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Preface

No one will doubt today that information systems (IS) are business-critical

for almost all institutions. Due to the fast changing nature of business in

modern society and the ever rapid growth of information technology (IT), an

IS that has just been developed will soon become a legacy system. Therefore

people are struggling to cope with the task of synchronizing ISs with the pace

of business change. Evolving information (software) systems is claimed to be a

far more economical solution than developing new systems from scratch.

Are IT engineers fighting a losing battle in updating ISs? Is evolving

software systems feasible? If so, what are the techniques and tools? At this

crucial moment, software evolution should come out of the research

laboratories to become an everyday off-the-shelf technique for IT engineers.

Described in understandable terms, written in a clear format, demon-

strated with detailed examples, and supported by an industrial strength tool,

this book aims to make the principles and techniques of software evolution

easy to follow for managers, IT engineers, and other practitioners, so that

they will have confidence in dealing with IS evolution. In addition,

researchers can use this book to conduct successful research projects: In

particular they can build on the results from the FermaT workbench for other

software evolution and program transformation research.

Who should read this book

We have written the book for industrial practitioners who are involved in

business system evolution and for academics who study methodologies of

software system evolution or who are interested in the practical applications

of formal methods.
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Book structure

The book is comprised of nine chapters and two appendixes, Appendix A,

which details wide spectrum language (WSL) transformations, and Appen-

dix B, which outlines the abstraction rules.

Chapter 1 suggests that constant software changes are a normal part of

business life in the twenty-first century. Chapter 2 introduces relevant

background information for the book to develop its arguments, including

the software lifecycle, recent technology advances, and software main-

tenance and evolution. Chapter 3 describes related studies in reverse

engineering and reengineering techniques for software evolution, in

particular, approaches to formal software development and redevelopment.

Chapter 4 introduces the foundation on which our evolution framework is

built (i.e., the techniques of program transformations with WSL). Chapter 5

describes a program-transformation-based evolution workbench (FermaT);

the environment in which the workbench operates, including the tools in

the workbench; and a detailed demonstration of the evolution process.

Chapter 6 introduces, through extending the approach described in

Chapters 4 and 5, an integrated framework for evolving a software system.

Chapter 7 describes a practical software evolution process. Chapter 8

describes the results of several experiments involving real program

examples with industrial systems and summarizes these case studies.

Finally, Chapter 9 summarizes the book.

FermaT download Web sites

The FermaT tool used in the book can be downloaded from the following

URLs:

w http://www.dur.ac.uk/,dcs6mpw/fermat.html

w http://www.cse.dmu.ac.uk/,mward/fermat.html
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Constant Software Changes

1.1 Legacy systems

The term legacy system is currently a well-accepted and well-

defined one within the software community, which was not

the case a number of years ago. This implies that many people

have already been convinced that new software becomes

legacy software quickly and that this causes many problems in

business and daily life.

The work described in this book was motivated by the

increasing industrial demand to carry out software evolution

more efficiently, because software maintenance has become

the most costly stage of the software life cycle [1].

The purpose of the book is to establish the feasibility of

using techniques such as program transformation and program

abstraction to evolve legacy systems into more reliable and

flexible systems, to ease the evolution process and, thus, to

prolong the productive life of a software system.

In the original ‘‘waterfall’’ software life-cycle model, the

following main stages are described as taking place in sequence:

w Requirements analysis;

w Design;

w Implementation;

w Maintenance.

1
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Requirements analysis establishes what the system should do and under

what circumstances it is to be done; design establishes how it is to be done;

implementation builds a software system to meet the design; and

maintenance tries to keep the system performing its function effectively

and efficiently.

Many years have passed, but the waterfall model, documented in 1970

by Royce [2] is still the most widely accepted software life-cycle model.

However, the maintenance stage has to be expanded to represent much

broader activities: not only maintaining the originally designed functions

but also adding new functions, coping with a changing environment, and

keeping up with radically changing and expanding requirements.

The word ‘‘maintenance’’ suggests fixing parts that are broken and

replacing parts that wear out. Software is not subject to wear in the sense

that mechanical systems are, so it can never wear out; therefore

maintenance would appear to mean simply fixing faults in the original

implementation. This ignores the problems of rapidly changing environ-

ments and requirements: An aircraft engineer would not consider upgrading

a Cessna light aircraft to a supersonic jet airliner to be a ‘‘maintenance

task’’(!). Yet there are many software systems that have had to undergo

similarly dramatic enhancements.

These considerations suggest that the word ‘‘maintenance’’ should be

replaced by ‘‘reengineering’’ or ‘‘evolution.’’

In practice, most software has been heavily modified. This is the so-

called legacy problem, that many people are facing.

1.2 Business changes

The success of many businesses is critically dependent on all the software

they develop, in terms of providing services and managing the company.

This is true not just for companies whose business is developing software, but

also for many other companies; for example, the merger of two U.K. building

societies fell through when it was discovered that they could not effectively

merge their software systems.

Businesses need to be increasingly more flexible and responsive to the

marketplace, developing and marketing new products and services in a

timely manner. To do this, the supporting ISs need to be just as flexible and

capable of rapid modification and enhancement. Handling software properly

can be financially vital to the sucess of the company. As a result, in software

development, the goals of reliability and flexibility are becoming signifi-

cantly more important.

2 Constant Software Changes



1.3 Software evolution

Twenty years ago, software needed to be corrected occasionally and a new

release issued perhaps once a year. We could use the term maintenance to

imply to that we were working to enable our software to continue to do what

it used to do. Ten years ago, software needed a major release with new

functionality twice a year, and we used the term reengineering to imply that

we were adding new user-required functions to the software. Today,

software needs to be changed on an ongoing basis with major enhancements

required on a short timescale (days or weeks rather than months or years) in

order to meet new business opportunities and reduce the ‘‘time to market’’

for new products and services. In this case, the term evolution better describes

a situation in which maintenance and reengineering are needed so often.

Reengineering is still the basic technique for evolving software systems

but rapid reengineering is a necessity and future reengineering must be

anticipated every time reengineering is carried out.

The main steps for reengineering are to determine what the existing

software does (i.e., understanding the existing software) to decide what to

modify in the software and how to actually carry out the modifications.

Understanding software means to identify and extract the actual, current

design of the software. The current design will typically be very different

from the original design. Therefore, it is meaningless and unnecessary to

attempt to extract the original design. Documentation of the original design

may be available, but it is rarely kept up-to-date with changes to the software

and therefore may no longer describe the current design of the system.

However, there may be an opportunity to extract the current design

from the current version of the code, as the current design is reflected in the

current code. This suggests that a major understanding of existing software

will be needed, along with ways to cope with complexity, to generate

alternate views, to recover lost information, to detect side effects, and to

synthesise higher abstractions.

Deciding what to modify in the software involves knowing what to

delete and what to add to the software according to the business needs.

Carrying out the modifications to the software involves employing the best

suitable techniques available to ensure that the modified software has a

better quality.

This book attempts to answer questions on evolving software for

reliability and flexibility by discussing the following issues:

w If we start with old, heavily modified software, including software

code that was not developed using a formal or informal method
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[though most organizations have been using some kind of informal

methods in their development process (e.g., use cases and require-

ment definition cards)] how viable is it to extract a high-level

representation (a design or specification) from the software?

w If it is possible under certain restrictions, what are these restrictions?

What exactly does the user need to supply?

w What is the framework and method for extracting a design from the

existing software?

w What is the framework for changing or modifying the software to

meet current business needs and to achieve higher quality?

w Are there any tools that support this approach?

w What are the metrics to measure the resultant code that has been

reengineered by our method?

To summarize, this book combines formal methods, transformational

programming, abstraction and crossing levels of abstraction techniques for

evolving existing software systems. The book discusses an integrated

framework from theory to practice and uses a commercial workbench to

illustrate the approach with its application to real case studies.
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Software Engineering
and Evolution

2.1 Computer system evolution

An up-to-date computer system has three main elements or

subsystems: the hardware system, the software system, and the

communication system. These three elements have been

developed in a closely coupled way from the beginning of the

modern computing era. Although the technological revolution

of computing is just a few decades old, a number of significant

subrevolutions have taken place. In terms of software systems,

computer system evolution can be divided into the following

periods:

1. From the late 1940s to the mid 1960s, hardware could

only provide limited computing power; communica-

tion was not a part of computing; and software systems

were mostly batch-oriented and custom-designed for a

specifc application. Often implemented by a single

person, programming was seen as a craft, and systems

had a relatively limited distribution [1].

2. From the mid 1960s to the late 1970s, hardware de-

velopment made significant progress; communication

was still not a major part of computing, but software

systems also underwent significant developments

including the development of multiprogramming
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and multiuser systems, real-time systems, and the first generation

of database management systems. More importantly, people

started to use ‘‘production software,’’ and software began to be

developed for widespread distribution in a multidisciplinary

market. This software was extended by the addition of new

program statements to meet new needs. The software products

had to be corrected when faults were detected, modified as user

requirements changed, or adapted to new hardware (activities

collectively called software maintenance). People then realized that

software was facing a crisis: The effort spent on software

maintenance began to absorb resources at an alarming rate, and

the customized nature of programs made them very difficult to

maintain.

3. From the mid 1970s to the late 1980s, hardware made further

significant progress in terms of chip integration and processing

speed. Commmunication became an important part of computing,

and this provided a platform for the development of distributed

systems; software developers were faced with heavy demands on

software for global and local area networks and high-bandwidth

digital communications. The personal computer (PC) has created

software companies with sales running into millions of copies.

4. From the beginning of the 1990s to the present, hardware and

communication systems have continued to develop, and software

development has not shown any sign of slowing. The ever rapid

growth of software development has been aided by object-oriented

technologies, expert systems and artificial intelligence software,

and artificial neural network software. Meanwhile, the emergence

of the World Wide Web (WWW) has presented information

sharing in a manner more convenient than could have previously

been imagined. At the same time there has been an explosion in

software production.

The rapid increase in software production has precipitated many

problems, and at present the software crisis continues to intensify. The

software crisis alludes to a set of problems encountered in the development

of computer software. The problems are not limited to software that does

not function properly according to required criteria. Rather, the software

crisis encompasses problems associated with how we develop software, how

we maintain the growing volume of existing software, and how we can keep

pace with the growing demand for more software.
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Problems associated with the software crisis have been caused by the

character of software itself. F. P. Brooks [2] notes the following properties of

large software systems:

w Complexity: This is an essential property of all large pieces of

software, essential in that it cannot be abstracted away from. This

leads to several problems: Communication difficulties often occur

among a large team of developers, which can lead to product flaws,

cost overruns, and schedule delays; it may be difficult or impossible

to visualize all the states of the system, which makes it impossible to

understand the system completely; it is difficult to get an overview of

the system, so maintaining conceptual integrity becomes increasingly

difficult; it is hard to ensure that all loose ends are accounted for; and

the learning curve is too steep for new personnel.

w Conformity: Many systems are constrained by the need to conform

to complex human institutions and systems (e.g., the tax regulations

of a state).

w Change: As it is used any successful system will be subject to change

to enhance its capabilities, or even apply it beyond the original

domain, as well as to enable it to survive beyond the normal life of

the machine it runs on and to be ported to other machines and

environments.

w Invisibility: For complex software systems there is no geometric

representation, as is available to the designers and builders of

complex mechanical or electronic machines or large buildings. There

are several distinct but interacting graphs of links between parts of

the system to be considered (e.g., control flow, data flow, depen-

dency, and time sequence). One way to simplify these, in an attempt

to control the complexity, is to cut links until the graphs become

hierarchical structures [3]. However, even an accurate model or

abstraction of the system may become unreliable as the system is

enhanced and modified over a period of time.

Further observations from a review of the state of the practice in

requirements modeling include the following [4]:

w Requirements were invented, not elicited (i.e., in many projects, there

was a potential market but no customer). Also, the requirements were

actually preferences that were prioritized so that the low-priority

requirements could be abandoned if the schedule slipped.
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w Most specification is incremental (i.e., customers are rarely able to

provide a complete specification at any stage of the project).

w Most development is maintenance. System evolution is so common

that a development from scratch is the exception.

w There is a gulf between developer and user (i.e., few developers had

adequate knowledge of the users’ work, which leads to major

misunderstandings about the system’s purpose).

w User interface requirements continually change.

Recognizing problems and their causes is the first step toward finding

solutions. Then the solutions themselves must provide practical assistance to

the software developer, improve software quality, and allow the ‘‘software

world’’ to keep pace with the business world.

There is no single best approach to a solution for the software crisis.

However, by combining comprehensive methods for all phases of software

development, better tools for automating these methods, more powerful

building blocks for software implementations, better techniques for software

quality assurance, and an overriding philosophy for coordination, control,

and management, a discipline for software development (i.e., the discipline

of software engineering) can be achieved.

2.2 Software engineering

Use of the term software engineering can be traced back at least as far as a

1968 NATO conference held in Garmisch, West Germany and the follow-up

conference held near Rome, Italy, in 1969. The following definition is from

Naur [5]:

Software engineering is the establishment and use of sound engineering

principles in order to economically develop software that is reliable and

works efficiently on real machines.

This was partly prompted by the problems encountered in developing the

operating system OS360 for the IBM-360 computer.

Software engineering has three elements: (1) methods, which provide

the techniques for building software including the design of data structures,

program architecture, and algorithmic procedure, coding, testing, and main-

tenance; (2) tools, which provide automated or semiautomated support
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for methods; and (3) processes, the glue that holds the methods and tools

together and enables rational and timely development of computer software

(i.e., they define the sequence in which methods would be applied, the

deliverables, the controls that help assure quality and coordinate change, and

the milestones that enable software managers to assess progress.

Different ways of combining the above three elements of software

engineering yield different software engineering models. There have been

many models for software engineering. The choice of the right model is

based on the nature of the project and application, the methods and tools to

be used, and the controls and deliverables that are required. Three typical

examples discussed here [1] are ‘‘the classic life cycle,’’ ‘‘prototyping,’’ and

‘‘fourth-generation techniques.’’

The classic life-cycle model is also called the waterfall model, because

there is no iteration in the process from the beginning to the end of a project.

It demands a strictly systematic sequential approach to carrying out the

following activities: software requirements analysis, design, coding, testing,

and maintenance.

The prototyping model enables the developer to create a prototype of the

software to be built to allow problems and requirements to be seen quickly [6].

Prototyping begins with requirements gathering, where developers and

customers meet and define the overall objects for the software, identify

whatever requirementsareknown,andoutlineareaswhere furtherdefinition

is mandatory. A quick design then occurs. The quick design focuses on a

representation of those aspects of the software visible to the user. The quick

design leads to the construction of a prototype. The prototype is evaluated by

the customer or user and is used to refine requirements for the software to be

developed. A process of iteration occurs as the prototype is ‘‘tuned’’ to satisfy

the need of the customer, while at the same time enabling the developer to

understand better what needs to be done.

The fourth-generation technique (4GT) model encompasses a broad

array of software tools that have one thing in common: each enables the

software developer to specify some characteristic of the software at a high

level [7]. The tool then automatically generates source code based on the

developer’s specification. The 4GT paradigm for software engineering

focuses on the ability to specify software to a machine at a level that is

close to natural language or in a notation that imparts significant function,

but it tends to be used in a single, well-defined application domain. Also the

4GT approach reuses certain elements, such as existing packages and

databases rather than reinventing them.

The classic life cycle is the oldest and the most widely used paradigm

for software engineering. It provides a template into which methods for
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analysis, design, coding, testing, and maintenance can be placed. It has

weaknesses as well (e.g., real projects rarely follow the sequential flow that

the model proposes, and iteration always occurs and creates problems in

the application of the paradigm); thus, it is often difficult in the beginning

for the customer to state all requirements explicitly, and there is a

significant time lapse between the completion of the design phase and final

delivery of the finished product. During this time it is likely that significant

changes to the requirements will have occurred. Prototyping is an effective

paradigm for software engineering. The key is to define the rules of the

game at the beginning; that is, the customer and developer must both agree

that the prototype is built to serve as a mechanism for defining

requirements. The problem with this paradigm is that the customer sees

what appears to be a working version of the software, unaware that in the

rush to get it working overall software quality or long-term maintainability

have not been considered (i.e., often the prototype will become the final

product that is put into operation). Though it has been claimed that the

4GTs are likely to become an increasingly important part of software

development, because of the dramatic reductions in software development

time and greatly improved productivity for people who build software,

current 4GT tools are not much easier to use than programming languages

because the source code produced by such tools is ‘‘inefficient,’’ and the

maintainability of large software systems developed using 4GT is open to

question. Existing problems include (1) poorly defined languages (incom-

plete or inconsistent), (2) inefficient implementations, (3) mixing of levels

(breaking out to the lower-level language), (4) shortage of trained per-

sonnel [exacerbated by (1)], and (5) a lack of support from 4GL developers.

As a result of these problems, some large companies have seriously

considered throwing away all their 4GL code and instead attempting to

maintain their multimillion lines of machine-generated COBOL.

A generic view of software engineering can be obtained by examining

the process of software development [1]. The process contains three generic

phases, regardless of the software engineering model chosen: the definition,

development, and maintenance phases, are encountered in all software

development. The definition phase focuses on what (i.e., the software

developer attempts to identify what information is to be processed, what

function and performance are desired, what interfaces are to be established,

what design constraints exist, and what validation criteria are required to

define a successful system). Three specific subprocesses occur in this phase:

(1) system analysis, defining the role of each element in a computer-based

system, ultimately allocating the role software will play; (2) software

project planning, allocating resources, estimates costs, defining work tasks
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and schedules, setting quality plans, and identifying risks; and (3)

requirements analysis, defining in more detail the information domain

and software function before work can begin.

The development phase focuses on how (i.e., the software developer

attempts to describe how the software architecture and associated data

structures are to be designed, how procedural details are to be implemen-

ted, how the design will be translated into a programming language, and

how testing will be performed). Three specific steps also occur in this phase:

(1) software design, translating the requirements for the software into a set

of representations that describe data structure, architecture, and algorithmic

procedure; (2) coding, performing the translation from design representa-

tions into an artificial language that results in instructions executable by the

computer; and (3) software testing, uncovering defects in function, in logic,

and in implementation.

The maintenance phase focuses on change that is associated with error

correction, adaptations required as the software’s environment evolves, and

modifications due to enhancements brought about by changing customer

requirements. The maintenance phase reapplies the steps of the definition

and development phases but does so in the context of existing software.

2.3 Software quality

Software engineering works toward a single goal: producing high-quality

software. It is therefore useful to clarify the term quality and its factors.

Software quality is defined as conformance to explicitly stated

functional and performance requirements, explicitly documented develop-

ment standards, and implicit characteristics that are expected of all pro-

fessionally developed software [1]. Software quality factors [8] include the

following:

w Correctness (the extent to which a program satisfies its specification

and fulfills the customer’s mission objectives);

w Reliability (the extent to which a program can be expected to perform

its intended function with the required precision);

w Flexibility (the effort required to modify an operational program);

w Efficiency (the amount of computing resources and code required by a

program to perform its function);
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w Integrity (the extent to which access to software or data by

unauthorised persons can be controlled);

w Usability (the effort required to learn, operate, prepare input, and

interpret the output of a program);

w Maintainability (the effort required to locate and fix an error or

implement some other change in a program);

w Testability (the effort required to test a program to ensure that it

performs its intended function);

w Portability (the effort required to transfer the program from one

hardware and/or software system environment to another);

w Reusability (the extent to which a program (or part of a program) can

be reused in other applications);

w Interoperability (the effort required to couple one system to another).

Software quality assurance is an activity that should be applied at each

step in the software engineering process. Software quality assurance

encompasses procedures for the effective application of methods and tools,

formal technical reviews, testing strategies and techniques, procedures for

change control, procedures for assuring compliance to standards, and

measurement and reporting mechanisms.

Software reliability and flexibility are two important software quality

factors, especially, when software is undergoing constant change. Reliability

can be interpreted as the capacity of the software to maintain the level of

performance of the system when used under specified conditions.

Producing reliable software is a crucial objective in terms of software

engineering. Unreliable software may cause large financial losses to its users

or even injury and death. Flexibility is closely related to reliability in the

situation in which software needs to be changed constantly—because high

flexibility in the software will enable the next change to be carried out more

easily while maintaining reliability.

2.4 Software everywhere

Nowadays, software may be found everywhere. However, more and

more software is still being developed. An important consideration in
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the development of a software system is the entire development environ-

ment. In its most general sense, the development environment includes the

technical methods, the management procedures, the computing equipment,

the mode of computer use, the automated tools to support development, the

software development staff, and the physical work space. An ideal

development environment should enhance the productivity of the system

developers and provide a set of tools (both manual and automated) that

simplifies the process of software production. The environment should

contain facilities both for the individual member of a development group

and for the overall management of the project [9].

Today, software engineering has become a well-defined, constantly

evolving discipline. Software production is very different now than it was in

1968 when the concept of software engineering was first introduced. The

state of the art of software production at that time can be seen by examining

the problems being discussed at the two NATO conferences on software

engineering in 1968 and 1969. For example, some of the following issues

were raised [10, 11]:

w Problems of scale;

w The order in which to do things;

w Strategies and techniques to use;

w How to specify software systems;

w Project planning and control;

w The proliferation of unreliable software

Although some of these are still problems today, progress has been

made, especially in the following areas:

w Modeling: requirements modeling and systems modeling;

w Formalization: specification and verification;

w Computer science: languages, software concepts such as modularity,

and abstract data types;

w Method and design paradigms: structured programming and object-

oriented design, for example;

w Support: databases, tools, and software development environments;
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w Human factors: user participation, project management, and

human-computer interfaces;

w Metrics: quality, reliability, and costing.

Despite such advances, there are still many unsolved problems in the

following areas:

w Formal methods: further development of specification and verifica-

tion and their scaling up to cope with large real-life problems,

particularly with tool support;

w Metrics: improved methods for assessing and predicting cost and

software quality and reliability, maintainability, and other quality

attributes;

w Reuse: potentially a major way of effecting the desperately needed

increases in productivity, if software practice is going to have any

chance of coping with the demand for software products;

w Reengineering: improved and new methods to reduce cost and to

increase reliability and flexibility;

w Management: more reliable, more effective techniques for managing

all aspects of the life cycle;

w Tool support: increased provision of automated software tools to

support all activities of software engineering, both on an individual

basis and as an integrated support environment;

w Applied technologies: application of other techniques (e.g., AI) to the

general enhancement of software enginering.

The above issues are all related to the subject of this book, software

evolution. Therefore, they merit further analysis. Section 2.5 begins this

analysis with a discussion of software maintenance.

2.5 Software maintenance

In the early days of computing (1950s and early 1960s), software

maintenance comprised a very small part of the software life cycle. In the

late 1960s and the 1970s, as more and more software was produced, people

began to realize that old software does not simply die. At that point software
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maintenance started to be recognized as a major activity. By the late 1970s,

industry was suffering major problems with the applications backlog, and

software maintenance was taking more effort than initial development in

some sectors. In the 1980s, it was becoming evident that old architectures

were severely constraining new design [12].

All of these factors increased demand for significant change to software.

Such changes included fixing errors, adding enhancements, and making

optimizations. Besides the problems whose solutions required the changes in

the first place, the implementation of the changes themselves created

additional problems.

One of Lehman’s five laws of the evolution of a software system directly

addresses the modification of software. It states that ‘‘a program that is used

in a real world environment must change or become less and less useful in

that environment’’ [13]. Accordingly, mechanisms must be developed for

evaluating, controlling, and making changes.

Software maintenance is defined as the modification of a software

product after delivery to correct faults, to improve performance or other

attributes, or to adapt the product to a changed environment [14]. Software

maintenance is required to meet the needs of the four principal change types

described in Section 2.4. Thus, maintenance activities can be divided into

these corresponding categories [15].

The first category is called corrective maintenance. There may be a fault

in the software, so that its behavior does not conform to its specification.

This fault may contradict the specification, or it may demonstrate that the

specification is incomplete (or possibly inconsistent), so that the user’s

assumed specification is not sustained. Corrective maintenance involves

removing these faults.

Even if a software system is fault-free, the environment in which it

operates will often be subject to change (e.g., the upgrade of computer

hardware or moving a system from a mainframe to a PC). Modifications

performed as a result of changes to the external environment are categorized

as adaptive maintenance (e.g., the manufacturer may introduce new ver-

sions of the operating system or remove support for existing facilities, and

the software may be ported to a new environment or to different hardware).

The third category of maintenance is called perfective maintenance. This

is undertaken as a consequence of a change in user requirements of the

software. For example, a payroll suite may need to be altered to reflect new

taxation laws; a real-time power station control system may need upgrading

to meet new safety standards.

Finally, preventive maintenance may be undertaken on a system in

order to anticipate future problems and make subsequent maintenance
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easier [16, 17]. For example, one part of a large suite may have been found

to require sustained corrective maintenance over a period of time. It could

be sensible to reimplement this part, using modern software engineering

technology, in the expectation that subsequent maintenance efforts will be

substantially reduced.

The large cost associated with software maintenance is the result of the

fact that software has proved difficult to maintain. Early systems tended to

be unstructured and ad hoc. This makes it hard to understand their

underlying logic. System documentation is often incomplete, or out-of-date.

