L)[k] = (L[3], Ack(L | 2)) = (21, A(0, )
= (z1,n+ 1) = (L'[2], Ack(L' | 1)) = Ord(L)[]

The k + 1th pairs are:

Ord(L)[k + 1] = (L[2], Ack(L | 1)) = (0, )
> 0 = (L'[1], Ack(L' | 0)) = Ord(L)[k + 1]

since Ack(L' 1 0) is undefined.

If L = (xg,...,21,m,0) then L' = (zg,...,z1,m — 1,1) and £(L') = £(L) The first k — 1 pairs
of Ord(L) and Ord(L') are equal since

Ack((m,0)) = Ack((m — 1,1))
The kth pairs are:

Ord(L)[K] = (L[3], Ack(L [ 2)) = (z1, A(m, 0))
— (21, A(m — 1,1)) = (L'[3], Ack(L' | 2)) = Ord(L)[k]

The k + 1th pairs are:
Ord(L)[k + 1] = (L[2],Ack(L [ 1)) = (m,0)
> (m — 1,1) = (L'[2],Ack(L' | 1)) = Ord(L)[k + 1]

If L= (zx,...,z1,m,n) then L' = (z,...,z1,m — 1,m,n — 1) and £(L') = £(L) + 1 The first
k — 1 pairs of Ord(L) and Ord(L') are equal since

Ack((m,n)) = Ack({m — 1,m,n — 1)).
The kth pairs are:

Ord(L)[k] = (L[3],Ack(L | 2)) = (z1, A(m,n))
= (z1,A(m — 1, A(m,n — 1))) = (L'[4], Ack(L' | 3)) = Ord(L)[¥]

The k + 1th pairs are:
Ord(L)[k + 1] = (L[2],Ack(L [ 1)) = (m,n)
> (m — 1, A(m,n — 1)) = (L'[3],Ack(L' | 2)) = Ord(L)[k + 1]
Incidentally, for the next pairs we have:

Ord(L)[k + 2] = (L[1], Ack(L | 0)) = 0
< (m,n —1) = (L'[2], Ack(L' | 1)) = Ord(L)[k + 2]

but this doesn’t matter because we are using a lexical order so the k& + 1th pairs take precedence.
Hence L is decreased and termination is proved.

If we also use the fact that L(i) < A is an invariant, then the following integer function of L is
decreased:

If L ={ap,...,a1) then

t(L) = A*Ha, + AP PACK(L | (n = 1)) + A% 0y g + A2 TACK(L | (n - 2))
g AP0 4 A2 A gy ap) + APy
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since n < A.

This also gives an upper bound for the number of iterations, namely 24243,

This small example shows one of the problems with the method of program development and
verification using pre-and post-conditions as proposed in [14], [15] and [11]. The techniques can
only demonstrate partial correctness (ie the program is correct provided it terminates). The proof
of termination has to be carried out independently upon the final program, and this can require
some ingenuity: as in the case above! A direct proof of termination (and of correctness) of the
procedure arising from the first method (Method A) would appear to be much more difficult. Any
contributions are welcome!

8.1 Determining the number of steps

To investigate the number of steps the iterative algorithm requires in more detail, we define
SA(m,n) to be the number of steps required to compute A(m,n). This can be shown to be
the same as the number of recursive calls the recursive procedure requires by inserting ¢ := ¢+ 1
at the beginning of each arm of the if . If ¢ = 0 initially then the final value of ¢ is the number of
recursive calls. If we follow the statement through the transformations, we see that c is incremented
once in the loop so the final value is the number of iterations. Hence SA(m,n) is also the number
of applications of the definition required to expand A(m,n) into an integer.

Clearly SA(0,n) = 1, since the procedure terminates after a single iteration.
In computing A(m,0) with m > 0 the first iteration changes L from (m,0) to (m — 1,1) which
is then changed to (A(m —1,1))in SA(m — 1,1) steps ie

SA(m,0) = SA(m —1,1)+1 form >0

n| m:0 1 2 3 4 5 6
0 1 2 3 5 13 65533 0655369 _ 3
1 2 3 5 13 65533 655369 _ 3
2 3 4 7 29 9265536 _ 3
3 4 5 9 61 62 3
4 5 6 11 125 23
5 6 7 13 253 82 -3
6 7 8 15 509 929 -3
7 8 9 17 1021 109 _ 3
8 9 10 19 2045 g _3
9 10 11 21 4093 129 3
10 11 12 23 8189 139 _3
11 12 13 25 16381 159 3
12 13 14 27 32765 169 _ 3
13 14 15 29 65533 179 3
n|n+l n+2 2n+3 273 _3 (i3)y_3

Figure 1: A Table of Values for A(m,n)

where "z = 22 (n times).