With current methods it is often difficult to retest or verify a system after a

change has been made. Successful software will inevitably evolve, but the

process of evolution will lead to degraded structure and increasing

complexity [13, 18, 19].

Now it is well established that software maintenance is the most costly

stage of the software lifecycle for most projects. In the 1970s, 30% to 40% of

the budget was used on software maintenance, with 40% to 60% in the

1980s. Today the budget for software maintenance is up to 70% to 80%.

Software maintenance has its own life cycle and its own features. Over

the years, several software task models have been proposed; the model by

Bennett is used here. Software maintenance can occur due to changing

user needs, to errors that must be fixed, and to a changing environment.

Although these types are different at the detailed level, at a high level they

can be described by an iterative three-stage process:

1. Request Control: The information about the request is collected; the

change is analyzed using impact analysis to assess costs and

benefits; and a priority is assigned to each request.

2. Change Control: The next request is taken from the top of the

priority list; the problem is reproduced (if there is one); the code

(and design and the specifications if available) are analyzed;

the changes are designed and documented and tests produced;

the code modifications are written; and quality assurance is

implemented.

3. Release Control: The new release is determined; the release is built;

confidence testing is undertaken; the release is distributed; and

acceptance testing by the customer takes place.

Currently, these three steps are almost always undertaken in terms of

source code. Design information and even adequate documentation often

do not exist. Thus software maintenance is thought of predominantly as
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a source code activity. Understanding the functions and behavior of a system

from the code is hence a vital part of the maintenance programmer’s

task [20]. Approaches to program comprehension will be described in

Chapters 3 to 7.

Most of the effort for software maintenance research has focused upon

the methods, techniques, and tools that support the maintenance process.

When maintenance activities are carried out, an essential characteristic of all

software—maintainability—must be considered. Maintainability is a key

goal that guides the steps of a software maintenance method, as well as a

software engineering method. Software maintainability is the ease with

which software can be understood, corrected, adapted, and enhanced [1].

The maintainability of software is affected by many factors. It is difficult

to quantify software maintainability (no adequate, widely accepted,

quantitative definition exists). However, many efforts have been made to

tackle this problem from different angles. The three developed by Kopetz,

Gilb, and Sneed are described in the following paragraphs.

Kopetz [21] defined a number of factors related to the development

environment: the availability of qualified software staff, an understandable

system structure, ease of system handling, the use of standardized program-

ming languages, the use of standardized operating systems, the standar-

dized structure of documentation, the availability of test cases, built-in

debugging facilities, and the availability of a proper computer to conduct

maintenance.

Gilb [22] provides maintainability metrics by measuring the effort

expended during maintenance in the following categories:

w Problem recognition time;

w Administrative time;

w Maintenance tools collection time;

w Problem analysis time;

w Change specification time;

w Active correction time;

w Local testing time;

w Global testing time;

w Maintenance review time;

w Total recovery time.
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Sneed [23] measures maintainability in terms of the original develop-

ment expenditure. The smaller the expenditure on maintaining the

system—relative to the expenditure on development—the greater the

maintainability. The factors affecting this expenditure include the following:

w Modularity: an operating measure of the extent to which a system

can be broken down into small independent building blocks;

w Flexibility: an operating measure of a software system’s indepen-

dence from any specific application;

w Portability: an operating measure of a software system’s indepen-

dence from its technical environment;

w Complexity: an operating measure of a software system’s aggregation

and distribution of components/complexes [24].

Attributes of software can be divided into two types, internal and

external. Internal attributes are a property of the software itself (e.g.,

complexity, size, data structure, coupling, cohesion, quality, and reliability.

External attributes are a property of the environment (e.g., availability of

debugging tools, skill and training, repository and management).

Possibly the most important factor that affects maintainability is

planning for maintainability. If software is viewed as a system element

that will inevitably undergo change, the chances that maintainable software

will be produced are likely to increase substantially [1]. However,

maintainability is also dependent on the process as well as the software

itself [2]. A major problem with maintenance is implementing those changes

that were not even conceived of when the software was first designed—and

this cannot be planned for. On the other hand, some changes (such as the

fact that 2000 would eventually arrive) can certainly be anticipated, and

there is no excuse for being taken by surprise!

Nevertheless, because maintainability is an essential characteristic of

software, at each stage of the software engineering process, maintainability

must be considered. For example, during the requirements stage, areas of

future enhancement and potential revision should be noted, software

portability issues discussed, and system interfaces that might impact

software maintenance considered; during the design stage, data design,

architecture design, and procedural design should be evaluated for ease of

modification, modularity, and functional independence; during the coding

stage, style and internal documentation (two factors that have an influence

on maintainability) should be stressed.
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Also, maintenance activities should be carried out in a careful way,

because modification of software is dangerous in the sense that errors and

other undesirable behaviors—or side effects [1] may occur as the result of

software modification. Software maintenance side effects include coding

side effects, data side effects and documentation side effects. Coding side

effects are introduced when changes to one part of a system have an

unintended effect on another, apparantly unrelated, part of the system. Data

side effects occur when data changes in the software design may no longer fit

the data and when modifications are made to software information

structures. Documentation side effects occur when changes to source code

are not reflected in design documentation or user-oriented manuals.

2.6 Evolving software

It is safe to say that from the day that a large software system goes into

service, functional, performance, operator, and environmental require-

ments will be subject to change. Moreover, the delivered software system

will contain some latent defects that were not detected during testing. These

factors cause software systems inevitably to evolve in scale, environment

and functionality, especially those successful enough to survive a long

period [25, 26]. To summarize: Due to the rapid development of computer

hardware and software, the demands and costs of software changes are

increasing continuously. Software changes now comprise a major portion of

software life-cycle costs. Because changes to software are needed so

constantly, the term software maintenance, is no longer expressive enough

to describe such changes. Software evolution is now becoming the essential

technique to control software life-cycle costs.
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Software Reengineering
for Evolution

3.1 Introduction

Software evolution is the process of conducting continuous

software reengineering. Reengineering implies a single change

cycle, but evolution can go on forever. In other words, to a large

extent, software evolution is repeated software reengineering.

Therefore, this book discusses many technical details of

reengineering.

Any computing system, including hardware and software

systems, will inevitably grow in scale and functionality.

Because of this complexity, the likelihood of subtle errors is

much greater. Moreover, some of these errors may cause

catastrophic loss of money, time, or even human life. Large

systems are so complex that it is impossible for a single

individual to build and maintain all aspects of the system’s

design. A major goal of software engineering is to enable

developers to construct systems that operate reliably despite

this complexity [1–4]. One way of achieving this goal is using

formal methods, mathematically-based languages, techniques,

and tools for specifying and verifying software systems. Using

formal methods does not guarantee correctness, but they can

greatly increase our understanding of a system by revealing

inconsistencies, ambiguities, and incompleteness that might

otherwise go undetected [5].
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As a combination of reverse engineering and forward engineering,

software reengineering technology is a practical solution for the problem of

evolving existing computing systems. Dynamic change management of

software systems has been largely performed by using ad hoc techniques

that are normally rather expensive and in some cases, impossible (if the

designer has not documented the system and has left the company). There

are at least two advantages of using formal methods as the foundation of

software reengineering. First, formal methods can help software engineers

to acquire a rigorous and precise description of the system being re-

engineered, therefore greatly increasing the quality of the new system.

Second, automation is one of the key goals of reengineering. By applying

formal methods, it may be possible to automate more of the process of

reengineering.

These two advantages will naturally bring flexibility and reliability to the

reengineered software, because future reengineering can still enjoy auto-

mated tool support, and reliability is enhanced by the rigor and precision

provided by formal methods.

This chapter investigates the current situation of software reengineering

and the application of formal methods to this area. It proposes some basic

criteria for formal methods applied in the software reengineering domain.

Real-time systems with parallelism are among the range of the application

areas of software reengineering. Based on these criteria, an investigation and

assessment is made of existing popular formal methods, especially those

potentially suitable for software reengineering. Section 3.8 summarizes the

results of the analysis and discussions.

It is worth noting that this book, besides illustrating many useful

features of formal methods, emphasizes the applications of formal techniques

in the practice of software reengineering and the ways in which formal

techniques and nonformal techniques work together.

3.2 Software reengineering cycle

To understand better the process of software reengineering, we first examine

the reengineering cycle chart (Figure 3.1) introduced by Bachman [6],

which features both forward and reverse engineering. Reverse engineering

begins at the bottom left of Figure 3.1 with the definition of existing

applications and raises the applications to successively higher levels of

abstraction. At the top of Figure 3.1, the design objects created by the reverse

engineering steps are enhanced and validated to become the revised design

objects that may be used in the forward engineering process. At the bottom
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of Figure 3.1, a new application system becomes an existing application

system at the moment that it goes into production.

To generalize this model, many software systems typically undergo the

following stages:

Specification ! Design ! Implementation ! Design ! Specification

This represents a process whereby before implementing a program, a

specification was written first. Then, a design was derived from the given

specification, and the program was implemented and operated for a period of

time. When the program needed to be changed, a design or specification

(which may be different from the original one) was obtained through

reverse engineering (the design or specification can be used for such

purposes as maintenance and reengineering).

A specification states what a program does; a design states both what a

program does and how it does it, and the program itself implements how to

do the job. Therefore the above process can be represented as follows:

what? ! what & how? ! how? ! what & how? ! what?

A specification, a design, and an implementation of a program usually

entail different levels of abstraction. To move from one stage (e.g., the

specification stage) to another stage (e.g., the design stage) involves a process

of crossing levels of abstraction. Usually a specification is more abstract than

its implementation; therefore, the above process can again be represented as

follows:

abstract ! less abstract ! concrete ! more abstract ! abstract

Figure 3.1 Bachman’s reengineering cycle.
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This suggests that the abstraction level of software is an important

feature when both forward and reverse engineering are carried out and

therefore that abstraction is significant for both reverse and forward

engineering.

3.3 Taxonomy of software reengineering

In this section, the following key terms provide a clear scope and taxonomy

of the domain of software reengineering [1–3, 7]:

w Forward engineering is the traditional process of moving from high-

level abstractions and logical, implementation-independent designs

to the physical implementation of a system.

w Reverse engineering is the process of analyzing a subject system to

(1) identify the system’s components and their interrelationships and

(2) create representations of the system in another form or higher

level of abstraction.

w Redocumentation is the creation or revision of a semantically

equivalent representation within the same relative abstraction

level. The resulting forms of representation are usually considered

alternate views (for example, data flow, data structures, and control

flow) intended for a human audience. Redocumentation is the

simplest and oldest form of reverse engineering and can be

considered to be an unintrusive, weak form of restructuring.

w Design recovery or reverse design is a subset of reverse engineering in

which domain knowledge, external information, and deduction or

fuzzy reasoning are added to the observations of the subject system

to identify meaningful higher-level abstractions beyond those

obtained directly by examining the system itself. Design recovery

recreates design abstractions from a combination of code, existing

design documentation (if available), personal experience, and

general knowledge about problem and application domains.

w Program understanding or program comprehension is a term related to

reverse engineering. Program understanding implies always that

understanding begins with the source code while reverse engineer-

ing can start at a binary and executable form of the system or at

high-level descriptions of the design. The science of program

understanding includes the cognitive science of human mental
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processes in program understanding. Program understanding can be

achieved in an ad hoc manner, and no external representation has to

arise. While reverse engineering is the systematic approach to

developing an external representation of the subject system, program

understanding is comparable with design recovery because both of

them start at source code level.

w Restructuring is the transformation from one representation form to

another at the same relative abstraction level, while preserving the

subject system’s external behavior (i.e., functionality and semantics).

w Reengineering is the examination and alteration of a subject system to

reconstitute it in a new form and the subsequent implementation of

the new form. The process of reengineering computing systems

involves three main steps: reverse engineering, functional restruc-

turing, and forward engineering.

w Reverse specification is a kind of reverse engineering where a

specification is abstracted from the source code or design description.

Specification in this context means an abstract description of what

the software does. In forward engineering, the specification tells us

what the software has to do. However, this information is not

included in the source code. Only in rare cases, it can be recovered

from comments in the source code and from the people involved in

the original forward engineering process.

w Recode involves changing the implementation characteristic of the

source code. Language translation and control flow restructuring are

source-code-level changes. Other possible changes include conform-

ing to coding standards, improving source code readability, and

renaming program items.

w Redesign involves changing the design characteristics. Possible

changes include restructuring a design architecture, altering a

system’s data model as incorporated in data structures or in a

database, and improving an algorithm.

w Respecify involves changing the requirement characteristics. This

type of change can refer to changing only the form of existing

requirements (i.e., taking informal requirements expressed in

English and generating a formal specification expressed in a formal

language, such as Z). This type of change can also refer to changing

system requirements, such as the addition of new requirements, or

the deletion or alteration of existing requirements.
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Figure 3.2 presents a general model of reverse engineering, and

Figure 3.3 presents a general model of reengineering, in terms of the

above definitions.

Figure 3.2 General model for reverse engineering.

Figure 3.3 General model for software reengineering.
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3.4 Reverse engineering

Reverse engineering involves the identification or recovery of program

requirements and/or design specifications that can aid in under-

standing and modifying the program. The main objective is to discover

the underlying features of a software system including requirements,

specification, design, and implementation. In other words, it is to recover

and record high-level information about the system including the

following:

w The system structure in terms of its components and their

interrelationships expressed by the interfaces;

w Its functionality in terms of what operations are performed on what

components;

w The dynamic behavior of the system, or how input is transformed to

output;

w Its rationale (the design process that decides between a number of

alternatives at each design step);

w Its construction, modules, documentation, and test suites.

There are several purposes for undertaking reverse engineering listed in

[8]. They can be separated into the quality issues (e.g., to simplify complex

software, to improve the quality of software that contains errors, and to

remove side effects from software), management issues (e.g., to enforce a

programming standard and to enable better software maintenance manage-

ment techniques), and technical issues (e.g., to allow major changes in a

software to be implemented, to discover and record the design of the system,

and to discover and represent the underlying business model implicit in the

software).

It is seen that reverse engineering is an activity that neither changes the

subject system, nor creates a new system based on the reversed engineered

subject system. It is the process of examining and understanding the object

system and of recording the results of that examination and understanding.

On the other hand, reverse engineering is a key to the rest of the process of

reengineering, because it enables us to take an existing software system that

is being reengineered (e.g., in terms of its source code) and to recover an

abstract representation that can be used for subsequent reengineering or

even reimplementation.
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Because the techniques and methods of reverse engineering are still

immature, the six following precautions must be considered when reverse

engineering is carried out:

1. The code may be specific, and not generic, so that few advantages

are gained when the system is reengineered.

2. The code may have errors, and it is not clear if it is useful to reverse

engineer error-filled code.

3. Reverse engineering itself may introduce errors, and revalidation

will be essential in the project plan.

4. Reverse engineering can be very expensive, and the returns

are not always clear. Thus, a cost benefit analysis will be needed.

5. There are no standards or standard methods for reverse engineering.

6. There are no well-established measures for reengineering.

One typical reverse engineering objective is to extract the program

design or specification from the program code. There are two reasons for

this. The first is that in order to achieve major productivity gains, software

alteration must be undertaken at a higher abstraction level than code

(i.e., at the design level or specification level). This is true for the following

six reasons [8]:

1. The representation of a system at higher levels of abstraction is

more compact than at lower levels, so the system is easier to

understand as a whole.

2. The objects that represent the system at high levels of abstraction

(e.g., modules, requirements, and specifications) are structures that

encourage highly maintainable systems. Furthermore, they are

closer to the application domain, and many changes are expressed

in terms of the application domain.

3. The documentation for systems maintained in this way can be

clearly specified.

4. Modification can be better controlled leading to less structural

degradation.

5. Modern software engineering techniques become available to the

software engineer, leading to high quality in the reengineering

phase.
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6. The high abstraction level objects are appropriate vehicles in which

to express the testing plan.

The second reason is that this need is often encountered in software

reengineering projects. First, the documentation and relevant reference

materials are not complete, and the personnel with relevant knowledge may

have already forgotten about it or left. Second, there might be some

documentation available, but the software may not be implemented

consistently with the documentation. Third, the original documentation

and reference materials may not have been written in a modern

specification language and thus will be unusable in a modern software

reengineering environment; they may not even be machine-readable.

This means that the extraction of the program design or the specification

of an old program code is a vital step especially when the program is the only

available documentation or is the only source on which to rely. The purpose

of this kind of reverse engineering is (1) to reimplement the system or (2) to

help understand the existing software. We cannot simply reimplement the

software directly, because of the considerable investment in the existing

software, which means that it is not cost-effective to throw it away and

rewrite it with the latest development techniques. The significance of

reverse engineering can be seen in many early reverse engineering projects;

see, for example [9–13].

3.5 Current state of formal methods in reengineering

The debate about the use and relevance of formal methods in the

development of computing systems has always attracted considerable

attention and continues to do so. One school of thought (the protagonists)

claims that formal techniques offer a complete solution to the problems of

system development. Another school claims that formal methods have little,

or no, use in the development process (at least due to the cost involved).

There is a third viewpoint, which we share, that states that formal methods

are both oversold and underused.

Whatever school of thought one ascribes to, it is important to realize that

as the complexity of building computing systems is continually growing, a

disciplined, systematic, and rigorous methodology is essential for attaining a

reasonable level of dependability and trust in these systems. The need for

such a methodology increases as fatal accidents are attributable to software

errors.

In response to this, intense research activity has developed, resulting in

the production of formal development techniques and their associated
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verification tools that have been successfully applied in forward-engineering

such systems. For example, assertional methods, temporal logic, process

algebra, and automata have all been used with some degree of success.

In the area of reverse engineering, formal methods have also been put

forward as a means to achieve the following:

1. Formally specifying and verifying existing systems, particularly

those already operating in safety-critical applications;

2. Introducing new functionalities;

3. Taking advantage of the improvement in systems design techniques.

We attempt to review a large class of formal methods that have been

suggested for reengineering computing systems [14–18]. We shall also

discuss some of their benefits and limitations. However, first it is neces-

sary to lay some terminological groundwork and to consider current

practices.

The term formal methods is used to refer to methods with a sound basis in

mathematics. These should be distinguished from structured methods, which

are well-defined but do not have a sound mathematical basis to describe

system functionalities [19]. Formal methods allow system functionalities to

be precisely specified, while structured methods permit the precise

specification of systems structure. However, recently, there have been

substantial research activities to do the following:

w Integrate formal and structured methods (i.e., integrating the formal

specification language Z [20, 21] with the structured method known

as SSADM);

w Extend some formal methods allowing the treatment of nonfunc-

tional requirements such as timing and probability [22–27].

We take the view that a formal method should consist of some essential

components: a semantic model, a specification language (notation), a

verification system and refinement calculus, development guidelines, and

supporting tools:

1. The semantic model is a sound mathematical or logical structure

within which all terms, formulae, and rules used have a precise

meaning. The semantic model should reflect the underlying

computational model of the intended application.
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2. The specification language is a set of notations that are used to

describe the intended behavior of the system. This language must

have proper semantics within the semantic model.

3. Verification system and refinement calculi are sound rules that allow for

the verification of properties and the refinement of specifications.

4. Development guidelines are steps showing the use of the method.

5. Supporting tools include tools such as a proof assistant, a syntax and

type checker, an animator, and a prototyper.

Formal methods can be applied in two different ways:

1. To produce specifications that are then the basis for a conventional

system development. In this case, specifications are used as a precise

documentation medium that has the advantages of manipulability,

abstraction, and conciseness. Consistency checks and automatic

generation of prototypes could be performed at this stage with the

aid of the associated supporting tools.

2. To produce formal specifications, as above, to use as a basis against

which the correctness of the system is verified or as a basis to derive

the verified system through correctness preserving refinement

rules. This will give the developed system a degree of certainty and

trustworthiness.

3.6 Classification of formal methods

Formal methods can be classified into the following five types: model-

based, logic-based, algebraic, process algebra and net-based (graphical)

methods. Sections 3.6.1 to 3.6.5 briefly discuss each of these approaches.

3.6.1 Model-based approach

General A system is modeled by explicitly defining the states and

operations that transform the system from one state to another. In this

approach, there is no explicit representation of concurrency. Nonfunc-

tional requirements (such as the temporal requirement) can be expressed

in some cases.
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Examples

w Z [20]: With the first version proposed in 1979, the Z notation is

based on a predicate calculus and Zermelo Fraenkel set theory. A Z

specification is written in terms of schemas, each of which contains a

signature part that declares the items of interest and a predicate part

that places a logical constraint on them.

w Vienna development method (VDM) [28–30]: VDM is a formal method

for rigorous computing system development. It is similar to Z in most

aspects, although it is not as popular as Z. VDM supports model

composition and decomposition, which greatly facilitates both

forward and reverse engineering.

w B-method [31–33]: The B-method uses the abstract machine nota-

tion to support the description of the target systems. The most

eminent success of the B-method is that it already has a strong and

quite mature tool, the B Toolkit, to support and automate the

development of application systems. The B-method is complete in

the sense that it provides abstract machine specifications and their

proofs, refinements and their proofs, and compositions and their

proofs. The development method of B matches typical top-down

forward engineering methods. A complete development may be

performed and recorded. Changes may be accommodated using the

replay tools. Refinement, implementation, and composition steps

have precise notions of correctness and a mechanical generation of

proof obligations. By using the animator, tests may be performed.

The final implementation step may be mechanized for common

languages (e.g., C and Ada) and for some specification constructs.

In the B-method, no guidance is provided regarding (1) design

decisions or their recording, (2) testing or inspection methodology,

and (3) presentation of specifications. The B toolkit is still evolving

and as yet is not very mature, and the B-method has no timing

features. New features will have to be added if B is to be used for real-

time systems.

3.6.2 Logic-based approach

General In this approach logic is used to describe the system’s desired

properties, including the low-level specification, temporal, and probabilistic

behaviors. The validity of these properties is achieved using the associated

axiom system of the logic. In some cases, a subset of the logic can be
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executed (e.g., the Tempura system) [25]. The executable specification can

then be used for simulation and rapid prototyping purposes.

The logic can be augmented with some concrete programming

constructs to obtain what is known as wide-spectrum formalism. The

development of systems in this case is achieved by a set of correctness-

preserving refinement steps. Examples of these forms are TAM [27], the

refinement calculus [34], and FermaT [35–37].

Examples

w Interval temporal logic (ITL) [22, 23, 25, 26, 38, 39]: This kind of logic is

based on intervals of time, thought of as representing finite chunks of

system behavior. An interval may be divided into two contiguous

subintervals, thus leading to the chop operator.

w Duration calculus [40, 41]: This was introduced as a logic to specify and

reason about requirements for real-time systems. It is an extension of

ITL where one can reason about integrated constraints over time-

dependent and Boolean valued states without explicit mention of

absolute time. Several rather large-scale case studies have shown

that duration calculus provides a high level of abstraction for both

expressing and reasoning about specifications.

w Hoare logic [42–44]: Hoare logic has a long history; it may be viewed as

an extension of first-order predicate calculus [45] that includes

inference rules for reasoning about programming language con-

structs.

Hoare logic provides a means of demonstrating that a program is

consistent with its specification. Hoare logic is not capable of

specifying a system at high levels; however, it has distinct advantages

in the low-level specifications. These two features make Hoare logic a

suitable means in the first stage of reverse engineering (i.e., from a

source code program to an abstraction at a very low level). Some

research has been done in this area, such as the development of

the reverse engineering tool AutoSpec [46, 47]. There are no real-

time features in Hoare logic, but real-time Hoare logic has been

proposed [48].

w Weakest precondition [45, 49]: WP-calculus was first proposed by E. W.

Dijkstra in 1976. A precondition describes the initial state of a

program, and a postcondition describes the final state. By using
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the semantics of predicate logic and other suitable formal logics, WP-

calculus has been proven to be a suitable formalism for the reverse

engineering of source code, especially at the low abstraction levels.

w WSL: WSL is based on the weakest proconditions but also uses a

denotational semantic model approach [50]. Specifications and

programs at every abstraction level can be expressed in the same

language (hence the name ‘‘wide-spectrum language’’). The lowest

level transformations are proven correct either by using the weakest

preconditions or the semantic model. More complex transformations

are developed by composing existing transformations [51]. There has

also been some work on extending WSL to deal with shared memory

and concurrent processes [52, 53].

w Modal logic [54, 55]: Modal logic is the study of context-dependent

properties such as necessity and possibility. In modal logic, the

meaning of expressions depends on an implicit context, abstracted

away from the object language. Temporal logic can be regarded as an

instance of modal logic where the collection of contexts models a

collection of moments in time. Modal logic is equipped with modal

operators through which elements from different contexts can be

combined. Two of the most popular modal operators are the

necessity operator A (always) and the possibility operator

S (sometimes). There are several approaches to the semantics of

modal logic, such as ‘‘neighborhood’’ semantics. So far, modal logic

has not been applied to the software reverse engineering area.

w Temporal logic [56]: Temporal logic has its origins in philosophy,

where it was used to analyze the structure or topology of time.