In computing A(m,n) with m > 0, n > 0 the first iteration changes L from (m,n) to (m —
1,m,n — 1) which is then changed to (m — 1, A(m,n — 1)) in SA(m,n — 1) steps and thence to
(A(m —1,m,n — 1)) = (A(m,n)) in SA(m — 1, A(m,n — 1)) steps so:
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SA(m,n) = SA(m,n — 1)+ SA(m — 1, A(m,n—1))+1 form > 0,n >0

So we have the recursive definition:

SA0,n) =1
SA(m,0) = SA(m —1,1) +1
SA(m,n) = SA(m,n — 1)+ SA(m — 1, A(m,n — 1)) + 1

From this definition we find that for n > 0:

SA(1,n) = SA(0,(n—-1)+2)+ SA(l,n—-1)+1
= SA(1,0) + 2n
=2(n+1)

SA(2,n) = SA(1,2(n—-1)+3)+SA(2,n—1)+1
= SA(2,0)+ ) (4m+5)
1<m<n

=22+ Tn+5

SA(3,n) = SA(2,2" V3 _3) 4+ §4(3,n—1) +1
= ) (2" - 52m"2 4 3) + SA(3,0)

1<m<n
= 128/3.4™ — 40.2" + 3n + 37/3

SA(4,n) = SA(3,A(4,n — 1))+ SA(4,n —1)+1
= SAB,MD2 - 3)+ 1+ 5A4(4,n 1)
=128/3.47772 _ 40272 4 3(("tV2 _3) 4+ 37/3+ 1+ SA(4,n — 1)
= 2/3.(("¥2)2 5. ("3 4 3.+ 1 13/3 4 SA(4,n — 1)
—2/3.A(4,n)% — A(4,n) + 3.A(4,n — 1) + 13/3 + SA(4,n — 1)
For example:
SA(4,1) = SA(4,0) + SA(3,A(4,0)) + 1
= SA(3,1) + 1+ SA(3,13) + 1
=108 + SA(3,13) = 108 + 128/3.4'% — 40.2'3 + 3.13 + 37/3 = 2862984010
SA(4,1) = 2/3.A(4,1)® — A(4,1) + 3.A(4,0) + 13/3 + SA(4,0)
= 2/3.65533% — 65533 + 3.13 + 13/3 + 107 = 2862984010

By induction on n:

SA(4,n) = > (2/3.A(4,m)* — A(4,m)+3.A(4,m — 1)) +13/3.n + SA(4,0)

1<m<n

= > (2/3.A(4,n—k)® +2.A(4,n — k)) — 3.A(4,n) + 13/3.n + 146
0<k<n—1

(n+2)9

A(4,n) = ™32 32 -3

SO
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logy(A(4,n) +3) = ""¥2 = A(4,n - 1)+ 3
and
log, log,(A(4,n) + 3) = ™12 = A(4,n — 2) + 3

if n > 2, and so on.
Define ¥log, x =, log,log,...log, = (k applications)

Then by induction on k& we see that

Flogy(A(4,n) +3) = A(4,n — k) +3 ifn>k
(A(4,n — k) +3)* = A4,n k) +6.44,n k) +9
SO
A(4,n — k) = (Flogy(A(4,n) +3))? — 6. logy(A(4,n) +3) +9
and

SA4,n) = > (2/3.(Mogy(A(4,n) +3))% — 4.Flog,(A(4,n) +3) + 6
0<k<n—1

+2.%1log,(A(4,n) +3) — 6) — 3.A4(4,n) + 13/3.n + 146

= ) (2/3%logy(A(4,n) +3))* — 2.5 logy(A(4,n) + 3))
0<k<n—1

—3.A(4,n) + 13/3.n + 146
For n > 2 this means
SA(4,n) ~ 2/3.A(4,n)® — A(4,n) + 2/3.(logy(A(4,n) + 3))?
—2.1ogy(A(4,n) + 3) + 13/3.n + 146

to order (log, log, A(4,n))? (this is exact for n = 2)
Similarly:

SA(5,n) = 2/3. > ((*logy(A(4, A(5,n — 1)) + 3))?
0<k<A(5,n—1)—1

—2.Flog,y(A(4,A(5,n — 1)) + 3))
— 3.A(4, A(5,n — 1)) + 13/3.A(5,n — 1) + 146
+SA(B,n—1)+1

Now A(4,A(5,n — 1)) = A(5,n) so this is

= 2/3. Z ((klog2(A(5,n) +3))% — 2.%logy(A(5,n) + 3))
0<k<A(5n—1)—1

—3.A(5,n) +5/3.A(5,n — 1) + 146
+SA(B,n—1)+1
So by induction on n:

SA(B,n) = > ( > (2/3.(Flogy(A(5,m) + 3)) — 2.Flogy(A(5,m) + 3))

1<m<n 0<k<A(5,m—1)—1
— 3.A(5,m) +5/3.A(5,m — 1))
+ 1467 + 262984011

Finally by induction on m for m > 4 and n > 1:

SA(m,n) ~ 2/3.A(m,n)* — A(m,n) + 2/3.(logo(A(m,n) + 3))? — 2.logy(A(m,n) + 3)
to order (log, logy A(m,n))?
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Proof: Form >4, n > 1:
SA(m+1,n) = SA(m,A(m+1,n— 1))+ SA(m+1,n—1)+1
2/3.A(m, A(m 4+ 1,n —1))> — A(m, A(m 4+ 1,n — 1))
+2/3.(logy(A(m, A(m + 1,n — 1)) + 3))?
—2.1logy(A(m, A(m +1,n — 1)) + 3)
+SAm+1,n—-1)+1
to order (logy logy A(m, A(m + 1,n — 1)))?
(by induction hypothesis) A(m + 1,n) = A(m, A(m + 1,n — 1)) so this is
2/3.A(m + 1,n)* — A(m + 1,n)
+2/3.(logy (A(m + 1,n) + 3))?
—2.1logy(A(m +1,n) + 3)
+SA(m+1,n—-1)+1

Q

Q

to order (log, logy A(m + 1,n))2.

Now SA(m + 1,n — 1) is of the order A(m + 1,n — 1)? which is negligible in comparison with
(logy logy A(m 4 1,7n))? (since m + 1 > 4) so this term can be neglected. We get:

SA(m +1,n) ~ 2/3.A(m+1,n)*> — A(m + 1,n) + 2/3.(logy(A(m + 1,n) + 3))?
—2.1logy(A(m + 1,n) + 3)
to order (log, logs A(m + 1,n))? as required.

n|m:0 1 2 3 4 5
0 1 2 5 15 107 2862984011
1 1 4 14 106 2862984010
2 1 6 27 541 ~ 2131073 /3
3 1 8 44 2432
4 1 10 65 10307
5 1 12 90 42438
6 1 14 119 172233
7 1 16 152 693964
8 1 18 189 2785999
9 1 20 230 11164370
10 1 22 275 44698325
11 1 24 324 178875096
12 1 26 377 715664091
13 1 28 434 2862983902
n 1 2(n+1) 2n*+7n+5 128/3.4" —40.2" +3n +37/3

Figure 2: A Table of Values for SA(m,n)

As an example, to test the accuracy of our approximation for SA(m,n), we calculate:
A(4,1) = 65533
2/3.A(4,1)% = 2863049392 4 2/3
2/3.(logy(A(4,1) + 3))% = 2/3.(log, 65536)% = 2/3.16% = 512/3 = 170 + 2/3
2logy(A(4,1) + 3) = 2.1og, 65536 = 32
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So
2/3.A(4,1)% — A(4,1) + 2/3.(logy(A(4,1) + 3))? — 2.logy(A(4,1) + 3) = 2862983998 + 1/3
So the error is 11 + 2/3 and the answer is correct to 8 significant figures. Note that:
(logsy logy(A(4,1) + 3))% = 16

so our estimate fits here as well.

This is because the extra terms (involving log,) which should not have been included with
m = 4, n = 1 are nearly cancelled out by the terms 13/3.n + 146 which were omitted.