Philosophers found it useful to introduce special temporal operators,

such as A (henceforth) and S (eventually), for the analysis of

temporal connectives in languages. Various types of semantics can be

given to the temporal operators depending on whether time is linear,

parallel, or branching and whether time is discrete or continuous

[57]. In recent years, temporal logic has been found to be very

valuable in real-time applications.

The various temporal logics can be used to reason about

qualitative temporal properties. Safety properties that can be

specified include mutual exclusion and absence of deadlock. Liveness

properties include termination and responsiveness. Fairness proper-

ties include scheduling a given process infinitely often or requiring

that a continuously enabled transition will ultimately fire.
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In real-time temporal logics, it is possible to express quantitative

properties, such as periodicity, real-time response (deadline), and

delays. Early approaches to real-time temporal logics were reported

in [58, 59]. Since then, real-time logics have been explored in greater

detail.

w Temporal agent model (TAM) [27, 60, 61]: TAM aims to be a realistic

software development method for real-time systems. It has striven to

support a computational model that is amenable both to analysis by

run-time execution environment software and to efficient imple-

mentation. In doing so, TAM has not shared any of the simplifying

assumptions that other techniques promote (e.g., the maximum

parallelism hypothesis and the instantaneous communication

assumption).

Concurrency and communication are also provided to describe

multitasking systems. However, as yet, there has been no attempt to

apply TAM to reverse engineering or reengineering.

w Real-time temporal logic (RTTL) [62, 63]: RTTL uses a distinguished

temporal domain, the extended state machine (ESM) state variables,

and the set of ESM transitions to form temporal formulae. These are

then proven using an axiomatization of the system’s ESM trajec-

tories.

No special development method is proposed in RTTL or required

by RTTL. If applied to the reverse engineering area, RTTL has the

flexibility to fit different methodologies.

w Real-time logic (RTL) [64]: RTL has four basic concepts: actions, which

may be composite or primitive; state predicates, which provide

assertions regarding the physical system state; events, which are

markers on the (sparse) time line; and timing constraints, which

provide assertions about the timing of events.

RTL has been used with some success in industrial applications,

and it is also being used in a major IBM project called ORE, which is

integrating RTL with a real-time programming language. There is a

feeling of confidence with RTL due to its pragmatic nature.

w Timed probabilistic computation tree logic [24]: TPCTL deals with real-

time constraints and reliability. Formulas of TPCTL are interpreted

over a discrete time extension of Milner’s calculus of communication

systems called TPCCS. Probabilities are introduced by allowing two

types of transitions, one labeled with actions and the other labeled

with probabilities.
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TPCTL is one of the few logics that can express both hard and soft

real-time deadlines, and it is possible to represent levels of criticality

in TPCTL.

3.6.3 Algebraic approach

General In this approach, an implicit definition of operations is given by

relating the behavior of different operations without defining the meanings

of the actual states. Similar to the model-based approach, there is no explicit

representation of concurrency.

Examples

w OBJ [65, 66]: OBJ is a wide spectrum first-order functional language

that is rigorously based on equational logic. This semantics basis

supports a declarative, specificational style, facilitates program

verification, and allows OBJ to be used as a theorem prover.

w Larch [67]: The Larch family of algebraic specification languages was

developed at MIT and Xerox PARC to support the productive use of

formal specifications in programming. One of its goals is to support a

variety of different programming languages, including imperative

languages, while localizing programming language dependencies as

much as possible. Each Larch language is composed of two com-

ponents: the interface language, which is specific to the particular

programming language under consideration, and the shared lan-

guage, which is common to all programming languages.

3.6.4 Process algebra approach

General In this approach, an explicit representation of concurrent

processes is allowed. System behavior is represented by constraints on all

allowable observable communications between processes.

Examples

w Communicating sequential processes (CSP) [68, 69]: The CSP formal

specification notation for concurrent systems was first introduced in

[69]. Since this original proposal did not include a proof method, a

complete version of CSP was proposed in [68].

w Calculus of communicating systems (CCS) [70, 71]: CCS was pro-

posed by Milner in 1989. It is a formalism similar to CSP. CCS is
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also suitable for distributed and concurrent systems. At present,

several variations of CCS have been developed, forming a CCS

family. The CCS family includes CCS, CCS+, CCS*, SCCS, TCCS, and

TPCCS [72].

Two underlying concepts of CCS are agents and actions. A CCS

model consists of a set of communicating processes (agents in CCS

terminology). CCS adopts operational semantics.

CCS is not a real-time formalism, but some extensions of CCS

with real-time features have been developed, such as TCCS, SCCS,

and TPCCS.

w Algebra of communicating processes (ACP) [73, 74]: ACP was proposed by

J. A. Bergstra in 1984. To date, a number of varieties of ACP have

been proposed, including real-time ACP (ACPr) and discrete time

ACP. ACP is also an action-based process algebra, which may be

viewed as a modification of CCS. However, ACP is an executable

formalism.

w Language of temporal ordering specification (LOTOS) [75, 76]: LOTOS

was developed to define implementation-independent formal stan-

dards of OSI services and protocols. LOTOS has two very clearly

separated parts. The first part provides a behavioral model derived

from process algebra, principally from CCS but also from CSP.

The second part of LOTOS allows specifiers to describe abstract data

types and values and is based on the abstract data type language ACT

ONE.

LOTOS has a formally defined syntax, static semantics, and

dynamic semantics. The static semantics are defined by an attributed

grammar [75] and the dynamic semantics are described operationally

in terms of inference rules.

Since LOTOS has an operational semantics, it is possible to

implement these semantics in an interpreter. LOTOS has a number of

support tools, which, although not mature or narrow-aspected, do

have some successful points [77].

LOTOS does not support real-time specifications. Although a

timed LOTOS has been proposed, it has not proven to be a suitable

formalism for real-time systems. Also, LOTOS has weak data specifi-

cation mechanisms and cannot express time explicitly.

w Timed CSP (TCSP) [78]: TCSP is an extension of Hoare’s CSP, with a

dense temporal model providing a global clock. A delay operator is

included along with some extended parallel operators. There is
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an assumption of a minimum delay between any two dependent

action occurrences, but no minimum delay on any two independent

actions. The semantics of TCSP is given by timed traces, and a

specification relation sat is provided for verifying predicates over

traces.

Processes in TCSP are built from sequences of communication

actions. The semantic model of TCSP is based on observation and

refusal timed traces. There exist no tools for the manipulation of

specifications written in TCSP.

w Timed probabilistic calculus of communicating systems (TPCCS) [24]:

TPCCS is essentially an extension of Milner’s CCS with discrete

time and probabilities. To increase the descriptive power, a logic

named TPCTL is proposed to describe the logic of and relations

between TPCCS processes. Therefore TPCCS, together with TPCTL,

forms a framework for specification and verification of real-time

properties and reliability in distributed systems. TPCCS, as a process

algebra, is used for modeling the operational behavior of distributed

real-time systems; and TPCTL, as a logic, is used for expressing

properties of the systems. A verification method for automatically

proving that a system described in TPCCS satisfies properties

formulated in TPCTL, is also well defined [24].

TPCCS has very formally defined syntax and semantics, which

brings convenience to the automation of specification and verifica-

tion. However, the calculation of probabilities is not mentioned in

TPCCS and TPCTL. A tool named the timing and probability

workbench (TPWB) has been developed. TPWB partially supports

automatic verification of TPCCS.

3.6.5 Net-based approach

General Graphical notations are popular notations for specifying systems

as they are easier to comprehend and, hence, more accessible to non-

specialists. This approach uses graphical languages with formal seman-

tics, which brings particular advantages in system development and

reengineering.

Examples

w Petri net [79, 80]: Petri net theory is one of the first formalisms to deal

with concurrency, nondeterminism, and causal connections between

events. According to [81], it was the first unified theory, with levels

40 Software Reengineering for Evolution



of abstraction, in which to describe and analyze all aspects of a

computer in the context of its environment.

Petri nets provide a graphic representation with formal semantics

of system behavior. A large number of varieties of Petri net theory

have been proposed. Generally, Petri nets can be classified into

ordinary (classic) Petri nets and timed Petri nets.

w Timed Petri net [82–87]: Petri net theory was the first concurrent

formalism to deal with realtime. Two basic timed versions of Petri

nets have been introduced: timed Petri nets [88] and time Petri nets

[87]. Both have been used in recent work [82–85, 87]. There are two

questions that arise when time is introduced to net theory: (1) the

location of the time delays (at places or transitions) and (2) the type

of delay (fixed delays, intervals, or stochastic delays).

Timed Petri nets are derived from classical Petri nets by

associating a finite firing duration (a delay) with each transition of

the net. The transition is disabled during the delay period, but is fired

immediately after becoming enabled. These nets are used mainly in

performance evaluation.

Time Petri nets (TPNs) are more general than timed Petri nets.

Both a lower and an upper bound are associated with each transition

in a TPN.

w Statecharts [89, 90]: Statecharts provides an abstraction mechanism

based on a finite state machine. It represents an improved version of

the structured methods. A graphic tool called ‘‘Statemate’’ [91] exists

to implement the formalism. Methods similar to that of statecharts

may be found in [92].

In statecharts, conventional finite state machines are extended

by AND/OR decompositions of states, interlevel transitions, and an

implicit intercomposition broadcast communication. Statecharts

denote the composition of state machines into supermachines that

may execute concurrently. The state machines contain transitions

that are marked by enabling and output events. It is assumed that

events are instantaneous, and a global discrete clock is used to trigger

sets of concurrent events. Statecharts are hierarchical and may be

composed of complex charts.

Statecharts support the typical structural top-down system

development methods. They do not fit in with the procedures of

reverse engineering, which involve the abstraction of specifications

from source code. Real time is incorporated in statecharts by the

incorporation of an implicit clock, allowing transitions to be triggered
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by timeouts relative to this clock, and by requiring that if a transition

can be taken, then it must be taken immediately.

3.7 Criteria and results

This section summarizes a wide spectrum of existing formal methods from

the point of view of software reengineering. Generally speaking, some of

them already have advantages in certain aspects. However, all of them have

certain flaws or weaknesses in some aspects as described in Section 3.6.

Tables 3.1 to 3.6 list our findings according to the following criteria:

w Temporal model: This is the model of time used by the formal methods.

A sparse model has discrete instances of time, and there is a

minimum granularity. A dense model is not discrete: Between any

two instances in time there are an infinite number of other instances.

w Automated tools: This criterion refers to whether the formal method

has relevant automated tools to support its development, such as

tools for checking syntax, verifying semantics, and autoexecution.

w Reliability: This criterion refers to the reliability of the formalism.

w Proof system: This refers to whether there is any proof system and

what type of proof system exists.

w Industrial strength: This criterion refers to the potential of the formal

method for large-scale industrial applications.

w Methods of verification: This criterion refers to the existing methods of

verification of the formal method. Normally, there are two different

methods of verification: model checking and theorem proving.

w Concurrency: This criterion refers to the explicit representation and

reasoning of concurrency.

w Communication: This criterion refers to the explicit representation and

reasoning of communication.

w Reverse engineering: This criterion refers to whether the formal method

has been applied in any reverse engineering domain.

The above five categories represented in Tables 3.1 to 3.5 correspond to

subsections of Section 3.6. We believe we should use a sixth category in order

to better summarize those so-called combined approaches (see Table 3.6).
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Table 3.2(a) Logic-Based Formalisms

Criteria HL WP-Calculation WSL TL ML

Temporal model None None None Dense/sparse None

Automated tools Some Some Good Some or few Few

Reliability Good Good Great Good Good

Proof system Axiomatic Axiomatic Axiomatic Axiomatic Axiomatic

Industrial strength Some Some Great Great Great

Methods of

verification

Theorem

proving

Theorem

proving

Both Both Both

Concurrency None None None Norm exist None

Communication None None None Norm exist None

Reverse engineering Yes Yes Yes No No

Table 3.1 Model-State-Based Formalisms

Criteria Z VDM B

Temporal model None None None

Automated tools A few None Good

Reliability Good Good Good

Proof system Semiaxiomatic Semiaxiomatic Axiomatic

Industrial strength Great Some Great

Methods of verification Model-checking Model-checking Both

Concurrency None None None

Communication None None None

Reverse engineering No No No

Table 3.2(b) Logic-Based Formalisms

Criteria ITL DC TAM RTTL RTL

Temporal model Sparse Dense Sparse Sparse Sparse

Automated tools Few None None Few None

Reliability Good Good Good Good Good

Proof system Axiomatic Axiomatic Axiomatic Axiomatic Axiomatic

Industrial

strength

Great Some Great Some Some

Methods of

veriification

Theorem

proving

Theorem

proving

Theorem

proving

Theorem

proving

Theorem

proving

Concurrency Parallel

composition

None Exist Interleaved Interleaved

Communication Synchronous/

asynchronous

None Exist Synchronous None

Reverse

engineering

No No No No No
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Table 3.3 Algebraic Formalisms

Criteria OBJ Larch

Temporal model None None

Automated tools Few Some

Reliability Good Good

Proof system Axiomatic Axiomatic

Industrial strength Some Great

Methods of verification Theorem proving Theorem proving

Concurrency Interleaved Interleaved

Communication Synchronous Synchronous

Reverse engineering No No

Table 3.4 Process Algebra Formalisms

Criteria CSP CCS ACP LOTOS TCSP

Temporal model None None None None Dense

Automated tools Some None Good Some None

Reliability Good Good Good Good Good

Proof system Axiomatic Bisimulation Bisimulation Bisimulation Axiomatic

Industrial strength Some Some Some Great Some

Methods of

verification

Both Both Both Model-checking Both

Concurrency Interleaved Interleaved Interleaved Interleaved Both

Communication Synchronous/

asynchronous

Synchronous Synchronous Synchronous Synchronous

Reverse engineering No No No No No

Table 3.5 Graphic-Based Formalisms

Criteria Petri Nets Timed Petri Nets Statecharts

Temporal model None Dense/sparse Sparse

Automated tools Some None None

Reliability Good Good Good

Proof system Reachability Reachability Axiomatic

Industrial strength Some Some Some

Methods of verification Model-checking Model-checking Model-checking

Concurrency Interleaved Interleaved Exist

Communication Synchronous Synchronous Synchronous

Reverse engineering Yes No No
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Through reading Tables 3.1 to 3.6, we can draw the following conclu-

sions regarding the current situation of formal methods for reengineering:

w Some formalisms are rather good in certain aspects of software

development while others are good in other aspects. For example,

ITL has a strong ability for representing and reasoning about most

features of real-time systems. TPCCS and TPCTL are good at dealing

with systems with reliability and probability features. Z is capable for

large-scale industrial applications. B has a comprehensive auto-

mated toolkit. DC has advantages for its ability to deal with dense

temporal models. Various process algebras are excellent for their

abilities to represent and reason concurrency and communication.

Finally, the most important features of net-based formalisms are

their graphical representations: They are concise, easy to under-

stand, and very clear.

w Only a very few formalisms have been applied as the theoretical

foundation of reverse engineering, and of these, WSL/FermaT is

clearly the best suited for reverse engineering sequential systems. For

reengineering communicating processes, the best approach would be

to combine WSL with an ITL-based logic with real-time features.

Unlike all the other formal methods, WSL/FermaT was designed

from the beginning for reverse engineering as well as forward

engineering.

3.8 Analysis and summary

Reengineering generally consists of three stages—reverse engineering,

funtional restructuring, and forward engineering. Because most existing

Table 3.6 Combined Formalisms

Criteria TPCCS + TPCTL Petri Nets + Predicate

Temporal model Sparse Sparse/dense

Automated tools None None

Reliability Good Good

Proof system Axiomatic Axiomatic

Industrial strength Some Unknown

Methods of verification Theorem proving Model-checking

Concurrency Interleaved Interleaved

Communication Synchronous Synchronous

Reverse engineering No No
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formal approaches were developed for forward engineering, whether or not

a formal approach has been used for reverse engineering is specially used as

a criterion.

Graphical notations are also popular notations for reverse engineering

(understanding) existing systems. Petri nets are useful for building a

graphical model for reengineering.

Another factor that should be taken into consideration when reengi-

neering computing systems is the recent rapid development of object-

oriented technology. We believe that an approach that integrates formal

methods, particular system domain features, and object-oriented techniques

can contribute to improve reengineering in the following ways:

w Existing software can be easily understood and reengineered with the

help of a successfully extracted semantics-oriented specification. An

approach with a full consideration of the features of the system being

reengineered will be more effective and efficient.

w Object-oriented techniques, which have been recognized as the best way

currently available for structuring software systems, can help

reengineering in grouping together data and operations performed

on them, thereby encapsulating the whole system behind a clean

interface, and organizing the resulting entities in a hierarchy based

on specialization in functionalities.

w Formal methods can provide a solid theoretical foundation for the

correctness and unambiguity of the approach and give more poten-

tial for automation of the approach. As a result, a practical software

reengineering tool becomes feasible.

The following chapters introduce our approach to software evolution

with the following features: (1) the ability to deal with sequential systems for

both reverse engineering and forward engineering, (2) the ability to deal

with parallel systems with communicating processes for both reverse

Figure 3.4 Evolutionary life of software.
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engineering and forward engineering, and (3) the ability to deal with object-

oriented systems. Finally, the evolutionary life of software is depicted in

Figure 3.4.
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WSL and Transformation Theory

Chapter 3 gave an overview of a number of different formal

methods and discussed their application to systems

evolution. This chapter focuses on one of the most successful

formal methods for reengineering sequential systems: the WSL

program transformation theory and the supporting FermaT

workbench.

4.1 Introduction

A computer program is traditionally thought of as a list of

detailed instructions, intended to be executed on a machine in

order to produce a particular result. For example, the program

in Figure 4.1 is intended to set z to the value xn for nonnegative

integer values of n. It also sets n to zero. Another way to think of

a computer program is as a description of a function which

translates an input state to an output state. If we start the

program in Figure 4.1 in a state where x has the value 2 and n

has the value 3, then it will run for a while (passing through

various intermediate states) and then terminate in a state

where z has the value 8 and n has the value 0.

Another way of describing the same mathematical function

is the program in Figure 4.2. In this case, there is only one

intermediate state.

A specification is also a description of a function, but in this

case it does not have to be an executable program. For example,

a program that sets x to a value that when squared equals 4

might be described as
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x :¼ x0:ðx02 ¼ 4Þ

Informally this specification says ‘‘assign a new value x0 to x so that the

condition x02 ¼ 4 is satisfied.’’ (The prime on x0 allows us to describe a

relationship between the old value of x and the new value x0, which is about

to be assigned to x).

In this case, there are two possible cases for the final value of x: þ2

and �2. The specification does not specify which value is required, so we can

assume that an implementor of the specification is allowed to choose

whichever value is most convenient. To capture this range of implementa-

tion choices, the function we are describing must map an initial state to a set

of possible final states.

A possible implementation of our specification is the simple assignment

x :¼ 2. This is a refinement of the original specification because the set of

possible final states for the implementation is a subset of the final states for

the program.

If a program S1 is a refined by another program S2 then we write S1 <S2.

If also S2 <S1 then we say that the two programs are equivalent and write

S1 <S2. In this case, the functions described by the two programs are

identical—even if the programs themselves may look completely different.

If our specifications are written in a formally defined mathematical

language, then it is possible to prove that a given program is a correct

implementation of a given specification. For most programs however we

want to break down this proof into a number of steps with a number of

intermediate stages between specification and program. The easiest way to

do this is to include specifications as part of our programming language:

Then all the intermediate stages can be written in the same language, and all

the proof steps can be carried out in that language. If our language also

includes low-level programming constructs then it is called a wide-spectrum

z :¼ 1;

while n > 0 do

z :¼ z�x;

n :¼ n � 1 od

Figure 4.1 A simple program.

z :¼ xn;n :¼ 0

Figure 4.2 Another program.
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language (WSL) because it covers the whole spectrum from abstract

mathematical specifications to executable implementations.

A program transformation is an operation that can be applied to a

program to generate another equivalent program (provided any given

applicability conditions are satisfied). This uses a wide spectrum language

called WSL for which a powerful set of transformations can be used for

refining specifications into programs, reverse-engineering programs into

specifications, and analyzing the properties of programs.

4.2 Background

The following requirements went into the development of the WSL

language and transformation theory:

1. General specifications in any sufficiently precise notation should be

included in the language. For sufficiently precise we will mean

anything that can be expressed in terms of mathematical logic with

suitable notations. This will allow a wide range of forms of

specification, for example Z specifications [1] and VDM [2] both

use the language of mathematical logic and set theory (in different

notations) to define specifications.

2. Nondeterministic programs should be used. Since we do not want

to have to specify everything about the program with which we are

working (certainly not in the first versions) we need some way of

specifying that some executions will not necessarily result in a

particular outcome but one of an allowed range of outcomes. The

implementor can then use this latitude to provide a more efficient

implementation that still satisfies the specification.

3. A well-developed catalog of proven transformations that do not

require the user to discharge complex proof obligations before they

can be applied is also necessary. In particular, it should be possible

to introduce, analyze, and reason about iterative and recursive

constructs without requiring loop invariants.

4. Techniques are needed to bridge the abstraction gap between

specifications and programs.

5. The language needs to be applicable to real programs—not just

those in a ‘‘toy’’ programming language with few constructs. This is

achieved by (programming) language independence and the

extendibility of the notation via definitional transformations.
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6. The language must be scalable to large programs: This implies a

language that is expressive enough to allow automatic transla-

tion from existing programming languages, together with the

ability to cope with unstructured programs and a high degree of

complexity.

The FermaT transformation system that is built on the transformation

theory has applications in the following areas:

w Improving the maintainability (in particular, flexibility and relia-

bility, and hence extending the lifetime) of existing mission-critical

software systems;

w Translating programs to modern programming languages (for

example, from obsolete assembler languages to modern high-level

languages);

w Developing and maintaining safety-critical applications;1

w Extracting reusable components from current systems, deriving their

specifications, and storing the specification, implementation, and

development strategy in a repository for subsequent reuse;

w Reverse engineering from existing systems to high-level specifica-

tions, followed by subsequent reengineering and evolutionary

development.

The WSL language is built up in a series of stages or levels, starting with a

very small and mathematically tractable kernel language.

Sections 4.3 and 4.4 develop the theory of how to prove the correctness

of a program transformation. It is not necessary for the user to understand

this theory in order to use program transformations in a reverse engineering

or reengineering project. Program transformation users who are not

interested in the theory are encouraged to skip to Section 4.5.

1 Such systems can be developed by transforming high-level specifications down to efficient low-level code with

a very high degree of confidence that the code correctly implements every part of the specification. When

enhancements or modifications are required, these can be carried out on the appropriate specification,

followed by rerunning as much of the formal development as possible. Alternatively, the changes could be

made at a lower level, with formal inverse engineering used to determine the impact on the formal

specification.
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4.3 Syntax and semantics of the kernel language

4.3.1 Syntax

Our kernel language consists of four primitive statements, two of which

contain formulae of infinitary first-order logic, and three compound

statements. Let P and Q be any formulae, and x and y be any nonempty

lists of variables. The following are primitive statements:

1. Assertion: fPg is an assertion statement that acts as a partial skip

statement. If the formula P is true then the statement terminates

immediately without changing any variables, otherwise it aborts

(we treat abnormal termination and nontermination as equiva-

lent, so a program that aborts is equivalent to one that never

terminates).

2. Guard: ½Q� is a guard statement. It always terminates, and enforces

Q to be true at this point in the program without changing the

values of any variables. It has the effect of restricting previous

nondeterminism to those cases that will cause Q to be true at this

point. If this cannot be ensured then the set of possible final states is

empty, and therefore all the final states will satisfy any desired

condition (including Q).

3. Add variables: add(x) adds the variables in x to the state space (if

they are not already present) and assigns arbitrary values to them.

4. Remove variables: remove(y) removes the variables in y from the

state space (if they are present).

There is a rather pleasing duality between the assertion and guard

statements, and the add and remove statements.

For any kernel language statements S1 and S2, the following are also

kernel language statements:

1. Sequence: ðS1;S2Þ executes S1 followed by S2;

2. Nondeterministic choice: ðS1 uS2Þ chooses one of S1 or S2 for

execution, the choice being made nondeterministically;

3. Recursion: ðmX:S1Þ where X is a statement variable (taken from a

suitable set of symbols). The statement S1 may contain occurrences

of X as one or more of its component statements. These represent

recursive calls to the procedure whose body is S1.
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At first sight, this kernel language may seem to be missing some essential

programming constructs such as assignment statements and if statements.

However, the guard statement can be composed with a nondeterministic

statement to get a deterministic result. For example, an assignment such as

x :¼ 1 is constructed by giving x an arbitrary value and then restricting its

value to the one required: addðhxiÞ; ½x ¼ 1�. For an assignment such as

x :¼ x þ 1, where the new value of x depends on the old value, we need to

record the required new value of x in a new variable, x0 say, before copying it

into x. So we can construct x :¼ x þ 1 as follows:

addðhx0iÞ; ½x0 ¼ x þ 1�; addðhxiÞ; ½x ¼ x0�; removeðx0Þ

An if statement such as if B then S1 else S2 fi is constructed from a

nondeterministic choice with guards to make the choice deterministic:

ð½B�;S1Þ u ð½:B�;S2Þ

For Dijkstra’s guarded commands [3] such as: if B1!S1 B2!S2 fi we need

to ensure that the command will abort in the case where none of the guard

conditions are true:

fB1 _B2g; ð½B1�;S1Þu ð½B2�;S2Þ

Three fundamental statements can be defined immediately:

abort ¼DF ffalseg null ¼DF ½false� skip ¼DF ftrueg

where true and false are universally true and universally false formulae.