SA(4,2) = SA(4,1) + SA(3,A(4,1)) + 1
= SA(4,1) + SA(3,65533) + 1
— 2862984010 + 128/3.455%33 _ 40.26%533 1 3 65533 4+ 37/3 + 1
— 128/3.45%533 _ 40.205533 1 2863180622 + 1/3

A(4,2) = 265536 _ 3 _ g 965533 _ 3
2/3.A(4,2)% = 2/3.(2%5%3¢ _ 3)2
= 128/3.4%55%3 _ 32209533 1 ¢
2/3.(logy(A(4,2) + 3))% = 2/3.(log, 26°536)% = 2/3.232
logy(A(4,2) + 3) = log, 26°5%6 = 65536

So

2/3.A(4,2)% — A(4,2) + 2/3.(logy(A(4,2) + 3))% — 2.1ogy(A(4,2) + 3)
= 128/3.45%533 _ 40.205%33 1 9863180467 + 2/3

So the error is 154 + 2/3 Note that (log, logy(A(4,2) + 3))% = (log, log,(265%36))2 = 256 —so our
estimate fits here as well.

For m = 4 with n > 2 and m = 5, withn > 0 and m > 5 for all n the term in (log, logy A(m,n))?

is by far the largest neglected and has a coeflicient less than one, so the error is smaller than this.
As we have seen the error is also smaller than this for m =4, n =1, 2 and so for m =5, n = 0, so
to sum up:

The error is less than (log, logy A(m,n))? for m = 4, n > 0 and for m > 4 and all n.

227
For example A(4,3) =5 2 — 3 so SA(4,3) is roughly 2/3.(62)2 = 2/3.(22" )2 =2/3.(22""")2 =
2/3.22"" " 1og 0 SA(4,3) ~ logyy(2/3) + 265937 > 1.2.1019728

Now (logy logy(A(4,3) +3))2 = 655362 = 232 (which has ten digits).

019728

So our estimate will give SA(4,3) correct to 1-2.1 — 10 significant digits.

To calculate the number of iterations around the inner loops for the first iterative procedure
(Method A) we insert statements ¢ := ¢+ 1 in four places in the original procedure:
proc A,(m,n) = c:=0; Ai(m); r:=n.
proc A;(m) =
ifm=0thenc:=c+1;n:=n+1
elsif n =0thenc:=c+1; n:=1; Ay(m—1)
elsec:=c+1; n:=n—-1; A;(m); Ai(m—1); c:=c+1; fi.

Following these through the transformations gives:
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A =doifm=0thenc:=c+1; n:=n+1; exit
elsifnZOthenc::c—f—I;n::l;m::m—l;Lfﬂl
eIsec:zc—i—l;n:zn—l;LﬂOfiod
do do if L = () then exit(2) fi;
d& L;
ifdzOthenm::m—l;LHl;
doif m =0then c:=c+1; n:=n+1; exit
elsifn=0thenc:=c+1;n:=1; m:=m—1; L &21
elsec::c—l—l;n::n—l;LMOfiod

elsec:=c+1; m:=m+1 fi od od.

where c is incremented for each innermost loop.

As for the other version we let SB(m,n) be the number of steps (final value of c):
SB(0,n) =1

SB(m,0) = SB(m —1,1)+1
SB(m,n) = SB(m,n —1)4+ SA(m —1,A(m,n — 1)) + 2

The only difference is that the third equation has 42 instead of +1.
From this definition we get, for n > 0:

SB(1,n) = 3n+2
SB(2,n) = 3n?+10n + 6
SB(3,n) = 3.22"*1 _ 82" 1 54 SB(3,n —1)
So by induction on n:
SB(3,n) = > (322" - 82" 15)+ SB(3,0)

1<m<n
— 4n+3 o 2TL+6 + 5TL + 20

SB(4,n) = SB(3,A(4,n—1))+ SB(4,n —1) 42
= SB(3,™?2_-3)+ 2+ 5B(4,n 1)

By induction on n:

SB(4,n) = > ((A(4,m)+ 3)” — 8.(A(4,m) + 3) + 5.(A(4,m — 1) + 3)) + 7.n + SB(4,0)
SB(4,n) = Y ((*logy(A(4,n) +3))* — 3.Flogy(A(4,n) + 3))
0<k<n—1

—5.A(4,n) + 7.n + 219
Finally by induction on m for m > 4 and n > 1 (as for SA):
SB(m,n) ~ A(m,n)*> —2.A(m,n) + (logy(A(m,n) + 3))* — 3.logs(A(m,n) + 3)

to within (log, logy A(m,n))>2.

The error in the estimate for SB(4, 1) is (logy 65536)2 — 3.10g,(65536) — 7 — 219 = —18 that is,
the estimate is 18 less than it should be.

So even here it is no more than (logy logy(A(4,1) + 3))% + 2.

The estimate for SB(4, 1) is: 41 4 219 = 233 more than it should be (log, log,(A(4,2) + 3))% =
256 so the estimate fits here also.
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n|m:0 1 2 3 4 5
0 1 2 6 20 154 4294443250
1 1 5 19 153 4294443249

2 1 8 38 798 ~ 2131073/3

3 1 11 63 3619

4 1 14 94 15400

5 1 17 131 63533

6 1 20 174 258098

7 1 23 223 1040439

8 1 26 278 4177980

9 1 29 339 16744513
10 1 32 406 67043398
11 1 25 479 268304459
12 1 28 558 1073479760
13 1 41 643 4294443093

n 1 3n+2 3n2+10n+6 4732716 L5, 420

Figure 3: A Table of Values for SB(m,n)

We can use this information to deduce how many times each alternative in the if statement of
the second method is chosen, and hence how many times each elementary statement is executed
for both methods. We add “counting statements” as follows:
proc A,(m,n) =

ifm=0then D:=D+1;,r:=n+1
elsifn=0thenT:=T+1; A,(m—1,1)
elsel:=1+1; J:=J+1; Ay(m,n—1); Apy(m—1,r) fi.

With these additions, the second method gives:
proc A;(m) = L:= (m); A.
A = while L # () do
m &2 L
ifm=0thenD:=D+1;n:=n+1
elsifn=0then T:=T+1; n:=1; L& (m—1)
elsel:=I+1;,J:=J+1;n:=n—1; Lw(mfl); L2 m fi od.

Note that the stack length is decreased when the first alternative is chosen; it remains the same
when the second is chosen and is increased when the third is chosen. Hence ¢(L) = I —D is invariant
over the loop. The loop terminates when £(L) = 0, so on termination we have I = D. The sum
D + T + 1 is increased exactly once on every loop, so on termination D + T + I = SA(n,m). The
sum D + T + I + J is increased once when the first or second alternative is chosen and twice when
the third is chosen, so D+ T + I + J = SB(n,m). I and J are increased together so I = J is
invariant. So if we let: A = A(n,m)andB = log, A(n,m) Then from above:

2.1 +T=2/3.A> - A+2/3.B> B (1)
314+T=A-2A+B>-3B (2)
Hence:
I=1/3.A> - A+1/3.B* - B 2) — (1)
T=A+3.B 3.(1) — 2.(2)

Inserting counting statements as follows:
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proc A,(m,n) =
ifm=0thenD:=D+1;r:=n+1
elsifn=0thenT:=T+1; A,(m—1,1)
else I :=1+1; Ay(m,n—1); J:=J+1; Ap(m—1,7); K:=K +1 fi.
(where K = I throughout) and applying the first method gives:
A =dodoifm=0then D:=D+1; n:=n+1; exit
elsifn=0thenT:=T+1; n:=1; m:=m — 1; L2t
elsel:=1+1;n:=n—1; L0 fiod
do if L = () then exit(2) fi;
d& L;
ifd=0then J:=J+1;, m:=m—1; Liﬂl; exit
else K := K +1; m:=m+ 1 fi od od.
So by using Kirchoff’s law we can count how many times each statement is executed.

The totals for various kinds of statements are given in Figure 4

Statement Method B Method A A —B
test variable 3.1+2T 5.I+2T 2.1
inc/dec variable 3.I1+T 4.I1+T I
n:=1 T T 0
test stack = () 2I1+T 2.1 -T
push 2I14+T 2I14+T 0
pop 21+T 21+T 0
exit 0 I I

Figure 4: Execution Counts for Various Statement Types

9 Conclusion

In this paper we have illustrated several program transformations for recursion removal by applying
them to the recursion inherent in Ackermann’s function. Since many programs are most clearly
specified using some form of recursion but most efficiently written using iterative constructs, it
is very useful to have a set of proven transformations which will translate recursive specifications
into efficient iterative algorithms. The transformation theory of [19] on which this paper is based
has also proved valuable in the analysis of existing programs by transforming the program into a
specification which is easier to understand and modify [18].
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