The abort statement never terminates when started in any initial state.

skip is a statement that always terminates immediately in the same state in

which it was started. null is a rather unusual statement: It always terminates

but the set of final states is empty. This statement is a correct refinement of

any specification whatsoever. Morgan [4] uses the term miracle for such

statements. Clearly, any null statement and guard statements in general

cannot be directly implemented: If a program terminates, then it must

terminate in some state or other, and a program cannot in general force a

condition to be true without changing the value of a variable.

Null statements are nonetheless a useful theoretical tool, but as it is only

null-free statements that are implementable, it is important to be able to

distinguish easily which statements are null-free. This is the motivation for

the definition of our specification statement in Section 4.3.2.

The kernel language statements have been described as ‘‘the quarks of

programming,’’ mysterious objects that (in the case of the guard at least) are

not implementable in isolation, but that in combination form the familiar

atomic operations of assignment and if statements.
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4.3.2 The specification statement

A specification describes what a program should do while abstracting away

the implementation details of how the result is to be achieved. In mathema-

tical terms, a specification is a description of the relationship between input

and output states of the program; however, it does not necessarily describe

how this relationship is to be achieved. Suppose we have a list x of variables

that are the outputs of the program and suppose that the formula Q

describes the relationship between the new values x0 that we wish to assign

to x and the original values. This specification is described by the statement

x :¼ x0:Q

This statement assigns new values to the variables in x so that the formula Q

is true where (within Q) x represents the old values and x0 represents the

new values. If there are no values x0 that satisfy Q then the statement

aborts. The formal definition of this specification statement is:

x :¼ x0:Q ¼DF f$ x0:Qg;addðx0Þ; ½Q�;addðxÞ; ½x ¼ x0�; removeðx0Þ

The initial assertion ensures that this statement is null-free.

As an example, we can specify a program to sort the array A using a

single specification statement:

A :¼ A0:ðsorted ðA0Þ^permutation of ðA0;AÞÞ

This says ‘‘assign a new value A0 to A, which is a sorted array and a

permutation, of the original value of A’’; it precisely describes what we want

our sorting program to do without saying how it is to be achieved. In other

words, it is not biased toward a particular sorting algorithm. In [5] we take

this specification as our starting point for the ‘‘derivation by formal

transformation’’ of several efficient sorting algorithms, including insertion

sort, quicksort, and a hybrid sort.

The simple assignment v :¼ e, where v is a variable and e is an

expression, is defined as the specification statement hvi :¼ hv0i:ðv0 ¼ eÞ.

Morgan and others [4, 6–8] use a different specification statement,

written

x: ½Pre;Post�

where x is a sequence of variables and Pre and Post are formulae of

finitary first-order logic. This statement is guaranteed to terminate for all

initial states that satisfy Pre and will terminate in a state that satisfies Post,

while only assigning to variables in the list x. In our notation an equivalent
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statement is fPreg;addðxÞ; ½Post�. The disadvantage of this notation is that it

is not necessarily null-free (the statement hi: ½true; false�, for example, is

equivalent to null). As a result, the user is responsible for ensuring that he

or she never accidentally refines a specification into an (unimplementable)

null statement.

4.3.3 States and state transformations

The functions that are defined by WSL programs are called state

transformations. These functions map an initial state to a set of possible

final states, with a special state, denoted ’, to include the possibility that the

program may never terminate. A state s other than ’ is a partial function

that gives the values of all the variables in the state space (the set of variables

on which the program operates).

For example, the state transformation for the assignment i :¼ iþ 1 maps

each initial state s to a singleton set fs0g of final states, where s0 gives the value

sðiÞ þ 1 to the variable i and for all other variables, s0ðxÞ ¼ sðxÞ.

Despite the large amount of research and development on stateless

functional programming, the vast majority of programs in the world are

written in imperative languages, so for a reverse engineering technology it is

important (if not imperative) that we can cope easily with imperative

programs.

4.3.4 Refinement of state transformations

When we say that one program is a refinement of another, we mean that any

specification the program satisfies is guaranteed to be satisfied by the

program’s refinement. In other words, the refinement is at least as good at

satisfying specifications as the original program. A specification of a program

can be defined by giving a set of states (those initial states for which the

program’s behavior is to be specified) called the defined set and for each of

these initial states, a set of allowed final states. A program satisfies the

specification if, for each initial state in the defined set, the program is

guaranteed to terminate in one of the allowed final states. A specification

can therefore be given in the form of a state transformation f where f ðsÞ

contains ’ if s is not in the defined set of states, and for every other s, f ðsÞ is

the set of allowed final states. Conversely, any state transformation also

defines a specification.

We can therefore define satisfaction of a specification as a relation between

state transformations. We can also define a refinement of a state

transformation to be a state transformation that satisfies all the specifica-

tions satisfied by the first state transformation.
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With these definitions it turns out that refinement and satisfaction are

identical concepts: A state transformation f2 is a refinement of state

transformation f1 if and only if it satisfies f1 (considered as a specification).

4.3.5 Recursion

A program containing calls to a procedure whose definition is not provided

can be thought of as a function from state transformations to state

transformations, because the incomplete program can be completed by

filling in the body of the procedure. For a recursive procedure call, we fill in

the procedure body with copies of itself, but this means that the result of the

fill in is still incomplete because it will still contain recursive calls. However,

the expanded program is nearer to completion in some sense that we will

make precise. A recursive procedure can be considered as the limit formed

by joining together the results of an infinite sequence of such filling-in

operations.

Definition 4.1 Recursion: Suppose we have a function F that maps the set

of state transformations FHðV ;V Þ to itself. We want to define a recursive

state transformation from F as the limit of the sequence of state

transformations FðQÞ, FðFðQÞÞ, FðFðFðQÞÞÞ, . . . (where Q is the state

transformation for abort). With the definition of state transformation given

above, this limit ðm:FÞ has a particularly simple and elegant definition:

ðm:FÞ ¼DF

G

n<q

FnðQÞ i.e., for each s2VH : ðm:FÞðsÞ ¼
\

n<q

FnðQÞðsÞ

From this definition we see that Fððm:FÞÞ ¼ ðm:FÞ. Accordingly, the state

transformation ðm:FÞ is a fixed point for the function F; it is, in fact, the least

fixed point.

We say FnðQÞ is the nth truncation of ðm:FÞ: as n increases the

truncations get closer to ðm:FÞ. The larger truncations provide more

information about ðm:FÞ—more initial states for which it terminates and a

more restricted set of final states. The
F

operation collects together all this

information to form ðm:FÞ.

4.3.6 Weakest preconditions

We define the weakest precondition, wpðf; eÞ of a state transformation f

and a condition on the final state e to be the weakest condition on
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the initial state space such that if s satisfies this condition then all elements

of f ðsÞ satisfy e. A condition on states is simply a set of states: the set of

states that satisfies the condition. The special state ’ is defined as not

satisfying any condition. Thus, wpðf ; eÞ is simply the set of proper initial

states s such that f ðsÞ is a subset of e.

The importance of weakest preconditions is shown by the fact that the

refinement relation can be characterized using the weakest preconditions.

State transformation f1 is refined by f2 if and only if for every final state

condition e we have wpðf1; eÞ˝wpðf2; eÞ.

This characterization of refinement still requires us to examine every

possible final state condition in order to determine if one state transforma-

tion is a refinement of another. A theorem in [9] shows that it is only

necessary to examine two special postconditions: the condition true and the

condition x 6¼ x0, where x is a list of all the variables used in the program and

x0 is a list of variables not used anywhere in the program (and the length of

the two lists is the same).

The fact that refinement can be defined directly from the weakest

precondition will later prove to be vitally important.

4.3.7 Weakest preconditions of statements

We can also define a weakest precondition for kernel language statements as

a formula of infinitary logic. Infinitary logics are an extension of first-order

logic that allows conjunction and disjunction over infinite lists of formulae.

See [10, 11] for a general introduction to infinitary logics. These were first

used to define the semantics of programs by Engeler [12] and are used to

express weakest preconditions by Back [13].

WP is a function that takes a statement (a syntactic object) and a formula

from our infinitary logic L (another syntactic object) and returns another

formula in L.

Definition 4.2 For any kernel language statement S:V ! W , and formula

R whose free variables are all in W , we define WPðS;RÞ as follows:

1. WPðfPg;RÞ ¼DF P^R

2. WPð½Q�;RÞ ¼DF Q) R

3. WPðaddðxÞ;RÞ ¼DF "x:R

4. WPðremoveðxÞ;RÞ ¼DF R

5. WPððS1;S2Þ;RÞ ¼DF WPðS1;WPðS2;RÞÞ
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6. WPððS1 uS2Þ;RÞ ¼DF WPðS1;RÞ^WPðS2;RÞ

7. WPððmX:SÞ;RÞ ¼DF

W
n<q WPððmX:SÞn;RÞ

where ðmX:SÞ0 ¼ abort and ðmX:SÞnþ1 ¼ S½ðmX:SÞn=X�, which is S with all

occurrences of X replaced by ðmX:SÞn.

For the fundamental statements we have

WPðabort;RÞ ¼ false

WPðskip;RÞ ¼ R

WPðnull;RÞ ¼ true

For the specification statement x :¼ x0:Q we have

WPðx :¼ x0:Q;RÞ () $x0Q^"x0:ðQ) R½x0=x�Þ

For Morgan’s specification statement x: ½Pre;Post� we have

WPðx: ½Pre;Post�;RÞ () Pre) "x:ðPost ) RÞ

The Hoare predicate (defining partial correctness): fPregSfPostg is true if

whenever S terminates after starting in an initial state that satisfies Pre then

the final state will satisfy Post. We can express this in terms of WP as

Pre) ðWPðS; true Þ )WPðS;PostÞÞ.

For the if statement discussed in Section 4.3.1:

WPðif B then S1 else S2 fi;RÞ

() ðB )WPðS1;RÞÞ^ ð:B )WPðS2;RÞÞ

Similarly, for the Dijkstra guarded command:

WPðif B1 ! S1 B2 ! S2 fi;RÞ

() ðB1 _B2Þ^ ðB1 )WPðS1;RÞÞ^ ðB2 )WPðS2;RÞÞ

The weakest precondition captures the semantics of a program in the

sense that, for any two programs S1:V ! W and S2:V ! W , the statement

S2 is a correct refinement of S1 if and only if the formula

�
WPðS1;x 6¼ x0Þ )WPðS2;x 6¼ x0Þ

�
^
�
WPðS1; trueÞ )WPðS2; trueÞ

�

is a theorem of first-order logic, where x is a list of all variables assigned to

by either S1 or S2, and x0 is a list of new variables. This means that proving a

refinement or implementation or equivalence amounts to proving a
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theorem of first order logic. Back [13, 14] and Morgan [4, 7] both use

weakest preconditions in this way, but Back has to extend the logic with

a new predicate symbol to represent the postcondition, and Morgan has to

use second-order logic with quantification over formulae.

4.4 Proving the correctness of a refinement

We can define refinement between statements as the refinements of their

interpretations under some structure. This is called semantic refinement.

Definition 4.3 Semantic refinement of statements: If S;S0:V ! W have no free

statement variables and intMðS;V Þ< intMðS
0;V Þ for a structure M of L then

we say that S is refined by S 0 under M and write S <M S0. If D is a set of

sentences in L (formulae with no free variables) and S <M S0 is true for

every structure M in which each sentence in D is true then we write

DoS <S0. A structure in which every element of a set D of sentences is true

is called a model for D.

It is also useful to be able to prove the correctness of a refinement of

statements directly from their weakest preconditions, without first having to

calculate the corresponding state transformations. From Chapter 3 we know

that refinement can be characterized by two special weakest preconditions.

This is the motivation for the proof-theoretic definition of statement

refinement that uses the weakest precondition WP.

Definition 4.4 Proof-theoretic refinement: If S;S0:V ! W have no free

statement variables and x is a sequence of all variables assigned to in either

Sor S0, and the formulae WPðS;x 6¼ x0Þ )WPðS0;x 6¼ x0Þ and WPðS;x 6¼
x0Þ )WPðS0;x 6¼ x0Þ are provable from the set D of sentences, then we say

that S is refined by S0 and write: DrS <S0.

Theorem 4.1 shows that, for countable sets D, these two notions of

refinement are equivalent.

Theorem 4.1 If S;S0:V ! W have no free statement variables and D is any

countable set of sentences of L, then

DoS <S0 () DrS <S0

This theorem provides two different methods for proving a refinement.

More importantly though, it proves the connection between the intuitive

model of a program as something that starts in one state and terminates (if at

all) in some other state, and the weakest preconditions WPðS;x 6¼ x0Þ and
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WPðS; trueÞ. For a nondeterministic program there may be several possible

final states for each initial state. This idea is precisely captured by the state

transformation model of programs and refinement. In the predicate

transformer model of programs, which forms the foundation for [4] and

others, the meaning of a program S is defined to be a function that maps a

postcondition R to the weakest precondition WPðS;RÞ. This model certainly

does not ‘‘correspond closely with the way that computers operate’’ [15] al-

though it does have the advantage that weakest preconditions are generally

easier to reason about than state transformations. Thus a theorem that proves

the equivalence of the two models allows us to prove refinements using

the weakest preconditions, while doing justice to the more intuitive model.

The theorem also illustrates the importance of using the infinitary logic

Lq
1
q rather than a higher-order logic, or indeed a larger infinitary logic.

Back and von Wright [16] describe an implementation of the refinement

calculus, based on (finitary) higher-order logic using the refinement rule

"R:WPðS1;RÞ )WPðS2;RÞ where the quantification is over all predicates

(boolean state functions). However, the completeness theorem fails for all

higher-order logics. Karp [10] proved that the completeness theorem holds

for Lq
1
q and fails for all infinitary logics larger than Lq

1
q. Finitary logic is

not sufficient because it is difficult to determine a finite formula giving the

weakest precondition for an arbitrary recursive or iterative statement. Using

Lq
1
q (the smallest infinitary logic) we simply form the infinite disjunction of

the weakest preconditions of all finite truncations of the recursion or

iteration. We avoid the need for quantification over formulae because, with

our proof-theoretic refinement method, the two postconditions x 6¼ x0 and

true are sufficient. Thus we can be confident that the proof method is both

consistent and complete, considering the following:

1. If the weakest precondition formula can be proved, for statement S1

and S2, then S2 is certainly a refinement of S1.

2. If S1 is refined by S2 then there certainly exists a proof the

corresponding WP formula.

Basing our transformation theory on any other logic would not provide

the two different proof methods we require.

Definition 4.5 Statement equivalence: If DrS <S0 and DrS0<S, then we

say that statements Sand S0 are equivalent and write: DrS <S0. Similarly, if

DoS <S0 and DrS0<S, then we write DrS <S0. From Theorem 4.1 we

have DoS <S0 iff DrS <S0.
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4.4.1 Expressing a statement as a specification

The formulae WPðS;x 6¼ x0Þ and WPðS; trueÞ tell us everything we need to

know about S in order to determine whether a given statement is equivalent

to it. In fact, as the next theorem shows, if we also know WPðS; falseÞ

(which is always false for null-free programs) then we can construct a

specification statement equivalent to S:

Theorem 4.2 The representation theorem: Let S:V ! V , be any kernel

language statement and let x be a list of all the variables assigned to by S:

Then for any countable set D of sentences:

DrS < ½:WPðS; falseÞ�;x :¼ x0:ð:WPðS;x 6¼ x0Þ^WPðS; trueÞÞ

Although this would seem to solve all reverse engineering problems at

a stroke, and therefore be a great aid to software maintenance and re-

engineering, the theorem has fairly limited value for practical programs,

especially those that contain loops or recursion. This is partly because there

are many different possible representations of the specification of a pro-

gram, only some of which are useful for software maintenance. In

particular the maintainer wants a short, high-level, abstract version of the

program, rather than a mechanical translation into an equivalent specif-

ication (see [17] for a discussion on defining different levels of abstraction).

In practice, a number of techniques are needed including a combination of

automatic processes and human guidance to form a practical program

analysis system. An example of such a system is the FermaT system [18–20],

which uses transformations developed from the theoretical foundations

presented here.

The theorem is of considerable theoretical value however in showing

the power of the specification statement: In particular it tells us that

the specification statement is certainly sufficiently expressive for writing the

specification of any computer program whatsoever. Second, we will use the

theorem in Chapter 3 to add a join construct to the language and derive its

weakest precondition. This means that we can use join to write programs

and specifications, without needing to extend the kernel language. Third, we

use it in Chapter 3 to add arbitrary (countable) join and choice operators to

the language, again without needing to extend the kernel language.

4.4.2 Some basic transformations

This section proves some fundamental transformations of recursive programs.

The general induction rule shows how the truncations of a recursion capture
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the semantics of the full recursion—each truncation contains some

information about the recursion, and the set of all truncations is sufficient

for proving refinement and equivalence. This induction rule proves to be

an essential tool in the development of a transformation catalog. We will

use it almost immediately in the proof of a fold/unfold transformation

(Lemma 4.4).

Lemma 4.1 The induction rule for recursion: If D is any countable set of

sentences and the statements S;S0:V ! V have the same initial and final

state spaces, then

1. DrðmX:SÞk < ðmX:SÞ for every k < q;

2. If DrðmX:SÞn <S0 for all n < q then DrðmX:SÞ<S0.

An important property for any notion of refinement is the replacement

property: If any component of a statement is replaced by any refinement

then the resulting statement is a refinement of the original one. This is easily

proved by induction on the structure of statements. The induction steps use

Lemma 4.2.

Lemma 4.2 Replacement: if DrS1 <S01 and DrS2 <S02, then

1. DrðS1;S2Þ< ðS
0
1;S

0
2Þ;

2. DrðS1 uS2Þ< ðS
0
1 uS02Þ;

3. DrðmX:S1Þ< ðmX:S01Þ.

Proof: Cases (1) and (2) follow by considering the corresponding weakest

preconditions. For case (3) use the induction hypothesis to show that for all

n < q: ðmX:S1Þ
n < ðmX:S01Þ

n [since ðmX:S1Þ
n has a lower depth of recursion

nesting than ðmX:S1Þ] and then apply the induction rule for recursion.

We can use these lemmas to prove a much more useful induction rule

that is not limited to a single recursive procedure but can be used on

statements containing one or more recursive components. For any

statement S, define Sn to be S with each recursive statement replaced by

its nth truncation.

Lemma 4.3 The general induction rule for recursion: If S is any statement

with bounded nondeterminacy, and S0 is another statement such that

DrSn <S0 for all n < q, then DrS <S0.
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Lemma 4.4 uses the general induction rule to prove a transformation for

folding (and unfolding) a recursive procedure by replacing all occurrences of

the call by copies of the procedure. In [21] we generalize this transformation

to a ‘‘partial unfolding’’ where selected recursive calls may be conditionally

unfolded or replaced by a copy of the procedure body.

Lemma 4.4 Fold/unfold: For any S:V ! V :

DrðmX:SÞ<S½ðmX:SÞ=X�

4.4.3 Proof rules for implementations

This subsection develops two general proof rules. The first is for proving the

correctness of a potential implementation S, of a specification expressed in

the form fPg; x :¼ x0:Q. The second is for proving that a given recursive

procedure statement is a correct implementation of a given statement. This

latter rule is very important in the process of transforming a specification,

probably expressed using recursion, into a recursive procedure that

implements that specification. In [21–24] techniques are presented for

transforming recursive procedures into various iterative forms. This theorem

is also useful in deriving iterative implementations of specifications, since

very often the most convenient derivation is via a recursive formulation.

Implementation of specifications The first proof rule is based on a proof

rule in Back [13], we have extended this to include recursion and guard

statements. This proof rule provides a means of proving that a statement S is

a correct implementation of a specification fPg; x :¼ x0:Q. Any Z specification,

for example, can be cast into this form.

Theorem 4.3 Let D be a countable set of sentences of L. Let V be a finite

nonempty set of variables and S:V ! W a statement. Let y be a list of all the

variables in V � ~xx that are assigned to somewhere in S. Let x0, y0 be lists of

distinct variables not in S or V with ‘ðx0Þ ¼ ‘ðxÞ and ‘ðy0Þ ¼ ‘ðyÞ.

If DrðP^x ¼ x0 ^y ¼ y0Þ )WPðS;Q½x0=x;x=x0�^y ¼ y0Þ

then DrfPg;x :¼ x0:Q<S

The premise states that if x0 and y0 contain the initial values of x and y then

S preserves the value of y and sets x to a value x0 such that the relationship

between the initial value of x and x0 satisfies Q.
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This theorem is really only useful for simple implementations of a single

specification statement. More complex specifications will be implemented as

recursive or iterative procedures; in either case we can use the following

theorem to develop a recursive implementation as the first stage. This can be

transformed into an iterative program (if required) using the techniques on

recursion removal in [21–24].

Recursive implementation of general statements This section proves an

important theorem on the recursive implementation of statements. We use

it to develop a method for transforming a general specification into an

equivalent recursive statement. These transformations can be used to

implement recursive specifications as recursive procedures, to introduce

recursion into an abstract program to get a more concrete program (i.e.,

closer to a programming language implementation), and to transform a

given recursive procedure into a different form. The theorem is used in the

algorithm derivations of [5, 21, 25].

Suppose we have a statement S0 that we wish to transform into the

recursive procedure ðmX:SÞ. We claim that this is possible whenever the

following are true.

1. The statement S0 is refined by S½S0=X� (which denotes S with all

occurrences of X replaced by S0). In other words, if we replace

recursive calls in S by copies of S0 then we get a refinement of S0.

2. We can find an expression t (called the variant function) whose value

is reduced before each occurrence of S0 in S½S0=X�.

The expression t need not be integer-valued: Any set G that has a well-

founded order 4 is suitable. To prove that the value of t is reduced it is

sufficient to prove that if t 4 t0 initially, then the assertion ft a t0g can be

inserted before each occurrence of S0 in S½S0=X�. The theorem combines

these two requirements into a single condition.

Theorem 4.4 If 4 is a well-founded partial order on some set G, and t is an

expression giving values in G, and t0 is a variable that does not occur in S,

then if

"t0:ððP^ t 4 t0Þ ) S0<S½fP^ t a t0g;S
0=X�Þ ð4:1Þ

then P) ðS0< ðmX:SÞÞ.
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4.5 Algorithm derivation

It is frequently possible to derive a suitable procedure body S from the

statement S0 by applying transformations to S0, (e.g., splitting it into cases)

until we get a statement of the form S½S0=X�, which is still defined in terms of

S0. If we can find a suitable variant function for S½S0=X� then we can apply

the theorem and refine S½S0=X� to ðmX:SÞ, which is no longer defined in

terms of S0.

As an example we will consider the familiar factorial function. Let S0 be

the statement r :¼ n!. We can transform this (by appealing to the definition

of factorial) to show that

S0< if n ¼ 0 then r :¼ 1 else r :¼ n:ðn � 1Þ! fi

Separate the assignment:

S0< if n ¼ 0

then r :¼ 1

else n :¼ n � 1; r :¼ n!; n :¼ nþ 1; r :¼ n:r fi

So we have

S0< if n ¼ 0 then r :¼ 1 else n :¼ n � 1;S0;n :¼ nþ 1; r :¼ n:r fi

The positive integer n is decreased before the copy of S0, so if we set t to

be n, G to be N and 4 to be < (the usual order on natural numbers), and P to

be true then we can prove that for all n < t0, S0 is refined by

if n ¼ 0 then r :¼ 1 else n :¼ n � 1; fn < t0g;S
0; n :¼ nþ 1; r :¼ n:r fi

So we can apply Theorem 4.4 to prove that S0 is refined by

ðmX: if n ¼ 0 then r :¼ 1 else n :¼ n � 1;X; n :¼ nþ 1; r :¼ n:r fiÞ

and we have derived a recursive implementation of factorial.

This theorem is a fundamental result toward the aim of a system for

transforming specifications into programs since it bridges the gap between a

recursively defined specification and a recursive procedure that implements

it. It is of use even when the final program is iterative rather than recursive

since many algorithms may be more easily and clearly specified as recursive

functions—even if they may be more efficiently implemented as iterative

procedures. This theorem may be used by the programmer to transform the

recursively defined specification into a recursive procedure or function that

can then be transformed into an iterative procedure. The theorem may also

be used in reverse to prove that a given specification is a valid abstraction of a

given program; this is used for reverse engineering in Chapter 8.
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4.6 Extending the kernel language

The kernel language we have developed is particularly elegant and

tractable but is too primitive to form a useful WSL for the transformational

development of programs. For this purpose we need to extend the language

by defining new constructs in terms of the existing ones using definitional

transformations. A series of new language levels is built up, with the

language at each level being defined in terms of the previous level; the

kernel language is the level zero language which forms the foundation for

all the others. Each new language level automatically inherits the

transformations proved at the previous level; these form the basis of a

new transformation catalog. Transformations of each new language

construct are proved by appealing to the definitional transformation of

the construct and carrying out the actual manipulation in the previous

level language. This technique has proved extremely powerful and has led

to the development of a practical transformation system (FermaT) that

implements a large number of transformations. Over the last 16 years, the

WSL language and transformation theory have been developed in

parallel—we have only added a new construct to the language after we

have developed a sufficiently complete set of transformations for dealing

with that construct. We believe that this is one of the reasons for the

success of our language, as witnessed by the practical utility of the program

transformation tool.

The first level language consists of the following constructs:

1. Sequential composition: The sequencing operator is associative so we

can eliminate the brackets:

S1;S2;S3; . . . ;Sn ¼DF ð. . . ððS1;S2Þ;S3Þ; . . . ;SnÞ

2. Deterministic choice: We can use guards to turn a nondeterministic

choice into a deterministic choice:

if B then S1 else S2 fi ¼DF ðð½B�;S1Þu ð½:B�;S2ÞÞ

3. Specification statement:

x :¼ x0:Q ¼DF f$x0:Qg;addðx0Þ; ½Q�;addðxÞ; ½x ¼ x0�; removeðx0Þ

4. Simple assignment: If Q is of the form x0 ¼ t where t is a list of

terms that do not contain x0 then we abbreviate the assignment as

follows:
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x :¼ t ¼DF x :¼ x0:ðx0 ¼ tÞ

If x contains a single variable, we write x :¼ t for hxi :¼ hti;

5. Nondeterministic choice: The ‘‘guarded command’’ of Dijkstra [3]:

if B1!S1 ¼DF ðfB1 _B2 _ . . . _Bng;

B2!S2 ð. . . ðð½B1�;S1Þu

..

.
ð½B2�;S2ÞÞu

Bn!Sn fi . . .ÞÞ

6. Deterministic iteration: We define a while loop using a new

recursive procedure X that does not occur free in P:

while B do S od ¼DF ðmX:ðð½B�;SÞu ½:B�ÞÞ

7. Nondeterministic iteration:

do B1!S1 ¼DF while ðB1 _B2 _ . . . _BnÞdo

B2!S2 if B1!S1

. . . B2!S2

Bn!Sn od . . .

Bn!Sn fi od

8. Initialized local variables:

begin x :¼ t: S end ¼DF ðaddðxÞ; ð½x ¼ t�; ðS; removeðxÞÞÞÞ

9. Counted iteration: Here, the loop body S must not change i, b, f , or s:

for i :¼ b to f step s do Sod ¼DF begin i :¼ b:

while i < f do

S; i :¼ iþ s od end

10. Block with procedure calls:

begin S where proc X � S0: end ¼DF S½ðmX:S0Þ=X�

One aim for the design of the first-level language is that it should be easy

to determine which statements are potentially null. A guard statement

such as ½x ¼ 1� is one example: If the preceding statements do not allow 1 as
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a possible value for x at this point then the statement is null. The guard ½false�

is another example that is always null. If a state transformation is nonnull for

every initial state then it is called null-free. We claim that all first-level

language statements without explicit guard statements are null-free. (This is

why we do not include Morgan’s specification statement x: ½Pre;Post� in

the first-level language, because it cannot be guaranteed to be null-free.

For example the specification hi: ½true; false� is equivalent to ½false�, which

is everywhere null).

A null-free statement will satisfy Dijkstra’s ‘‘law of the excluded

miracle’’ [3]:

WPðS; falseÞ () false

The level-two language introduces multi-exit loops and action systems

(cf. [26, 27]). Level three adds local variables and parameters to procedures,

functions, and expressions with side effects.

4.7 Example transformations

This section introduces some basic program transformations that are useful

in their own right and that also form the building blocks for more powerful

transformations.

4.7.1 Notation

w Sequences: s ¼ ha1; a2; . . . ; ani is a sequence, the ith element ai is

denoted s½i�, s½i::j� is the subsequence hs½i�; s½iþ 1�; . . . ; s½j�i, where

s½i::j� ¼ hi (the empty sequence) if i > j. The length of sequence s is

denoted ‘ðsÞ, so s½‘ðsÞ� is the last element of s. We use s½i::� as an

abbreviation for s½i::‘ðsÞ�.

w Sequence concatenation: s þþ t ¼ hs½1�; . . . ; s½‘ðsÞ�; t½1�; . . . ; t½‘ðtÞ�i.

w Subsequences: The assignment s½i::j� :¼ t½k::l� where j � i ¼ l � k assigns

s the value hs½1�; . . . ; s½i � 1�; t½k�; . . . ; t½l�; s½jþ 1�; . . . ; s½‘ðsÞ�i.

w Stacks: Sequences are also used to implement stacks; for this purpose

we have the following notation: For a sequence s and variable

x: x  �
pop

s means x :¼ s½1�; s :¼ s½2::�. For a sequence s and expression

e: s  �
push

e means s :¼ hei þþ s.

w Map: The map operator � returns the sequence obtained by ap-

plying a given function to each element of a given sequence:

ðf�ha1; a2; . . . ; aniÞ ¼ hf ða1Þ; f ða2Þ; . . . ; f ðanÞi.
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w Reduce: The reduce operator = applies an associative binary operator

or function to a list and returns the resulting value: ð�=

ha1; a2; . . . ; aniÞ ¼ a1 � a2 � . . .� an. So, for example, if s is a list of

integers then þ=s is the sum of all the integers in the list, if q is a list of

lists then þ=ð‘�qÞ ¼ ‘ð þþ =qÞ is the total length of all the lists in q.

w Projection: The projection functions p1, p2,. . . are defined as

p1ðhx; yiÞ ¼ x, p2ðhx; yiÞ ¼ y, and more generally, for any sequence s:

piðsÞ ¼ s½i�.

The operation of splitting a sequence into a sequence of nonempty

sections at the points where a predicate fails is generally useful so we will

define the following notation.

Suppose we have a sequence p that we want to split into sections at

those points i where the predicate Bðp½i�; p½iþ 1�Þ is false. In other words,

we want to define a new sequence of nonempty sequences q such that the

concatenation of the sequences in q is equal to p (i.e. þþ =q ¼ p) and B is

true within each section and false on the boundary from one section to the

next.

Define the function indexq:N ·N!Nby indexqðj; kÞ ¼ þ=ð‘�q½1::j � 1�Þþ

k. This function maps the position of an element in the q structure (the kth

component of the jth subsequence) into the corresponding position in the

p structure. For all j 2 1::‘ðqÞ and k 2 1::‘ðq½j�Þ we have p ¼ þþ =q)

p½indexqðj; kÞ� ¼ q½j�½k�. On this domain, indexq is 1–1, so it has a well-

defined inverse. This inverse index�1
q maps an index i of p to a pair hj; ki such

that p½i� ¼ q½j�½k�. Thus the function sectionq ¼ p1 � index�1
q will give the

section in q in which an element of p occurs.

With this notation, we can define a split function splitðp;BÞ ¼ q, which

splits p into nonempty sections with the section breaks occurring between

those pairs of elements of p where B is false. The formal definition uses

sectionq to find the section breaks.

Definition 4.6 splitðp;BÞ ¼ q where

ðþþ=qÞ ¼ p^ hi� set ðqÞ

^"i 2 1::‘ðpÞ � 1:
�
ðBðp½i�; p½iþ 1�Þ ) sectionqðiþ 1Þ ¼ sectionqðiÞÞ

^ ð:Bðp½i�; p½iþ 1�Þ ) sectionqðiþ 1Þ ¼ sectionqðiÞ þ 1Þ
�

The split function will be used in the reengineering case study in

Chapter 9.
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4.7.2 Examples of transformations

This section describes a few of the transformations we will use later.

Expand IF statement The if statement

if B then S1 else S2 fi;S

can be expanded over the following statement to give

if B then S1;S else S2;S fi

4.7.3 Loops and exits

Statements of the form do S od, where S is a statement, are infinite or

unbounded loops that can only be terminated by the execution of a

statement of the form exitðnÞ (where n is an integer, not a variable or

expression) that causes the program to exit the n enclosing loops. To simplify

the language we disallow exits that leave a block or a loop other than an

unbounded loop. This type of structure is described in [28] and more

recently in [29];

A simple transformation is the following: If S is a proper sequence,

then

Drdo if B then exit fi; S od< while :B do S od

A proper sequence is any statement within which each exitðnÞ occurs

nested within at least n loops. Such a statement cannot therefore

terminate any enclosing do . . .od loop; the next statement to be executed

will always be the next statement in the sequence.

If S1 is a proper sequence, then the loop

do S1;S2 od

can be inverted to

S1;do S2;S1 od

This transformation can be used in the forward direction in order to move

the exit statements closer to the top of the loop (preparatory to converting

to a while loop perhaps). It can also be used in the reverse direction to

merge the two copies of statement S1 into a single copy and so reduce the

size of the program.

4.7.4 Action systems

An action is a parameterless procedure acting on global variables (cf.

[26, 27]). It is written in the form A � S where A is a statement variable
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(the name of the action) and S is a statement (the action body). A set of

(mutually recursive) actions is called an action system. An occurrence of a

statement call X within the action body refers to a call of another action.

The action bodies may include calls to the special action Z, which does not

have a body. Instead, a call Z causes immediate termination of the whole

action system even if there are unfinished recursive calls.

A regular action system is one in which execution of any action body

always leads to an action call (which may be a call Z). Within such a

system, no action call ever returns and the system can only terminate by

calling Z. Such an action system is equivalent to a collection of labels and

goto statements; in fact, any program that is implemented using labels and

gotos can be translated into a regular action system.

4.8 Why invent WSL?

For restructuring purposes it is useful to work within a language that has the

following features:

w Simple, regular, and formally defined semantics;

w Simple, clear, and unambiguous syntax;

w A wide range of transformations with simple, mechanically-check-

able correctness conditions.

No existing programming language that is widely in use today meets any

of these criteria.

For reverse engineering it is extremely useful to work within a single

WSL within which both low-level programs and high-level abstract

specifications are easily represented.

For migration between programming languages it is important that the

transformation system language should not be biased toward a particular

source or target language.

These are the considerations that led to the development of the WSL

language. The language has been developed gradually over the last 16

years, in parallel with the development of the transformation theory. This

parallel development has ensured that WSL is ideally suited for program

transformation work: The design of the language ensures that developing

and proving the correctness of transformations is straightforward and, most

importantly, the correctness conditions for the transformations are easy to
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check mechanically. This last point was important for the success of our

transformation system.

We believe that the formal foundations of our language and

transformation theory were essential to the success of the project.

The practice of implementing any reasonable-looking transformation

without a formal proof of correctness is very dangerous; the author has

discovered errors in transformations published in reputable journals [27],

but the errors were only uncovered after having attempted (and failed) to

prove that the transformations were correct. Since our tool works by

applying a vast number of transformations in sequence, any unreliability in

the transformations will have serious repercussions on the reliability of the

tool. In practice, the work on proving the correctness of known

transformations has been a major driving force in the discovery of new

transformations.

As a result, it turns out that, unlike any existing programming language,

WSL is not Turing-equivalent, for the following two reasons.

1. WSL includes constructs, such as guard and join, that are not

implementable. For example, the guard ½x > 0� is guaranteed to

terminate, does not change the value of any variable, and

guarantees that x > 0 on termination. Guards and joins are very

useful for writing specifications, and therefore equally important

for reverse engineering (see below).

2. Even if one were to exclude the miracles introduced by guard and

join, WSL is still more powerful than a Turing machine, since it is

based on infinitary first-order logic. It is possible to write a WSL

program that solves the halting problem for Turing machines—but

it is not possible to write a Turing machine that solves the halting

problem for Turing machines.

To prove the second point, note the following:

1. There exists a Turing machine will_termðx; nÞ that can determine if

the given (encoding of a) Turing machine x will terminate in n or

fewer steps. (The machine simulates x for n steps—the details can be

found in any text on computation theory.)

2. This Turing machine can be translated into a WSL program T that

takes x and n as input variables and sets output variable r to 0 or 1 as

appropriate.
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3. From T one can construct the formula WPðT; r ¼ 1Þ, with free

variables x and n, which is true if the value of x encodes a Turing

machine which will terminate in n or fewer steps.

4. Then the WSL procedure

proc Will Term ðxÞ ¼

if $n 2N:WPðT; r ¼ 1Þ then r :¼ 1

else r :¼ 0 fi:

will set r to 1 if the given x encodes a Turing machine that will

terminate in any number of steps. (Note N denotes the set of all

positive integers). This completes the proof.

General formulae, unrestricted set operations, references to infinite

objects (e.g., the set N above), and so on, are not allowed in executable

programming languages but are essential for a useable specification

language. Therefore, they are equally important for a language that is to

form the basis for a reverse engineering system.

For a usable program transformation system it is essential that the

base language satisfies the replacement property. Informally, the property

states that replacing any component of a program by a semantically

equivalent component will result in a semantically equivalent program.

This property is foundational to how our tool works: Select a component,

apply a transformation, select another component. However, the authors

are aware of no commercial programming language that satisfies this

property.

For example, in C the statement x = x*2 + 1 is equivalent to x = x*2; x =

x + 1. But the statement if (y == 0) x = x*2 + 1 is not equivalent to if (y == 0)

x = x*2; x = x + 1.

In JOVIAL, among many other restrictions, there is a limit to the level of

nesting of FOR loops. Therefore any transformation for replacing a GOTO

construct with an equivalent FOR loop will fail in certain positions2.

Particular implementations of other languages will almost certainly have

similar limitations and restrictions which make it extremely difficult, if not

impossible, to discover valid semantics-preserving transformations in that

language—let alone prove their correctness.

An obvious disadvantage of working in a separate language to the source

language of the legacy system is that translators to and from WSL will have to

2. We recall encountering a similar problem with BASIC on a Compukit UK101 microprocessor system many

years ago!
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be written. Fortunately, for the old fashioned languages typical of legacy

systems, this is not much more difficult than writing a parser for the

language, which in turn is a simple application of well-developed compiler

technology for which there is a wide variety of tool support available. In

addition, there are three important advantages to our approach:

1. Using a collection of translators for different languages, it becomes

possible to migrate from one language to another via WSL. We are

currently working on an assembler to COBOL II migration; the aim

is to produce high-level COBOL II, not something that looks as

though it was written by an assembler programmer!

2. The translator can be very simple-minded and not have to worry

about introducing such problems as redundancies, dead code, and

unstructured code. Once we are within the formal language and

transformation system, such redundancies and infelicities can be

eliminated automatically by applying a series of general-purpose

restructuring, simplification, and data-flow analysis transforma-

tions.

3. Our 16 year’s work on transformation theory can be reapplied to a

new language simply by writing a translator for that language. It

would be impossible to reuse the development work for a COBOL

transformation system in the development of a JOVIAL transfor-

mation system. Even a different version of COBOL could invalidate

many transformations and involve a lot of rework.

Based on our results, translation to a formal language is the best way to set

about any serious reverse engineering or migration work.

Our work has been criticized by some practitioners for its emphasis on

the use of formal methods and formally specified languages. This is odd

because the programming language and its support libraries form the basic

building materials for software engineering. However, no serious engineer

would expect to build with components whose properties are not precisely,

formally, concisely specified (e.g., this beam is specified to be able to take this

much load under these operating conditions). No serious engineer would

tolerate standard components that differ in an undefined way in their

properties and behavior from supplier to supplier. A serious engineer does

not think twice about screwing a nut from one supplier onto a bolt from

another supplier—she or he expects them to fit as a matter of course! A

serious engineer expects to have to master a certain amount of mathematics

in order to do his or her job properly including differential equations,
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integration, fluid dynamics, and stress modelling. This is far more than the

elementary set theory and logic required to understand WSL.

With regard to the undefined behavior of many commercial languages in

the presence of syntactic or semantic errors (including out-of-bounds

subscripts and the infamous buffer overflow problem) Hoare [30] said:

In any respectable branch of engineering, failure to observe such

elementary precautions would have long been against the law.

This was way back in 1960.

D. L. Parnas at the International Conference on Software Engineering in

Baltimore, Maryland, in 1993 [31] made the following points on the

relationship between software engineers and ‘‘real’’ engineering:

w Engineering is defined as ‘‘the use of science and technology to build

useful artifacts.’’

w Classical engineers use mathematics to describe their products (e.g.,

calculus, PDEs, and nonlinear functions);

w Computer systems designers should use engineering methods if they

are to deserve the name ‘‘software engineers.’’ This will include the

use of mathematics.
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The FermaT Evolution
Workbench

Chapter 4 gave an overview of the WSL language and

transformation theory. One major application of the

theory has been the development of the FermaT program

transformation system, which forms a central component of the

FermaT Evolution workbench.

5.1 Introduction

Recent research into the activities of software engineers [1] has

shown the need for tools capable of both semantic-based

searching and browsing through hierarchical structures. Other

studies [2–4] provide strong evidence that software engineers

desire tools to help them explore software. They use such tools

heavily already and want improvements (the main search tools

currently in use are text editors and regular expression search

utilities such as grep). Top-down program comprehension

requires browsing, while bottom-up comprehension require

searching. Programmers use both strategies and frequently

switch between them. The four most common search targets

are the following:

1. Function definitions;

2. All uses of a function;

3. Variable definitions;

4. All uses of a variable [4].
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The most common search motivations are as follows:

1. Defect repair;

2. Code reuse;

3. Program understanding;

4. Feature addition;

5. Impact analysis.

In [5], a design browser tool is described, for flexible browsing of a

system’s design-level representation and for information exchange with a

suite of program comprehension tools, complemented with a retriever

supporting full-text and structural searching. Source code is parsed to an

intermediate ASCII representation, imported into a repository based on the

UML metamodel, and accessed through an OO database management

system (Poet 6.0). The elements in the database can be accessed like normal

Java objects and used to build graphical representations in form of diagrams

(information views).

The FermaT workbench is an industrial-strength assembler reengineer-

ing workbench consisting of a number of integrated tools for program

comprehension, migration, and reengineering. It differs from these other

tools in that FermaT is capable of a much deeper semantic analysis of the

assembler source code.

5.2 Previous transformation tools

The first tool to be developed as a result of the authors’ work on WSL and

program transformation theory, was the maintainer’s assistant (MA). This

was a joint project involving the University of Durham, the Centre for

Software Maintenance, Ltd., and IBM United Kingdom Laboratories, Ltd.

MA is implemented in Lisp and includes an X windows based front-end

(XMA) that displays formatted WSL code. The user can select any point in

the program and see a list of all the transformations that are applicable at

that point. The user can then select a transformation from the list and see the

result immediately.

MA includes a large number of transformations but is very much an

academic prototype whose aim was to test the ideas rather than be a practical

tool. In particular, little attention was paid to the time and space efficiency of
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the implementation. Despite these drawbacks, the tool proved to be highly

successful and capable of reverse-engineering moderately sized assembler

modules into equivalent high-level language programs.

The next tool, the Generic REverse Engineering Tool (GREET) [6] was a

complete reimplementation of the transformation engine using Lisp and a

commercial CASE tool builder. The transformations in GREET are

implemented in METAWSL, an extension of WSL that includes high-level

features for writing program transformations [7–9]. The extensions include

an abstract data type for representing programs as tree structures and

constructs for pattern matching, pattern filling, and iterating over

components of a program structure. The ‘‘transformation engine’’ of

GREET is implemented entirely in METAWSL. The implementation of

METAWSL involves a translator from METAWSL to LISP, a small LISP

run-time library (for the main abstract data types) and a WSL run-time

library (for the high-level METAWSL constructs such as ifmatch and

foreach, fill).

GREET contains parsers for IBM 370 Assembler and JOVIAL and can

generate JOVIAL and C code as well as WSL. The user interface is similar to

MA in that the user is presented with formatted WSL code and can click on a

section of code and apply transformations.

One of the claims made in [7] is that implementing a large system in a

very high-level domain-specific language (such as METAWSL) will greatly

simplify maintenance and portability. This has proved to be the case with

GREET: The entire transformation engine was ported to a very different

version of Lisp (Scheme) by a single programmer in a few weeks. Several

factors prompted this porting exercise:

w The transformation technology had reached such a level of maturity

that the whole transformation process, from the raw WSL generated

directly from the parsed assembler to high-level WSL suitable for

translation to C or COBOL, could be carried out automatically with

no human intervention.

w Transferring from the proprietary Lisp to highly portable Scheme

code made the new transformation system completely platform

independent. The same source code can be compiled to run on

Solaris, AIX, Linux, Windows 98, Windows 2000 and many other

operating systems.

w Automation of many transformation processes means that the user

does not necessarily need to understand WSL or transformation

theory. Transformation processes such as restructuring, extracting
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call graphs and migration to a different programming language can

be carried out automatically with no human intervention (other

than a small amount of hand-tuning of the generated code).

The new transformation engine is called FermaT and forms a central

component of the FermaT workbench.

A practical system for reverse engineering has to deal with real

programs, not laboratory or toy examples. More specifically, the following

requirements were identified:

w The tool must cope with the usual programming constructs and their

uses (and abuses) including gotos, global variables, aliasing, recur-

sion, pointers, and side effects.

w It is not acceptable to assume that the code has been developed or

maintained using structured methods. Real code must be acceptable,

and major restructuring may be required before proper reverse

engineering can start. This should be carried out automatically (or

semiautomatically) by the system.

w Transformations in the library must be proven correct, so that the

user can employ them with confidence, but also so that the user does

not have to undertake such proofs. The transformations need

applicability conditions, and these must be mechanically checked

by the tool. In this way, all responsibility for correctness lies with the

tool—there are no generated ‘‘proof obligations’’ that the user must

discharge before correctness can be guaranteed.

w It must be possible to select a subcomponent of a large existing

system and to guarantee to preserve the interactions of the

subcomponent with the rest of the system. This permits attention

to maintenance hot spots and permits a piecemeal approach to

reverse engineering.

w The correctness of the implementation must be well-established.

The core of the tool is a library of proven transformations together with

the transformation engine. The transformations in the library were proven

before the tool was built. They allow a construct in WSL to be recast into

another WSL construct while ensuring that the semantics are preserved. The

software engineer using the tool has only to select a transformation and

apply it. He or she does not have to do the proof; the system’s transformation

engine checks that the transformation is applicable.
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The first stage is to load the source code into the tool, and this is achieved

by the source language to WSL translator. The WSL code is stored internally

as an abstract syntax tree (together with ancillary information to aid

applicability checking). Further details are given in [10–12].

The user is able to apply any transformation at any point in the program,

and the system automatically checks the applicability conditions of a

transformation before it is applied. This means that the correctness of the

resulting transformed program is guaranteed by the system rather than

being dependent on the user. When analysis of a program fragment is

required (for example, computing the set of variables used in the fragment),

the system stores the results of its analysis as part of the program, so that

recalculation of the analysis is avoided wherever possible.

Presenting the programmer with a variety of different but equivalent

representations of the program can greatly aid the comprehension process,

making best use of human problem-solving abilities (i.e., visualization,

logical inference, and kinetic reasoning).

The theoretical foundation work that proves that each transformation in

the system preserves the semantics of any applicable program is essential if

this method is to be applied to practical software maintenance or reverse

engineering. It must be possible to work with programs that are poorly (or

not at all) understood, and it must be possible to apply many transforma-

tions that drastically change the structure of the program (as in the

examples in Chapter 8) with a very high degree of confidence in the

correctness of the result.

Finally, the tool is also capable of computing standard complexity

metrics for a selected region of the WSL program and presenting them in

graphical form to show changes with time. Currently, McCabe, structural,

size, control flow, data flow and branch-loop metrics may be computed [6].

The system is constructed as a hierarchy of abstract machines, each of

which is formally specified. Additionally, the fact that the FermaT

transformation engine is implemented almost entirely in METAWSL,

makes it possible for the developers to use the tool in the maintenance of

its own source code.

It has been learned through experience that a user often employs a

pattern of transformations, and it is easy within the tool to group such

transformations into more powerful single transformations. Since transfor-

mations are implemented inMETAWSL, it is possible for users to develop their

own transformations (as combinations of existing transformations) and add

them to the system. Provided the new transformations are limited to invoking

existing transformations, and are prevented from carrying out unrestricted

editing operations, the new transformations are guaranteed to be correct.
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5.3 Analyzing assembler code

Assembler presents a number of unique challenges to automated (and

human!) analysis. The code is typically completely unstructured with

branches and labels allowed in arbitrary positions. Even where structured

macros are in use (such as IF. . .THEN. . .ELSE and WHILE. . .DO) there are no

restrictions on branching into or out of structures; thus, the apparent surface

structure provided by the macros cannot be relied upon. Subroutines are

called by storing a return address in a register and then branching to the start

of the subroutine. A subroutine returns by loading the register and

branching to the address is contains; however, there is nothing to stop the

programmer from overwriting or modifying the return address, or branching

from the middle of one subroutine to the middle of another, or branching

directly back to the main program or any number of other practices. As a

result, even determining the boundaries of a subroutine body can be a

challenge! Jump tables are yet another problem: The program carries out

some computation and then treats the result as an address and branches to it.

Self-modifying code is commonly used in legacy assembler code; rather than

wasting a byte by using a flag, clever programmers would overwrite a branch

instruction with a NOP instruction, or vice versa. The IBM 370 architecture

also includes an execute instruction (EX); this contains the address of an

instruction elsewhere in the program and a register that is used to modify the

target instruction before executing the modified instruction.

These difficulties also show why assembler, especially legacy assembler,

is so much more difficult and costly to maintain, compared to modern high-

level languages. All of these complications need to be addressed by any

practical tool for assembler reengineering. In addition, the need for

comprehensive semantic analysis tools is much greater for assembler than

for high-level languages. For example, a crude form of data flow analysis is

possible in COBOL simply by searching for names of variables. If a variable,

say INTEREST-TOTAL, is referenced in one statement, then a search for all

assignments to INTEREST-TOTAL will quickly enable the programmer to

determine where INTEREST-TOTAL gets its value. However, the heavy use

of registers and work areas in assembler, and the lack of data type

enforcement, combined with the lack of control flow structure, make these

scanner-based techniques much less useful. A search for all references to

register R3, or work area WORK1 might return hundreds of hits, almost all of

which are irrelevant. However, is very difficult to determine if there is an

execution path from one line of assembler to another distant line. What is

required is a detailed and thorough data flow analysis of the whole program.

Such an analysis will also require a detailed and thorough control flow
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analysis of the whole program—for example to determine all possible return

points for a subroutine call.

Data flow analysis is also needed for the following:

1. Debugging: Search backwards through data flow from the point

where the value of an item is known to be invalid in order to find

the code that sets the value;

2. Enhancement: Search forward from an area of code that is about to

be changed in order to determine the impact of the proposed

change.

These are some of the considerations that led to the development of the

FermaT workbench.

5.4 The FermaT workbench

The FermaT workbench was designed specifically for analyzing, maintain-

ing, and migrating assembler code (including mainframe assembler and x86

assembler) but the technology on which it is built is applicable to many other

languages; for example, the transformation engine works directly on WSL

and is not specific to WSL generated from assembler. Research projects,

migration projects, and case studies have been carried out in C, COBOL,

JOVIAL, BASIC, and other languages.

The various tools comprising the FermaT workbench are accessed via a

toolbar and consist of the following:

w Function catalog;

w Function call graph;

w Text editor;

w Program flowchart;

w Data catalog;

w Control flow analyzer;

w Data flow analyzer;

w Program slicer;

w Migration tools.
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Each tool is an independent executable, or set of executables, that

communicates with the thin client workbench toolbar via TCP/IP connec-

tions and shared data files. This design has several advantages:

1. The tools do not all need to run on the same machine. For example,

the processor-intensive analysis tools can run on a separate high-

power workstation and communicate with the workbench across a

local network (or even across the Internet).

2. One tool will not freeze the whole workbench while carrying out a

time-consuming activity. The user can switch to another tool and

carry on working while waiting for output from the first tool.

3. Tools can be tested independently of the rest of the workbench via a

direct TCP/IP connection (such as Telnet). This also provides a

simple way to automate regression testing.

Source files in FermaT are organized into directories called projects.

Each FermaT project consists of a collection of assembler source, macro,

and copybook files, typically comprising an assembler system or

subsystem. The project also contains all the working files produced by the

workbench.

5.4.1 The function catalog

A module is either a source file a macro file, or a copybook file. Modules are

grouped into functions, and functions can be nested inside other functions.

The function catalog (see Figure 5.1) shows a hierarchical view of the

function tree, with modules as the leaves of the tree, plus a detailed view of

the currently selected function. The detailed view shows which functions

call this function, plus which functions are called by this function [including

external modules (i.e., calls to modules that are not available in the current

project, macro, or copybook library)].

5.4.2 The function call graph

The function call graph (see Figure 5.2) provides a graphical view of the

calling relationships between modules. The call graph is computed by

scanning the individual modules for calls to other modules and constructing

a graph structure. Copybooks and macros can be included or excluded from

the graph for clarity.
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5.4.3 The text editor

The text editor is a fully featured assembler-aware editor that is closely

integrated with the other tools in the workbench. Comments are shown in

green, and other lines may be highlighted in different colors to show the

result of a search or other action. The text editor parses each line of

assembler and therefore knows which symbols are data items (such as

variables, constants, and data structures), which are mnemonics and so on.

Any data item can be selected for tracking via the data tracker; this gives a list

of all modules which use or reference that data item.

5.4.4 The program flowchart

Computing a flowchart (see Figures 5.3 and 5.4) requires parsing the

assembler and breaking the list of instructions down into basic blocks. A basic

block is a sequence of instructions that is entered at the top and that is exited

at the bottom via a conditional or unconditional branch or by ‘‘falling

through’’ to the next block.

The next stage is to compute all the links and possible links between

basic blocks; this is not as easy as it sounds because there may be EXecute

Figure 5.1 The function catalog.
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statements, jump tables, and system and user macros, any of which may

cause transfer of control, and the target of the transfer may not be a label-

listed on the source line—the target may not be labeled at all! For example,

the standard IBM system macro GET, which is used to read a record from a

file, has two parameters, a record buffer and a DCB (data control block)

pointer. However, the macro will cause a transfer of control on an end of file

condition. The label to branch to on end of file is listed in the DCB and not on

the macro line. The DCB may also list another label that the macro will

branch to on a system error condition.

To deal with user-defined structured macros, FermaT uses a macros table

that lists macros of each type (including the GOTO macro, LABEL macro, IF

structure, and WHILE loop). This is used to interpret the macros in the

source file and determine which lines are conditional or unconditional

branches, which lines can ‘‘fall through’’ to the next line, and what are the

targets for each branch.

The assembler-to-WSL translator uses a separate macros table, which

provides WSL code equivalent to the macro expansion. If a macro is not listed

in the latter table, then the macro expansion is translated directly to WSL.

The flowchart tool depicts the control flow of a module in a gra-

phical form. The user can jump from a selected line in the editor to

Figure 5.2 The function call graph.
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the corresponding node in the flowchart and vice versa. In addition, a block

of code can be selected in the editor and highlighted, and the corresponding

flowchart nodes will be highlighted. A set of nodes in the flowchart

can be highlighted and the corresponding lines in the editor will be

highlighted.

Switching between two different views of the same program (textual

and graphical) is a powerful way of improving program comprehension—

details that are hard to spot in one view become more visible in the alternate

view. For example, in the graphical view it is easy to spot loops in the code

and determine which lines of code form the body of the loop.

Figure 5.3 Flowchart (whole program).
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Assembler-specific features in the flowcharter include the following:

w The executed instruction is found and copied in after the line

containing the EX instruction.

w Relative branches are computed and the branch target determined

where possible.

w Jump tables are detected automatically and converted to a list of

conditional branches.

w Subroutines (internal and external) are detected automatically and

highlighted.

Figure 5.4 Flowchart (zooming in on part of the program).
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w Data declarations are ignored in the flowchart.

w Structured macros are interpreted directly.

Any block of code in either the editor or flowchart can be highlighted

and annotated. The block can then be collapsed to a single node in the

flowchart. This is used for incremental redocumentation of the source and as

an aid to reverse engineering the system.

5.4.5 The data catalog

The data catalog (see Figure 5.5) shows a hierarchical view of the data layout

for the current module, showing which data items are structures containing

other data items and which are atomic data elements. If the relevant macros

and copybooks have been imported to the project, or are present in a library,

then the data catalog can also show the data structures that are external to

the current module. The data catalog also displays the details of the currently

selected data items.

5.4.6 Analysis tools

The next four tools (control flow analysis, data flow analysis, slicing, and

migration) require a much more detailed semantic analysis of the assembler.

Because of this, these tools require an assembler listing file as input (rather

than just the source file), since the listing contains macro expansions,

copybook expansions, relative addresses for all code and data labels, and other

important information. For the tools to derive all this information directly

from the source files they would need to replicate much of the functionality of

an assembler. Thus it makes better sense to reuse existing technology.

The analysis tools make use of the FermaT transformation engine;

assembler code is translated into WSL, then a sequence of transformations is

applied to restructure and simplify the WSL code and remove low-level

assembler features. The resulting high-level WSL code is then analyzed for

control flow and data flow and is sufficiently high-level that it can be

translated directly into C or COBOL. See Chapter 8 and [10] for a case study

of the automated migration of assembler to efficient and maintainable C

code. The high-level WSL also forms the basis for reverse engineering an

assembler program to an abstract specification in [13].

The assembler-to-WSL translator includes the following features:

w Standard opcodes: Each assembler instruction is translated into WSL

statements that capture all the effects of the instruction. The machine
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registers and memory are modeled as arrays, and the condition code

as a variable. Thus, at the translation stage we do not attempt to

recognize if statements as such; we translate into statements that

assign to cc (the condition code variable), and statements that test

cc.

w Standard system macros for file handling and other tasks: When

translating a GET macro, for example, the system determines the

error label (if any) and end-of-file condition label (by searching for

the data control block declaration) and inserts the appropriate tests

and branches.

w User macros: These are added to the translation table with an

appropriate WSL translation. If a macro is found that is not in the

translation table, then the macro expansion is translated. If there is

no macro expansion, then a suitable procedure call is generated.

w Structured macros: These are handled by simply translating the

macro expansion. This replaces the structure by equivalent branches

and labels, but our restructuring transformations are powerful

enough to recover the original structure in each case.

w The condition code: This is implemented as a variable (cc). This is

because when a condition code is set it is not always obvious exactly

Figure 5.5 The data catalog.
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where it will be tested, and it may be tested more than once.

Specialized transformations convert conditional assignments to cc

followed by tests of cc into simple conditional statements.

w BAL/BAS (branch and save) and branch to register: This is handled by

attempting to determine all possible targets of any branch to register

instruction by determining all the places where a return address

could be saved, or where a modified return address could end up.

Each label is turned into a separate action with an associated value

(the relative address). A store return address instruction stores the

relative address in the register. A branch to register instruction passes

the relative address to a dispatch action that tests the value against

the set of recorded values and jumps to the appropriate label. This can

deal with simple cases of address arithmetic (including jump tables)

but may theoretically be defeated if more complex address manipula-

tions are carried out before a branch to register instruction is executed.

w Simple external branches (external subroutine calls): These are detected.

w Simple jump tables: These are detected. The code for detecting jump

tables can be customised and extended as necessary.

w EXecute statements: These are detected and generate the appropriate

code (the executed statement is translated and then modified

appropriately). The execute (EX) instruction in IBM assembler is a

form of self-modifying code; it takes two parameters, a register

number, and an address of the actual instruction to be executed. If

the register number is nonzero, then the actual instruction is

modified by the register contents before being executed. Execute

instructions are typically used to create a variable-length move or

compare operation (by overwriting the length field of a normal move

or compare instruction).

w Data declarations: All assembler data (EQUates, DS, DC, DCB, etc.)

are parsed and restructured into C unions and structs, where

appropriate.

w DSECTs: These are converted into pointers to structs (whenever the

DSECT’s base register is modified, the appropriate pointer is modified

to keep it in step).

w EQUates: These are translated as #defines, apart from (1) ‘‘EQU *’’

in a data area, which is translated as an appropriate data element,

and (2) ‘‘FOO EQU BAR,’’ which is recorded as declaring FOO as a
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synonym for BAR. (If the C translation of BAR is baz.bar, for

example, then the C translation for FOO will be baz.foo.)

w Self-modifying code: Cases where a NOP or branch is modified into a

branch or NOP are detected and translated correctly (using a generated

flag). When an instruction is detected that modifies a NOP or branch

instruction, then the translator generates a new flag that is initialized to

zero or one (depending on whether the modified instruction was a

NOP or branch). The modified instruction is translated as a conditional

branch instruction that tests the flag and branches if the flag is set. The

instructions that modify the NOP or branch are translated into code

to set or reset the flag, as appropriate. More complex cases of self-

modifying code (e.g., overwriting a block of code with another block

of code generated on the fly) can usually be detected but cannot be

translated other than by emulating the entire source machine and its

environment! These cases are, however, extremely rare.

w C header files: These are generated automatically, one for the main

program and separate header files for each DSECT referenced.

w Structured and unstructured CICS calls (the HANDLE AID and HANDLE

CONDITION CICS macros set up conditions under which other CICS macros

can transfer control to labels listed in the HANDLE macro): These are

translated into the appropriate high-level code. Unstructured CICS

calls are translated into equivalent structured code through a

mechanism that can be extended to other macro packages (e.g.,

databases and SQL).

The aim of the assembler-to-WSL translator is to generate WSL code that

models as accurately as possible the behavior of the original assembler

module—without worrying too much about the size, efficiency or complex-

ity of the resulting code. Typically, the raw WSL translation of an assembler

module will be three to five times bigger than the source file and have a very

high McCabe cyclomatic complexity (typically in the hundreds, often in the

thousands). This is, in part, because every branch to register instruction

branches to the dispatch action, which in turn contains branches to every

possible return point.

However, the FermaT transformation engine includes some very power-

ful transformations for such tasks as simplifying WSL code, removing

redundancies, and tracking dispatch codes. In most cases FermaT can

automatically unscramble the tangle of branch and save and branch to

register code to extract self-contained, single-entry single-exit procedures

and so eliminate the dispatch action. In addition, FermaT can nearly always
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eliminate the cc variable by constructing appropriate conditional statements.

Chapter 4 shows how program transformations are used to eliminate code

that sets and tests flag variables; these and similar transformations are applied

extensively and automatically to replace references to the cc flag by the

appropriate conditions and to remove redundant assignments to the cc flag.

The resulting WSL code, after automatic transformation, can then be

processed by several analysis tools. Analysis of the transformed WSL code

provides much more information, and more accurate information, than

could be provided by a direct analysis of the original assembler. For a start,

there are fewer nodes in the control flow graph for the WSL code. There are

also considerably fewer edges in the control flow graph. For example, the

raw WSL contains edges from every branch to register instruction to the

dispatch procedure, which in turn has an edge to every possible return point.

The transformed CFG has usually eliminated the dispatch procedure and

replaced all the save return address and branch to register code by a

hierarchy of single-entry single-exit subroutines. The result is much more

accurate control and data flow information.

5.4.6.1 Control flow analysis

The control flow analysis tool breaks up the structured WSL into basic blocks

and uses these to construct the nodes of the control flow graph. From this

graph we can calculate the dominator tree [14] and control dependence

information [15]. The control dependencies of an instruction are those

branch statements that control whether or not the given instruction is

executed. To be precise, if one arm of the branch is taken, then the given

instruction will eventually be executed (provided the program terminates at

all), while if the other branch is taken then the program may terminate

without executing the given instruction.

The user can see a graphical display of the dominator tree and control

dependence graph, as well as displaying and browsing control dependence

information in the editor.

5.4.6.2 Data flow analysis

The dominator tree is used to compute the static single assignment (SSA)

[16, 17] form of the basic blocks computed from the restructured WSL

program. From this, a dataflow file is computed; this lists in a concise form all

the dataflow and control dependence information for the assembler module

with links back to each symbol in the assembler module.
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5.4.6.3 Program slicer

The dataflow file contains all the information needed to compute forwards

and backwards static slices of the original program [18]. Any instruction or

data item in the program can be selected and a program slice computed and

displayed.

5.4.6.4 Migration tools

Chapter 8 includes a case study using FermaT migration tools to migrate

assembler to C.

5.5 Results

The results from using the FermaT Workbench on major reengineering

projects have so far been very encouraging. A simple application of the

technology is using FermaT for Euro assessment.

Euro assessment With the introduction of the Euro currency throughout

much of Europe, banks and other financial organizations have had to make

some major enhancements to their software systems. A Euro project involves

much more than simply adding another currency to the system: There are

complex rules to determine how to convert to and from the Euro, and these

rules are enforced by legislation. As a result, a Euro conversion is likely to be

an order of magnitude more complex than a Y2K conversion.

The first stage in a Euro conversion project is the assessment phase,

where the aim is to determine precisely which lines of code need to be

changed. Assessment involves the following steps:

1. First collect the source and run an automatic inventory report.

Depending upon how many missing dependencies there are this

may take several passes to obtain a full inventory.

2. Then, scan the copybooks/macros for details of all data declarations.

3. Then enter the seek table utility, which uses details of the data

declarations to assist the user to dynamically (i.e., without requiring

a rescan of the source) produce a base seek table, based upon

comments and data types.

4. The rest of the source modules are scanned for data declarations,

and this information is again passed onto the seek table utility.
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Where there are distinct business areas (with few shared data

names and structures), the rest of the assessment project can be

conducted in parallel for each business area.

5. The base seek table is then further tweaked for the source modules

in each business area.

6. The seek table utility then exports a matched field list for every

module, to take into account fields with the same names but

different uses within different modules (e.g., work fields). The data

impact scanner then reads in these matched field lists and finds

every instance of every required field in every module. Reporting

information is output that can be imported into databases/

spreadsheets.

In two Euro projects the whole assessment process was completed in

about five days for a typical 500K LOC system. Larger systems do not require

proportionately more effort because there are usually common library

modules containing a large proportion of data declarations.
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An Integrated Evolution
Framework

Having addressed the evolution of procedural legacy

programs in Chapters 4 and 5, we would like to discuss

our approach to evolving a broader range of programs,

including object-oriented programs and real-time programs.

6.1 Characteristics of legacy systems

6.1.1 Typical problems

Legacy systems present a fundamental challenge to those who

own and operate them. These systems have begun to age but

continue to provide vital services [1, 2]. They were designed to

follow requirements and an implementation approach that

existed earlier in the organization’s life cycle. Then they were

released into an environment, possibly different from the

planned environment, or an environment that changed

significantly over several years. Now, after many years or

even decades, they are still expected to operate efficiently, solve

problems, and incorporate changes in technology and business

practices for many years to come [3].

Because legacy software systems are so critical to an orga-

nization’s survival, they are not retired or substituted with

newly developed systems without compelling reasons. Major

changes require a huge investment in new technology, with a

significant risk that the new systems may fail to deliver the re-

quired services. Therefore, organizations maintain functionality,
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correct defects, and upgrade legacy systems to keep up with changing

business or technical conditions.

Legacy systems share many negative characteristics, or in another word,

problems. Some of the worst, and lamentably typical ones, are described as

follows:

w Legacy systems are large, with hundreds of thousands or even

millions of lines of codes.

w They are written in legacy languages, such as COBOL.

w They are built around a legacy environment [e.g., IBM’s IMS (a

DBMS from IBM)].

w They are autonomous. Applications operate independently, with

little or no interface with other applications. If interfaces are present,

they are often badly designed, and haphazard at best according to

modern criteria. For example, some interfaces were based on export/

import models or lack data consistency.

To complicate matters, these legacy systems are often mission-critical (i.e.,

essential to the organization’s business) and must be operational at all time.

6.1.2 Structure and data dependency

A legacy system is, under most circumstances, composed of nested

procedures and functions. This chapter uses the term component to mean

‘‘procedure’’ or ‘‘function.’’ If the system is monolithic, then we apply

various restructuring techniques; for example, FermaT can restructure

monolothic assembler modules into a hierarchy of single-entry, single-exit

procedures. According to the nested structure, these components have

different visibility (scope) levels. The components that nest at the top layer

(i.e., components with no parent, such as main() in C programs) are

assumed to have the highest visibility level: level 0. This means that those

components are in a most general position in the whole system. Similarly,

the direct subprocedures and subfunctions of a level-0 component have the

visibility level 1. And for a component of level i, the visibility level of its

direct subprocedures and subfunctions is level iþ 1. A depiction of visibility

levels is given in Figure 6.1. All data items are associated with the same

component’s visibility (scoping) level at which they were first declared.

Therefore, the top global components and their data items have the highest

visibility level, which is marked level 0, and those at the nth nested layer

below the top level have visibility level n. In ideal cases, a component at

level i only has direct access to components at level iþ 1. Components
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distributed over several levels can be treated as a system composed of

subcomponents at different levels.

The functional effect of a component can be interpreted as changing part

or all of the data items at a higher level than this component (i.e., the relative

global variables to this component) and giving them new values with the aid

of data items belonging to this component (i.e., this component’s local

variables). Therefore, a component can be viewed as a mapping function

between the old and new values of its relative global data items. The effect

of a component is embodied in the change of its relative global variables.

Figure 6.2 shows this mapping relation. The rectangle with rounded corners

represents a component; the circles represent local variables of the

component, and the rectangles represent global variables to the compo-

nents. Variables at the left side form the original state, and those at the right

are the new state after invocation of the component.

For an object-oriented system, the data fields of an object and those

accessible to the object can be considered to be global data items, and other

data items used by its methods are local ones of the object.

Based on the above concepts of visibility level and mapping function,

Figure 6.3 shows the typical structure and data dependency of a legacy

Figure 6.1 Visibility levels of system components and their data items.
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system. Here, primary data items are the global data items with visibility

level 0, and secondary data items are those data items whose visibility level

is deeper than 0. The primary data items at the top are initial states of the

legacy system, and those at the bottom are the final states. Those in the

middle are intermediate states. The nested rectangles are the components at

various visibility levels in the legacy system.

6.2 The expanded evolution approach

6.2.1 Extending WSL

The study in previous chapters has shown that using a WSL is the most

suitable and efficient approach to the evolution of computing systems

because of its various abstraction levels and the integrity of these levels.

Based on the characteristics of legacy systems, a unified approach for

software evolution is developed. The approach is based on the extension of

Figure 6.2 Functional mapping of a system component.
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the WSL, which enjoys a sound formal semantics. An integrated framework

for evolution has been constructed to support the proposed approach.

For the reverse engineering stage, we endeavor to extract a formal

specification from the legacy source code. There are two reasons to support

this approach:

1. Specifications are more compact than source code; they are

expressed in a more problem-oriented notation and are easier for

the software engineer to understand. Therefore, extracting specifi-

cations can greatly facilitate the software engineers’ understanding

of the legacy system, both in efficiency and accuracy, and therefore

Figure 6.3 Global and local data dependency.
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facilitate further redesign and respecification of the original system.

The benefit is worth the cost, especially for critical legacy systems.

2. From the new specification, executable code can potentially be

generated automatically or semiautomatically. Using formal nota-

tions could assure more precise system description and increase the

automation of the whole evolution process.

6.2.2 Architecture of extended WSL (EWSL)

Extended WSL (EWSL) is a multilayered WSL with sound formal semantics.

Due to the distinct advantage of ITL [4–8], we use it as the semantic

foundation of EWSL.

Figure 6.4 shows the architecture of EWSL. The top part is the object-

oriented section, which includes three layers, namely ITL specification,

object-oriented TAM (ObTAM) and common object-oriented language

(COOL). ObTAM is an extension of TAM language [9–11] with object-

oriented features. The most concrete layer of the object-oriented section is

COOL, which provides structures as those in an ordinary object-oriented

language.

Figure 6.4 EWSL: general architecture.
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The bottom part is the structural (procedural) section, which also

includes three layers: ITL specification, timed guarded command language

(TGCL) and CSL. TGCL is an extension of Dijkstra’s guarded command

language [12, 13] with time and concurrency features. Both TGCL and CSL

are at the code level, while in CSL, operators and concepts are implemented

in common programming elements, such as shunts.

Both the object-oriented and procedural systems are specified with ITL

formulae. The semantics of the other layers of EWSL, together with the

abstraction and object extraction rules, are defined in ITL.

6.2.3 Working flow of EWSL

Figure 6.5 shows the possible process when using EWSL to evolve

legacy systems. The approach may be used as follows: The source code of

Figure 6.5 EWSL: working process for evolution.
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a procedural or object-oriented legacy system is first translated into CSL or

COOL through a language specific translator. This translates between

a source and target language to and from EWSL (an example is the COBOL-

to-EWSL translator in [14]). Such a translation ensures standardization,

since legacy systems may have come in various languages, such as C, C++,

Modula, or COBOL. This is followed by transformation to TGCL or ObTAM

through successive applications of correctness-preserving transformation

rules.

There are three possible paths for reengineering (Figure 6.5):

1. TGCL and ObTAM code can be improved or extended by adding the

required extra functionalities. The TGCL and ObTAM code can be

then transformed into an equivalent programming language (either

through transformation or straight forward translation). In this

path, the procedural nature of a procedural legacy system is kept.

2. If the object-oriented paradigm is sought, object extraction is

performed to obtain an equivalent ObTAM code from the

procedural TGCL code. Then the ObTAM code is extended or

improved. Subsequently, this is transformed to an object-oriented

language, such as ADA, JAVA, or Cþþ.

3. If a high level of abstract specification is needed, then following the

construction of TGCL code or ObTAM code or both, semantics

calculation is performed to produce an ITL specification. The

specification will be subsequently used as a basis for forward

engineering through refinement.

ITL specifications are abstract enough for the software reengineer to

carry out redesign and respecification of the target system. Therefore, at the

specification level, improvements such as the addition of new functions and

services will be introduced to make the legacy system more suitable for the

new requirements. After these improvements, forward engineering can be

carried out by using refinement rules to refine the new target system into a

new concrete form, for example, in ADA.

6.3 EWSL

6.3.1 ITL

ITL forms the most abstract and logical layer in our language. It is used to

give a specification-oriented semantics for TGCL and ObTAM. Furthermore,
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all transformation, object extraction, abstract, and refinement relations and

rules are precisely described and proved within ITL. The choice of ITL is

based on a number of reasons. It is a flexible notation for both propositional

and first-order reasoning about periods of time found in descriptions of

hardware and software systems. Unlike most temporal logics, ITL can

handle both sequential and parallel composition and offer powerful and

extensible specification and proof techniques for reasoning about properties

involving safety, liveness and projected time. Timing constraints are

expressible and furthermore most imperative programming constructs

can be viewed as formulae in a slightly modified version of ITL [4].

Tempura [6], an executable subset of ITL, provides an executable

framework for developing, analyzing, and experimenting with suitable

ITL specifications.

6.3.1.1 Syntax

An interval j is considered to be a (in)finite sequence of states j0j1:::, where

a state ji is a mapping from the set of variables Var to the set of values Val.

The length jjj of an interval j0:::jn is equal to n [one less than the number

of states in the interval, (i.e., a one-state interval has length 0)].

ITL syntax is defined as follows: Expressions in ITL include constants,

static variables (which do not change within an interval), state variables

(which can change within an interval), functions applied to expressions, and

the notation ıa : f where a is a static variable and f is a predicate. This returns

a value for a such that f ðaÞ holds. If there is no such value, then ıa : f returns

any value from a’s range.

Formulae in ITL include predicates pðe1; :::; enÞ (where the ei are

expressions) and the following compositions of formulae:

w "v•f is true if f ðvÞ holds for all values of v;

w skip is true over any unit interval (any j with jjj ¼ 1);

w f1; f2 holds if the interval can be decomposed (‘‘chopped’’) into a

prefix and suffix interval, such that f1 holds over the prefix and f2
over the suffix, or if the interval is infinite and f1 holds for that

interval;

w f �: holds if the interval is decomposable into a finite number of

intervals such that for each of them f holds, or the interval is infinite

and can be decomposed into an infinite number of finite intervals for

which f holds.
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6.3.1.2 Specification

The syntax of specification statement is W : f where W is a set of variables

and f an ITL formula. The set W is the frame of the specification; only those

variables listed in W can be changed. The specification statement represents

a blackbox description of the behavior of the required system. When we

specify agents that require a minimum execution interval, care must be

taken in regard to the feasibility of the specification. This is to ensure that the

written specification indeed conforms with whatever restricted computa-

tional (executable) model chosen.

6.3.2 Timed guarded command language (TGCL)

Based on the basic structures of Dijkstra’s guarded command language [12],

TGCL introduces time, concurrency, and communication. This gives TGCL

the necessary power for tackling time-critical concurrent systems. A TGCL

variable is either an atomic variable, a structural variable, or a data field of a

structural variable (written x:d).

TGCL also adopts the concept of shunt in TAM. Shunts are shared

variables via which communication between agents is performed. In TGCL,

a TAM agent is implemented as an executable program segment. A shunt

contains two values: The first one is a stamp that records the time of the

most recent write, and the second one is the value that was most recently

written.

The informal semantics of TGCL are described as follows:

w x :¼ e evaluates expression e and stores the result into variable x.

w A;A0 is the sequential composition of A and A0.

w if u
i2I

gi then Ai fi is a conditional statement. If any guard gi is true

then one of the corresponding Ai will be chosen for execution.

w while g do A0 od is the loop statement.

w skip is empty operation statement.

w T ¼ fxi : Tig is the structure building declaration. It defines a structure

named T ; which has data fields xi of type Ti, i 2 1::n.

w x : T defines x as a variable of type T , where T can be a simple data

type or a structure.

w proc PðIn pini : Ti; Out poutj : T 0j ÞfA
0g defines a procedure in TGCL.

The procedure is named P, which has pini as its input parameters,
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and poutj as its output parameters. The input parameter passing

convention is call by value, which means that the values of the

practical parameters are passed into the procedure; and the output

parameter passing convention is call by reference, which means

that the address references of the practical parameters are passed

into the procedure, and therefore any change made will take

effect on practical parameters themselves. fA0g is the procedure body

of P.

w PðIn ei; Out xjÞ means the invocation of procedure P with parameters

pi, while ei are input parameters and values of xj are output

parameters.

w x:d is field selection. x is a structure, and d is a field of x.

w parbegin A1kA2k; :::; kAn parend. Here k is introduced as the parallel

operator. This statement means that A1; :::;An execute concur-

rently, and the construct terminates when all of the Ai have

terminated.

w ½t�A0 means that the execution of A0 should be completed within t

time units (deadline).

w A1 5
t
s A2. The given shunt s is treated as a signal and is monitored

from the release time for t time units. If s is written to in that interval

then the agent A2 is released with a release time equal to the end of

the interval; otherwise the agent A1 is released at the end of the

interval.

w delay n will cause a delay of the system for n time units.

w ðt; xÞ  s is the input statement with time feature, which reads the

timestamp and value from a shunt s at the same time. The timestamp

is read into t and the value into x.

w x ! s is the output statement with time feature, which writes the

value given into shunt s.

6.3.3 Object-oriented TAM

TAM aims to be a realistic software development method for real-time

systems. It has sufficient power for time, concurrency and communication.

ObTAM extends TAM with object-oriented features, (e.g., object hierarchy

and inheritance).
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6.3.3.1 Syntax

ObTAM syntax is the same as the syntax of TGCL without the procedural

part, but with an additional object-oriented portion.

A variable of ObTAM can be an atomic variable, an object variable, or a

data field x:d of an object variable x.

The informal semantics of ObTAM are described as follows:

w General elements: same as those for TGCL.

w Object-oriented elements:

w x : T means defining x as a variable of type T , where T can be a

simple data type or a class.

w T <sub T 0 can be used to build the object hierarchy. It declares that

class T is a subclass of class T 0. As the consequence, T will inherit

all the data fields and methods in T 0 if they are not redefined in T .

On the other hand, all the data field and methods in T 0 will be

overridden with the counterparts in T if they are redefined in T .

w T ¼ fxi : Ti; mjðIn pinjk
: Tk; Out poutjl

: T 0l Þ½Aj�g is the class-

building declaration. It defines a class named T , which has data

fields xi of type Ti, i 2 1::n, and methods mj, j 2 1::r. The behavior

of a class is a sequence of method invocations. pinjk
stands for the

input parameters of method mj, and poutjl
stands for the output

parameters of method mj. The input parameter passing convention

is call by value, and the output parameter passing convention is

call by reference. Aj is the methods body of method mj.

w x:d is object field reference. x is an object, and d is a field of x.

w x:mðIn ek : Tk; Out poutl : T 0l Þ is method invocation. It invocates the

method m in object x.

w Real-time elements: same as those for TGCL.

6.3.4 Common structural language (CSL)

CSL is developed to enrich the statements in TGCL and make EWSL

compatible to WSL in FermaT. Statements in CSL are more program-like.

CSL can be viewed as an extension of WSL in FermaT with time,

concurrency, and type, or a variation of TGCL with a more program-like

format and diversity in statements. CSL is the most concrete procedural layer

of EWSL, and statements described in Chapter 4 belong to this category.
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6.3.5 Common object-oriented language (COOL)

The syntax of COOL is the same as the syntax of CSL without the procedural

part, but with the following additional object-oriented portion:

1. Class definition:

class T

f

Ti : xi;

mjðIn pinjk
: Tk;Out poutjl

: T 0lÞ

fAjg

g

¼
^

T ¼ fxi : Ti; mjðIn pinjk
: Tk; Out poutjl

: T 0l Þ½Aj�g

This statement is the class-building declaration. It defines a class

named T, which has data fields xi of type Ti, i 2 1::n, and methods mj,

j 2 1::r. pinjk
stands for the input parameters of method mj, and

poutjl
stands for the output parameters of method mj. The input

parameter passing convention is call by value, and the output

parameter passing convention is call by reference. Aj is the body

of method mj.

2. Class hierarchy:

T extends T0 ¼
^

T <sub T 0

This statement is used to build the object hierarchy. It declares that

class T is a subclass of class T 0. Therefore, T inherits the properties

of T 0.

3. Field reference:

x.d ¼
^

x:d

This is object field reference. x is an object, and d is a field of x.

4. Method invocation:

x.m(In ek; Out ylÞ ¼
^

x:mðIn ek; Out ylÞ

This invokes the method m on object x.

5. Object declaration:

T : x ¼
^

x : T
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This statement defines x as a variable of type T. If T is a class, x will

be an object of class T.

6.4 Summary

WSL has been extended to EWSL, which forms the foundation of using a

formal approach to evolve a broader range of software systems, and

the developed framework provides a flexible and reliable system of

evolution. Evolution can be carried out at different levels, so the software

engineer can select the approriate level for the task in hand, and

formal methods can be applied throughout the process, at every level of

abstraction [15].
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Process for Evolution

This chapter shows how the languages and methods

introduced in Chapter 6 form the basis for a practical process

for evolving object-oriented, real-time and parallel systems.

7.1 A process for evolution

Over the last several years a practical process of evolution has

been developed and experimented with; it takes the following

stages [1–3]:

1. Translate source code into EWSL;

2. Restructure (including clustering and visualizing code);

3. Abstract;

4. Understand with the support of a cognitive tool;

5. Reuse components;

6. Retarget;

7. Measure evolution.

Sections 7.2 to 7.9 discuss these stages.

7.2 Implementing the process

The reengineering assistant (RA) is a semiautomatic tool that

aims at helping reengineers through the whole process of
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reengineering legacy systems. RA is a rule-based intelligent system.

Automation is a goal of RA, but with the understanding that human

intervention is crucial in reverse engineering. Figure 7.1 shows the general

system architecture of RA. The architecture reflects the working flow of

EWSL in Chapter 6.

The legacy source code is firstly translated into CSL or COOL, and then

the CSL/COOL code is parsed and displayed in the browser interface. An

internal LISP database of the code is meanwhile generated. The internal

database is in a form of syntax tree, which is convenient for transformation

and abstraction. Once the CSL/COOL is parsed and stored, the user can go

through the evolution processes with the help of the following tools:

w Translating source code into EWSL is done by a language specific

translator.

w Restructuring is done by the program transformer. CSL/COOL code

is improved through program transformation. New required func-

tionalities can also be added. The new CSL/COOL code can then be

translated into an equivalent programming language via a language-

specific translator. Graphic models may also be introduced in RA to

help understand the legacy system, for example, entity-relation (ER)

diagrams, data flow diagrams (DFDs), and structure charts (SCs).

w Abstracting is done by the abstractor. To seek a high-level

specification, the abstractor extracts it from CSL or COOL code

with abstraction techniques (see below in this chapter). The extracted

specification could subsequently be used as a basis for respecification,

redesign, and forward engineering through refinement.

w Understanding is carried out with the support of a cognitive tool,

DKBA tool.

w Reusing components is first done by the componentizor, the reuse

libraries, and the synthesizer. If an object-oriented paradigm is

sought, object extraction is performed on CSL code to obtain an

equivalent COOL code. Then the COOL code can be extended or

improved or left unchanged. Subsequently, the new code can be

transformed into an object-oriented language, such as ADA, JAVA,

or Cþþ. Reuse libraries are used to store reuseable components,

which may form a library.

w Retargetting is mainly done by the synthesizer, which builds up new

systems by integration of components in the reusable library.
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Figure 7.1 General system stucture of Reengineering Assistant (RA).
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w Measuring reengineering/evolution is done through the metric

facility.

The sole interface between software engineers and RA is the browser-

interface. It has the following functions:

w To display the translated legacy source code in CSL/COOL;

w To accept process command from software reengineers;

w To accept necessary information that must be acquired from software

reengineers;

w To display process results, including extracted specification, new

object-oriented COOL program, and transformed source code;

w To display the metric results.

Figure 7.2 shows more detailed tool structure of the reverse engineering

part in RA (i.e., extraction of ITL specification from legacy source code).

Figure 7.2 Structure of the reverse engineering part of reengineering assistant.
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The lexical scanner and parser are used to check the syntax of the CSL/

COOL code; errors will be reported to the user through the browser-interface

for correction. Correct programs are stored in the CSL/COOL LISP database

in a specially designed syntax tree structure. Meanwhile, the program

displayer is started to display the program in the browser-interface in a pretty

print format (i.e., with indentation and different fonts).

The program abstractor is an inference engine. Various abstractions are

classified into corresponding catalogs, and abstraction rules are implemented

as inference rules. The extracted ITL specification is stored in the ITL LISP

database, in a syntax tree structure specially designed for logic formulae.

During abstraction inferencing, the CSL/COOL LISP database and ITL LISP

database provide the necessary data. In a knowledge systems sense, they are

the databases backing the inference engine. For the extracted ITL

specification, further abstraction may also be applied to make it more

concise. During the abstraction process, the extracted specification is pretty

printed in the browser-interface with the ITL displayer, and the process

information is displayed in the LISP dialog window.

CSL/COOL programs are at source code level, and ITL specifications are

at the specification level. The program abstractor is an inference machine to

cross various abstraction levels with the aid of human interactions.

7.3 Translating into EWSL

A language-specific translator takes code in the source language and

translates it into equivalent EWSL code. The translator does not need to be

concerned to preserve the structure of the original source code or to generate

efficient or readable EWSL [4]. The primary concern is to capture the precise

semantics of the source program. For example, the IBM 370 assembler to

EWSL translator works by translating each assembler instruction into a block

of EWSL code, which captures all the side effects of the instruction

(including setting the condition codes and assigning to registers) regardless

of whether or not these side effects are used.

7.4 Restructuring

Once the source program has been captured in EWSL there are a large

number of restructuring and simplifying transformations (as described in

Chapters 4 and 5) that can be applied automatically to clean up the code,

unscramble the structure, and delete redundant code (such as redundant
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assignments to condition code variables). The result is a structured program

consisting of a hierarchy of single-entry, single-exit procedures.

A class of transformations have been dedicated to program clustering,

which groups relevant control statements and data definitions to form

clusters for further restructuring. This is very useful when the code was not

written in a structured or object-oriented programming language. In this

type of application, it is useful to restructure the code into abstract data types

(ADTs) and then later these ADTs can be good candudates to become objects

if the code is to be evolved into an object oriented system. For example, an

ADT usually involves a set of data items and a number of operations on the set

of data items. The operations are implemented in terms of procedures and

functions. Clustering transformations can automatically group these data

items and operations together. Clustering transformation techniques are also

used in mining reusable components (Section 7.7).

Software visualization is often the first step for understanding and

deciding which program segments should be selected for a further

restructuring. Visualization techniques have been employed in both the

FermaT workbench and the RA tool (Figures 5.1–5.5). The workbench

includes tools to visualize data structures, module interrelationships

(intermodule call graphs), and the control flow within a module. A detailed

flowchart of a large module can easily be too large to fit on the screen all at

once. Zooming in on a part of the graph is possible, and it is also possible to

scroll the viewing window around the large graph. However, a better

approach is to use FermaT’s clustering facility to collapse groups of flowchart

nodes to a single annotated node. This makes it easy to visualize the

module’s high-level structure while still allowing the user to drill down to

low-level details.

7.5 Abstracting

An implementation (code), a design, and a specification of a software system

are usually at different levels of abstraction. To move from code to design

and then to specification involves a process of raising the level of abstraction

(see Chapter 3).

Abstraction is the crucial technique to reverse engineering [5–9].

Without tackling abstractions properly, any design or specification recovery

methodology cannot succeed. To achieve correct and practical abstraction,

two fundamental problems need to be solved:

1. It is necessary to identify what abstraction is. Although abstraction

technology has been used in quite a few research projects [10–15],
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the definition of abstraction remains a disputed issue. Most existing

definitions adopt ad hoc methods and only cover special aspects of

the problem. This results in definitions of abstraction that are

ambiguous, incomplete, or even incorrect in some cases. This

chapter proposes a taxonomy of abstraction. Within this taxonomy,

abstractions are formally defined under different conditions in a

reverse engineering environment. Monotonicity and relations

between these abstractions are discussed and then described in a

formal notation. Healthiness obligations are developed as axioms

to guarantee correct and sensible abstraction during reverse

engineering.

2. Once abstractions are identified in reverse engineering, the next

question is how to perform the abstraction (i.e., how to cross levels

of abstractions). This research issue has not been properly

addressed, and practical solutions with precisely defined semantics

are urgently needed. To solve this problem, a group of abstraction

rules for conducting abstraction in the above process are proposed.

These rules aim at extracting formal specification from legacy

source code and are formally defined and proven sound in ITL,

which assures precision and correctness.

7.5.1 Abstraction and abstraction patterns

Our approach first identifies all data items and their visibility levels, where

visibility level 0 is the highest. Thereafter it makes the subject system more

abstract by removing some data items (those of visibility level > 0) whilst

expressing their contribution to the overall functional behavior of the

system in terms of the remaining data items. Such a contribution will be

expressed (encoded) within the specification statement of EWSL, which is

an ITL formula (see Chapter 8 for details).

The approach therefore can be described as follows:

1. Identify all components in a system. There is an obvious correlation

between the structure of the legacy code and the structure of the

resulting formal specification. The more structured the formal

specification is, the easier it is to understand, to improve, and to be

used as an appropriate starting point for forward engineering. If the

system is very monolithic or unstructured, then engage existing

restructuring techniques [11, 16, 17] to decompose the system into

subsystems and restructure them.
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2. Associate visibility levels for each component. These levels reflect

the nesting structure in the system (see Figure 6.1).

3. All data items are associated with the visibility level of the

component in which they were first declared.

4. Identify the central data structures and items of the system (i.e., those

with level 0).

5. For each ith-level component with i > 0 do the following:

a. Identify all data items local to the component.

b. Record the effect of the data item, identified in step 5.a, on any

data items in levels Q with Q < i, in a specification statement of

EWSL, and introduce a procedure definition if necessary.

Elementary abstraction rules are mostly used, and the procedure

name should reflect the functionality of the procedure as closely

as possible. Avoid introducing new procedures whenever

possible.

c. Abstract away unnecessary implementation details and trivial

functionality within the generated specification. This will be

done via corresponding further abstraction rules.

The correctness is achieved through the soundness of the applied

abstraction rules.

Abstraction is a process of generalization, removing restrictions,

eliminating detail, and removing nonessential information [18]. Unlike

transformation, which keeps the semantics unchanged, abstraction endea-

vors to weaken the original semantics of system implementation. Thus

the abstractions cannot be applied without a clear idea of which information

contained in the program refers simply to the implementation, and not

to the function of the program. In the general case, this information

cannot be determined automatically within the system, so user guidance is

needed.

To solve this problem, a set of abstraction patterns are proposed based on

already developed further abstraction rules as an efficient means to let the

software reengineer inform the computer system about his or her

observations of the legacy system. Then the computer system will perform

abstraction with the aid of these observations and the relevant abstraction

rules. These abstraction patterns appear in EWSL and the supporting tool as

abstraction pattern assertions.
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7.5.2 Definitions

In a software system, the specification is different from source code in the

following aspects:

w The source code has implementation details that are not needed in a

specification.

w The implementation is focused on how to do, while specification is

focused on what to do.

w There can be more nondeterminism in a specification than in an

implementation.

In a broad sense, abstraction corresponds to a weakening in semantics,

and this weakening is due to the following:

w Inessential design/implementation details are omitted.

w Nondeterminism is increased.

w How to do is substituted by what to do.

The simplest interpretation of the notion of abstraction is that of hiding

irrelevant details. Although simple, it leaves open to wider interpretation

what constitutes ‘‘irrelevant.’’ For this reason, we have decided to categorize

abstraction in a way that hopefully makes it clear. We classify abstraction as

follows:

1. Weakening abstraction (WA);

2. Hiding abstraction (HA);

3. Temporal abstraction (TA);

4. Structural abstraction (SA);

5. Data abstraction (DA).

These five kinds of abstraction form a fairly complete taxonomy of

abstraction. The formal definition of abstraction will be given, and special

cases will be discussed next.

The implementation of a software system is known as the concrete form

of the system (e.g., source code), and the specification is known as the

abstract description. To unify terminology, we use the term representation for
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both abstract and concrete forms. Therefore, an abstraction relation < is

defined as a function relating two representations of one single system.

A representation B is an abstraction of representation A, written as A<f B

(read as B is an abstraction of A in respect of f ) is defined as

A<B ¼
^

f ðA;BÞ

where f is defined according to the type of abstraction, namely WA, HA, TA,

SA and DA.

WA WA is quite broad in sense. Here, ‘‘weakening’’ refers to semantics

weakening of representations during abstraction. If some information is

taken out from the original representation, and the new result representa-

tion does not contradict with the original, (that is, the semantics of the

original representation implies that of the new representation), then a

semantics weakening sequence is present and the new representation is a

WA of the original one.

HA HA focuses on the simplification of data space. It emphasizes that a

part of the data space of the original representation is to be considered as

irrelevant or unnecessary and is therefore omitted from the representation.

However, the resulting representation should still be a semantic weakening

of the original one. In practical reverse engineering, HA is often used to get

rid of local variables and hide internal communication channels. This is

because these details become unimportant or too local and should not be

observed outside the black box when a software system is viewed from a

more abstract point of view.

TA TA is abstraction that relates to time. It is useful and popular when

tackling the reverse engineering of real-time systems. For the representation

of a fragment of software systems, namely A, its duration is defined as the

time span from the beginning of its execution to the end of its execution.

Temporal abstraction reflects the variation of this duration while abstraction

is conducted.

SA SA is so named because it endeavors to make structural simplification

in system representation. There are two kinds of composition structures:

sequential composition and parallel composition. With SA, these com-

positions are reduced and their effects are recorded in a more abstract
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representation. Two basic conditions determine whether a change in system

representation is a structural abstraction: first, whether there are any

sequential or parallel compositions that have been reduced in the new

representation, and second, whether the semantics of the new representa-

tion represent a weakening of the original.

DA DA is a general technique by which one can change the state

space of a program. DA allows the software engineer to extend and

change the original data types in legacy code to more high-level and

domain-specific data types. In the absence of DA, data structures

identified from legacy code remain unchanged during the whole reverse

engineering process although it will help to acquire better specification

if the data structure is mapped to a more suitable one. DA is a quite

complex means to reverse engineering. Correct DA can improve the

resulting specification greatly, while improper DA may result in degraded

specification.

In a DA, a DA relation must be defined first to map the original data

structures to new data structures and therefore the original data states to

new data states. The condition of DA is that the semantics of the new

representation must be a weakening of the original representation. If it is

difficult to judge, then the data states of the original representation need

to be mapped over the data abstraction relation. The ghost variables

technique, discussed in Chapter 8, is one way to break down a complex DA

into smaller steps.

7.5.3 Healthiness obligation

Healthiness obligations are conditions that must hold for the abstraction to

be valid. Different abstractions have different healthiness obligations. These

are similar to Dijkstra’s healthiness conditions [19, 20] for his guarded

command language. One can think of them as axioms or invariants.

w HA

w Shared variables between different representations should not be

hidden. These shared variables connect different representations

and involve important design or functional information.

w Variables with a visibility level of zero should not be hidden. This

is because such variables are global variables in structured legacy

systems and are crucial to the design and specification.
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w WA

w Any representation should not be abstracted to TRUE or FALSE

(trivial specification or starting from scratch). Although abstrac-

tion throws away irrelevant or unimportant details, it does not

make sense to throw away everything!

w TA

w An infinite action cannot be performed in a finite interval.

w Any representation cannot be abstracted to an agent with a

negative time interval.

w SA

w Two finite representations in sequential or parallel composition

can not be structurally abstracted to an infinite representation.

This means that if there is any contention between the two

representations (for example, resource deadlock), then the

sequential or parallel composition can not be reduced.

w DA

w A DA operation must not map variables to themselves; otherwise

the result reduces to weakening abstraction.

7.5.4 Relations between abstractions

The partial ordering relations between the five categories of abstractions

discussed in Section 7.5.2 are shown in Figure 7.3.

The following conclusions have been proven sound in formal logic:

1. TA, SA, and HA are also WAs. This means that WA is the basis of all

these abstractions. In other words, TA, SA, and HA are stronger in

semantics than WA. The reason is that semantics weakening forms

a part of the definitions of other abstractions. Abstraction is

different from both transformation and restructuring, and there

should be a consistency between the original semantics and the

abstracted semantics.

2. TA, SA, and HA are independent of each other. There is no partial

ordering or overlap between them.
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3. DA is the most general. If the variable set of A remains to be the

same of B (i.e., the DA relation r maps to itself) then DA reduces to

WA.

7.5.5 Elementary abstraction rules

We classify abstraction rules into two categories: (1) elementary abstraction

rules to abstract source statements into logic formulae that may be very

redundant and specific, and (2) further abstraction rules, which extract a

more concise and abstract specifications from the formulae through

composition and semantic weakening. Also, abstraction rules fall into

different sections according to the domain with which the rules deal. For

example, when dealing with an object-oriented (time-critical) system, the

abstraction rules consist of general abstraction rules, object-oriented

abstraction rules, and time critical rules.

Abstraction rules in this category aim to abstract the statements in TGCL

and ObTAM to formulae in ITL (initially, the formulae may be redundant or

Figure 7.3 Subset relations between abstractions.
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even too specific) and these rules can transform source statements into logic

formulae, which is a kind of specification. So, in further abstraction, logic

composition and semantic weakening will be applied through further

abstraction rules to abstract these formulae to a more concise and abstract

specification.

The statements in TGCL and ObTAM consist of two sets: (1) simple

statements such as assignment, input, and output, and (2) composite state-

ments, which are a composition of simple statements and composite

statements through composition structures, such as condition, loop, and

procedure. Therefore, elementary abstraction rules fall into two sets

correspondingly: the first set, which is named primitive abstraction rules,

converts the simple statements to ITL formulae, and the second set, which is

named compound abstraction rules, deals with the composite statements.

7.5.6 Further abstraction rules

Further abstraction rules aim to extract more concise and abstract

specifications from the formulae obtained through applying the elementary

abstraction rules. Logic composition and semantics weakening are the basis

of further abstraction. During further abstraction domain knowledge may be

applied by software engineers to give the software system a more concise

and domain-specific description.

There is no object combination during further abstraction (i.e. objects

may be abstracted but not combined).

7.6 Understanding with the support of the domain
knowledge-based analysis (DKBA) tool

Program understanding is the process of acquiring knowledge from a

computer program. Current methods that support automatic program

understanding can be classified into the following categories:

w Basic analysis in which only programming language syntax and

semantic are used;

w Formal analysis, which deals with formal and structural program

properties;

w Informal reasoning where heuristics and domain knowledge are used

to extract domain model or other program properties from source

code.
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Informal reasoning can be further classified into

w Structurally oriented heuristic analysis [21];

w DKBA [13, 22–30].

As the demand for software evolution is increasing dramatically, there

is a growing realization that the design of effective software evolution tools

must be smarter, and this motivates artificial intelligence (AI) researchers

to search for better solutions. We use a clarity-guided belief revision

appoach to domain knowledge recovery in legacy system [31–36] in

our evolution process. More specifically, solutions are given to three key

issues:

1. Knowledge representation, where the concrete semantic network is

separated from the abstract semantic network;

2. Uncertainty and nonmonotonic reasoning, which is based on confirma-

tion theory and belief revision;

3. Heuristic search techniques, which owe their development to

programming psychology.

The most difficult part of the evolution process is understanding the

system [37]. Program understanding is a complex and difficult task especially

for analyzing the source code of large legacy systems. Full automation is not

practical, and close cooperation between program analyst and DKBA tool is

needed. A number of requirements for DKBA tool are identified:

w Uncertainty: To deal with such problems as ambiguity and incomple-

teness, of source code or the domain knowledge that prevails in

legacy systems, the ability to tolerate and deal with uncertain

information and knowledge is the first requirement for DKBA tools.

This is important because only through tolerating uncertainty can

continuous reasoning be achieved.

w Nonmonotonic reasoning: In the real world, nonmonotonic reasoning

frequently occurs. For example, a program analyst may refute a

conclusion made by a DKBA user in the light of new evidences

found, and therefore, revised reasoning and propagating the change

through the knowledge space is needed. A good knowledge repre-

sentation in which nonmonotonic reasoning can be carried out is

needed.
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w Quality of conclusions: The quality of conclusions provided by a DKBA

user is important because bad conclusions may mislead programmers

into wrong judgement paths leading to future refutations of the

conclusions. This is extremely adverse to the productivity of the

knowledge recovery process.

w Response time: In a human-machine interactive environment, a quick

response from the DKBA tool to an analyst’s query is obviously

important. A certain kind of prediction from the DKBA assistant for

program analyst’s intention is desirable. There is sometimes a trade-

off between the quality of the conclusion and the response time.

However, a high-quality oriented search can sometimes lead to a

reduction in response time in the future because high-quality results

can help in producing further high-quality results, and this increases

the probability of users’ hitting an existing result. The governing

principle here is whenever basic quality can be assured, do it quickly.

Good heuristic knowledge can help to achieve this.

7.6.1 Knowledge representation

We use a semantic network as the domain knowledge representation in our

approach. The definition of a semantic network is as follows:

A semantic network, SN is a pair ðN;EÞ, where N denotes the set of nodes

and E the set of interrelationships among nodes. N can be classified into two

kinds of nodes, named object nodes and action nodes. Object nodes can

represent class, instance, and features, for example, while action nodes can

represent operations or events that occur among several objects. E can be

classified into object-object, object-action, and action-action relationships.

Table 7.1 gives a description of the possible occurrence of interrelationships

in each category.

As the semantic network is used to discover knowledge from programs,

we enhance the ordinary semantic network representation by importing the

concept of a knowledge slice. In order to implement this idea, we give two

Table 7.1 Interrelationships Among Nodes

in a Semantic Network

Possible Interrelationships

Object–object Instance of, part of, etc.

Object–action Receiver of, sender of

Action–action Subplan of, precedent of, etc.
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layers of description of semantic network (i.e., the abstract semantic network

and the concrete semantic network, respectively). Figure 7.4 shows an

abstract semantic network for network application domain. In this abstract

semantic network, no detailed interrelationships among nodes can be found.

It is designed for the purpose of showing knowledge slices in the application

domain where the nodes and edges grouped by an arc (if more than two nodes

involved) form a single slice of domain knowledge. By using an abstract

semantic network to gather knowledge slices, all these knowledge slices can

be highly interconnected, which can facilitate continuous reasoning,

uncertainty propagation, and nonmonotonic reasoning (to be introduced in

later sections). Concrete semantic networks cover objects, actions, and the

concrete interrelationships among them. Figures 7.5 to 7.7 give examples for

concrete semantic networks in the situation where interrelationships for

action-action, object-object, and action-object exist respectively.

The normal reasoning process for domain knowledge recovery during

the preparation stage is descibed as follows:

1. Collect domain concepts and the interrelationship among these

concepts from the program by matching the whole program against

the total set of domain concepts.

2. Pick up all the candidate domain knowledge that has the potential

of matching with the collected domain concepts and the inter-

relationships among the concepts.

During the reasoning stage, iterate on the following steps until there is

no candidate domain knowledge:

1. Pick up a candidate domain knowledge item.

2. Check whether this candidate domain knowledge can be success-

fully matched.

3. Propagate the matched result both at the domain knowledge level

and the program level in order to discover more candidate domain

knowledge.

7.6.2 Uncertainty reasoning and nonmonotonic reasoning

There are two issues to be addressed:

1. Names in programs can have ambiguous meanings, particularly

when abbreviated (the same abbreviation can have several different

interpretations).
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Figure 7.4 An example of abstract semantic network in the network application domain.
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2. In the reasoning stage, there may be insufficient evidence to get a

100% match against domain knowledge slices.

Our solution to uncertainty issues is based on the principles of

confirmation theory [38]. Although we build our uncertainty reasoning

model on a semantic network that is quite different from MYCIN, the

rule-based expert system in which confirmation theory was deployed, it

is still useful to give a brief introduction to the principles of confirmation

theory.

MYCIN and confirmation theory In MYCIN, production rules are used as

knowledge representation. A single production rule takes the form:

E �!
CFðH;EÞ

H. E stands for evidences and H stands for hypotheses. Both E and

H are propositions. CFðH;EÞ stands for the strength of the rule (i.e., the

degree by which E has effect on H).

Figure 7.5 An example of concrete semantic network for an action-action interrelation-

ship.

Figure 7.6 An example of concrete semantic network for an action-object interrelation-

ship.
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Uncertainty description of rules The most important concepts in

confirmation theory are the multiplication rate of belief (MB) and multi-

plication rate of disbelief (MD). An exclusivity law holds between MB and

MD:

Theorem 7.1

if MBðH;EÞ > 0; MDðH;EÞ ¼ 0

if MDðH;EÞ > 0; MBðH;EÞ ¼ 0

(

Both MB and MD have their probability interpretation as follows:

Definition 7.1

MBðH;EÞ ¼
PðHjEÞ � PðHÞ

1 � PðHÞ
if PðHjEÞ > PðHÞ

MDðH;EÞ ¼
PðHÞ � PðHjEÞ

PðHÞ
if PðHjEÞ < PðHÞ

MBðH;EÞ ¼MDðH;EÞ ¼ 0 if PðHjEÞ ¼ PðHÞ

8>>>>><
>>>>>:

The certainty factor (CF) is therefore defined as follows.

Definition 7.2 CFðH;EÞ ¼MBðH;EÞ �MDðH;EÞ

It is clear that that �1 < CF < 1. From Theorem 7.1, Definition 7.1, and

Definition 7.2 we can also get

Figure 7.7 An example of concrete semantic network for an action-object inter-

relationship.
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Definition 7.3

CFðH;EÞ ¼

1 PðHÞ ¼ 1

PðHjEÞ � PðHÞ

1 � PðHÞ
PðHjEÞ > PðHÞ

0 PðHjEÞ ¼ PðHÞ

�
PðHÞ � PðHjEÞ

PðHÞ
PðHjEÞ < PðHÞ

�1 PðHÞ ¼ 0

8>>>>>>>>>><
>>>>>>>>>>:

Uncertainty description of evidences In MYCIN, the uncertainty of E is

still described by CFðE;E0Þ where E0 is called the virtual variable, which

represents all the evidences related to E. From Definition 7.3 we can see: if E

is true, CFðE;E0Þ ¼ 1; if E is false, CFðE;E0Þ ¼ �1; if E has just been initialized

with no related evidence obtained, CFðE;E0Þ ¼ 0.

Other descriptions of uncertainty processing In MYCIN, uncertainty

issues are also discussed in such situations as propagation of uncertainty

through in a rule, synthesis of multiple results, and dealing with compound

evidences. In this work we are dealing with the uncertainty processing in a

semantic network, and therefore we have only introduced necessary

knowledge about confirmation theory as background for discussion in this

chapter. Interested readers can refer to [38] for more information.

Identifying names In the name dictionary where all the concepts in a

specific domain are held, a single domain concept can be represented by

either an atomic name or a compound name. An atomic name is an

indivisible lexical unit whereas a compound name constitutes several

atomic names. If all the user-defined names in a program are given as full

names, then the domain concepts can be obtained directly. However, in

reality, programmers always use naming abbreviation rules by which names

of such factors as variables, types, procedures, are only meaningful for the

programmers who wrote the program (not for others). This ambiguity

pushes us to find solutions to recover the original names. For atomic names,

the ambiguity results mainly from the abbreviation methods programmers

used. We therefore give two classifications to atomic name abbreviation

rules: regular abbreviation rules and irregular abbreviation rules.

The regular abbreviation rules can be ‘‘first three letters (0.15)’’ or ‘‘first
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letter + last two letters (0.2),’’ which can be applied to all the atomic names.

The number in brackets attached to each rule indicates the strength of

this rule. The irregular abbreviation rules are mainly involved in the

pronunciation of a particular word. For simplicity, we collect as many

irregular abbreviation cases as possible for each atomic name. Apart from

regular abbreviation rules, the match for an atomic name having irregu-

lar abbreviation rules is done by checking every case. Each irregular

abbreviation rule has a real number indicating its rule strength. Generally,

the strength of irregular abbreviation rules is much higher than that of

regular abbreviation rules. A portion of atomic name dictionary is shown in

Table 7.2.

A single compound name is made up of several atomic names with or

without connection symbols linking them together. The connection symbols

can be ‘‘-’’, ‘‘ ’’, etc. The cases without a connection symbol could be

capitalized words, which may not be found in the atomic name dictionary.

The ambiguity in a compound name mainly comes from the ambiguity in

the atomic names that compose the whole name. We describe two classes of

compound abbreviation rules: regular compound abbreviation rules and

irregular compound abbreviation rules. The regular compound abbreviation

rule is as follows: Match each atom name from a compound name in a

program against corresponding compositions of a particular compound

name in compound name dictionary. The certainty factor of the match is

the minimum of all the certainty factors result from the match of atomic

names. The irregular compound abbreviation rules are embodied in a set of

irregular cases collected as ordinary abbreviations for commonly used

compound names. According to the number of atomic names in each name,

Table 7.2 Atomic Name Dictionary

Atomic Name Irregular Cases

			

Accept Acpt (0.85)

			

Client

			

Destiny

			

Information info (0.90), infor (0.85)

			

Receive Recv (0.90), Rec (0.60)

			

Record Rec (0.60)
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the compound names can be classified into a pair compound name

dictionary or a triple compound name dictionary, for example. Table 7.3

shows a pair compound name dictionary.

The procedure of recovering an atomic/compound name in program is

comprised of the following steps:

1. Decide whether the input name is a compound name or an atomic

name by checking for connection symbols (for those without

connection symbol, try another rule mentioned above) in order to

select a suitable name dictionary. For a compound name, check the

number of components to decide which compound name dic-

tionary to use.

2. LOOP on all the records in the dictionary. For each record, check

the following:

w Whether the full name can be matched;

w Whether irregular abbreviation rules apply;

w Whether regular abbreviation rules apply.

3. IF none of the three cases above apply or the overall certainty factor

is 0, THEN ignore this name. ELSE choose a match with the highest

certainty value.

Several match examples for atomic/compound names can be found in

Table 7.4.

Uncertainty reasoning in semantic networks The obtained names

together with their uncertainty values are put into an abstract semantic

network from which candidate domain knowledge slices can be selected.

Specifically, such issues will be discussed as how to decide the degree of

Table 7.3 Pair Compound Name Dictionary

Compound Name Compositions Irregular case

. . .

Client-Information Client, Information

. . . . . .

Domain-Name Domain, Name DN (0.70)

. . .
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matching in a domain knowledge slice, and how the resulting matching

degree affects the belief of each participating domain concept. Also, it is

necessary to determine how to control the search in the net, and what if a

previously confirmed (refuted) conclusion is, in the light of new

information, now refuted (confirmed).

Contribution strength and refutation strength A candidate domain

knowledge slice is composed of domain concepts and interrelationships

among these concepts as shown in Figures 7.6 to 7.7. Part (or all) of the

knowledge slice can match with evidences collected from the program being

analyzed. However, as generally is the case, within one knowledge slice,

each domain concept or interrelationship will make a different contribution

to the recognition of this knowledge slice. Take Figure 7.6, for example, the

actions of connect, listen, and accept will contribute more than allocate and

bind to recognize this scenario where subactions are taken to fulfill the task

of connect. Moreover, the absence of a domain concept or interrelationship

would totally refute the existence of a particular knowledge slice in program.

We hereby introduce two concepts: contribution strength (CS) and

refutation strength (RS). CS indicates the strength the presentation of a

domain concept or interrelationship has to build up more belief in the

knowledge slice. RS indicates the destructive power that the absence of a

domain concept or interrelationship has to refute the knowledge slice. Both

CS and RS are real numbers in the range 0 to 1. Their role will be exemplified

by the formulae in the next section. By default, CS and RS are set to 0.

Table 7.5 shows an example. Since interrelationships are built on domain

concepts, we give relatively lower contribution strength to interrelation-

ships. However, although domain concepts can present themselves in a

knowledge slice, the key interrelationships among them may be absent from

the program. This suggests that those domain concepts may be the

constituents of other knowledge slices rather than this one. That is the

reason why a higher RS can be given for interrelationships than for domain

Table 7.4 Match Examples for Atomic/Compound

Names

Name in Source Code Domain Concept (Certainty Factor)

Client Client (1.0)

Info Information (0.95)

Des Destination (0.15)

Rec Receive (0.6), Record (0.6)

Client-info Client-Information (0.9)

DN Domain-Name (0.7)
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concepts. The initial source of refutation is usually from the user, and

therefore refutation should have a higher authority than acceptance.

Calculation of the matching degree of a domain knowledge slice

Let SN ¼ ðn1; :::;nm; e1; :::; ekÞ be a domain knowledge slice and ½ðCS1;RS1Þ;

..., ðCSmþk;RSmþkÞ� be the contribution strength and refutation strength of

each element in SN respectively, CF ¼ ðCF1; :::; CFmþkÞ be the current

certainty factors of each element in SN and MV be the matching degree

of SN. The algorithm of calculating the matching degree MV of SN is as

follows:

MB :¼ 0;

for i :¼ 1 to mþ k do

if CFi > 0

then MB :¼ MBþ ð1 �MBÞ � CFi � CSi fi od;

MD :¼ 0;

for i :¼ 1 to mþ k do

if CFi < 0

then MD :¼ MDþ ð1 �MDÞ � ð�CFiÞ � RSi fi od;

MV :¼ ð1 �MDÞ �MB �MD

Belief updating The purpose of computing the matching degree of

domain knowledge slices is to re-evaluate the certainty of participating

knowledge concepts (note, not interrelationships). The formulae below are

Table 7.5 Contribution Strength, Refutation Strength, and Decision Weight

Domain Concept and Interrelationship CS RS

Connect 0.90 0.90

Allocate 0.15 0.15

Bind 0.30 0.30

Listen 0.90 0.90

Accept 0.90 0.90

(Allocate) , (Bind) 0.15 0.20

(Bind) , (Listen) 0.30 0.50

(Listen) , (Accept) 0.30 0.90

(Connect) , (Allocate) 0.25 0.25

(Connect) , (Bind) 0.25 0.30

(Connect) , (Listen) 0.30 0.40

(Connect) , (Accept) 0.30 0.40
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designed for calculating updated belief on each node. Let CF 0i be the updated

certainty for node i. The other terms used in this algorithm are accorded

with the definition in the last section.

MB ¼
CFi CFi > 0

0 CFi < 0

(

MD ¼
�CFi CFi < 0

0 CFi > 0

(

MB0 ¼
MV · CSi MV > 0

0 MV < 0

(

MD0 ¼
0 MV > 0

�MV · RSi MV < 0

(

CF 0i ¼

MBþ ð1 �MBÞ �MB0 MB > 0 ^ MB0 > 0

�ðMDþ ð1 �MDÞ �MD0Þ MD > 0 ^ MD0 > 0

MB �MD0 MB > 0 ^ MD0 > 0

MB0 �MD MD > 0 ^ MB0 > 0

8>>><
>>>:

An example An example of a computation of MV is shown in Table 7.6.

We can see although the information on connect hasn’t initially been given

due to such factors as the mismatching of names, it can still be reasoned out

by the presence of other evidences, and the results will in turn benefit other

domain concept recognition through certainty propagation in the network.

Table 7.6 An Example for Computation of MV

Domain Concept and Interrelationship CS RS CF CF’

Connect 0.90 0.90 0.00 0.89

Allocate 0.15 0.15 0.00 0.15

Bind 0.30 0.30 0.00 0.30

Listen 0.90 0.90 1.00 1.00

Accept 0.90 0.90 1.00 1.00

(Allocate) , (Bind) 0.15 0.20 0.00 0.00

(Bind) , (Listen) 0.30 0.50 0.00 0.00

(Listen) , (Accept) 0.30 0.90 1.00 1.00

(Connect) , (Allocate) 0.25 0.25 0.00 0.00

(Connect) , (Bind) 0.25 0.30 0.00 0.00

(Connect) , (Listen) 0.30 0.40 0.00 0.00

(Connect) , (Accept) 0.30 0.40 0.00 0.00

MB=0.99, MD=0.0, MV=0.99
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Network search algorithm If we imagine a recently matched knowledge

slice as an epicenter of an earthquake, then by updating the certainty of

domain concepts within it, the neighboring knowledge slices that share

common domain concepts in the abstract semantic network (see Figure 7.4)

can now become candidate knowledge slices to be matched and ready to pass

on the seismic wave. Empirical experience suggests that several layers of

knowledge slices away from the epicenter are involved in the seismic wave

and together are likely to form a highly coupled knowledge group and thus

produce more high-quality knowledge concepts. We therefore set a depth

constant (DC) to limit the depth of search in a single ‘‘earthquake.’’ We give

higher priority to those candidates involved in the ‘‘earthquake’’ than other

existing candidates. In order to stop further matching on an already

satisfactory conclusion, we introduce an acceptance threshold (AT) to pick

Table 7.7 Network Search Algorithm

ADC :¼ null;

CDC :¼ knowledge slices affected by initial evidences from program;

while CDC 6¼ 0= do

Epi :¼ a selected candidate from CDC;

STACK �
push

hEpi; 1i;

while STACK 6¼ h i do

hEpi0; layeri �
pop

STACK

if Epi0 is not marked ^ layer < DC

then Compute matching degree of Epi0;

and update the belief of nodes;

if matching degree of Epi0 > AT

then CDC :¼ CDC � Epi0;

ADC :¼ ADCþ Epi0 fi;

Mark Epi0 as ‘processed0;

in the abstract semantic network;

CDC0 :¼ the candidate knowledge slices

affected by Epi0;

CDC :¼ CDCþCDC0;

STACK �
push

hCDC0; layerþ 1i fi od ;

Clear all the marks in this ‘‘earthquake’’ od
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out good conclusions with certainty value higher than AT. Table 7.7 shows

the general search algorithm, with a global candidate domain concept (CDC)

and accepted domain concept (ADC).

From the algorithm we can see that a potentially good conclusion may

be iteratively built-up by first selecting a good epicenter and evaluating DC

layers around it to build up more certainty. In the next iteration, the same

epicenter or the layers around it must be selected since they have higher

certainty than before (and also higher than other candidates). When a good

conclusion is accepted and deleted from the candidate knowledge slices, the

selection of another good candidate is in turn needed. The question here is

how to make an efficient evaluation of which candidate is good.

Nonmonotonic reasoning Nonmonotonic reasoning occurs when a user

refutes a conclusion made by the DKBA assistant. It requires a re-evaluation

of knowledge slices directly or indirectly involved. From the discussion in

Section 7.6.2 it is seen that nonmonotonic reasoning can be naturally

included in the normal uncertainty reasoning procedures without extra

effort. The only thing needed is to select those knowledge slices whose

participating domain concept was refuted as a ‘‘good’’ candidate.

7.6.3 Program space partitioning

The DKBA tool in RA uses programming psychology to find computationally

simple and empirically effective heuristic rules for candidate selections. A

large software program is generally cowritten by a group of programmers.

Each programmer is responsible for only one part of the program, which is

usually a self-contained component with relatively independent function-

ality. Even within each module, submodules can be written by particular

programmers to fulfill self-contained functions, (for example, a back office

processing module can have such submodules as telephone line main-

tenance and phone-bill). All those components are connected with common

well-defined interfaces for passing parameters. Empirical studies [37]

suggests that each programmer, with a different training background and

character from the others, tends to use a particular and consistent code-

writing style. These styles usually affect the readability of the code they

write. If different programming styles in a program can be identified, how

many programmers contributed to the final program can be recognized. The

benefits of this heuristic rule are twofold: (1) The search for good candidates

can be focused in a single functional submodule that is more efficient and
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desirable, and (2) priority can be given to program regions with good

readability to improve the effectiveness of knowledge recovery.

7.6.4 Programming style and program partitioning

Three key features in source code can be used to distinguish different

programming styles. They are style of comments, style of names, and style of

indent. We give taxonomy to each feature. Some examples can be found in

Table 7.8.

A, B, etc. in the category class of Table 7.8 are not referring to particular

styles, but only used for the purpose of distinguishing different styles.

Algorithms for creating sampling functions of programming styles are given

in Table 7.9. Some abbreviations are programming style (PS), current

program line (CPL), sampling function (SF), and sample interval (SI).

The partitioning of program is based on the programming style of

sampling function. We know a programmer’s programming style is

consistent regardless of the function of the code he or she is writing. We

also know that it is possible that different users share the same programming

style. However, what can be decided is that the program points where the

new program style comes up or the old program style disappears will be the

watershed of different programmers. An algorithm is hereby designed to

partition a program on the basis of this principle. Some abbreviations are

Table 7.8 Programming Styles

Feature Example Class Pattern

Comment //*********************

//* This is my module * A //*

//*********************

//+++++++++++++++++++++

//+ This is my module + B //+

//+++++++++++++++++++++

. . .

Name Client-info A *-*

Client_info B *_*

. . .

Indent if (i<0)

return; A ?????*

if (i<0)

return; B ??*

. . .
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sample pointer (SP), sample number (SN), programming style number

(PSN), and partition (Par).

Following the algorithm in Table 7.10, the program is linearly divided

into small program sections. It is possible that several program sections are

written by the same programmers. We hereby regroup the program sections

by checking the programming styles obtained within them (i.e., if two

program sections have exactly the same programming styles, they will be put

into one group).

Table 7.9 Algorithm for Creating Sampling Function of Programming Styles

PS :¼ null;

CPL :¼ 1;

SF :¼ null;

while CPL 6¼ END OF PROGRAM do

ps :¼ programming style in CPL;

if ps 2 PS

then PS½ps� :¼ PS½ps� þ 1

else PS :¼ PS ¨ fpsg

PS½ps� :¼ PS½ps� þ 1 fi;

if CPL mod SI ¼ 0

then SF :¼ ðSF;PSÞ;

PS :¼ null fi;

CPL :¼ CPLþ 1 od

Table 7.10 Algorithm for Partitioning Program Based on Programming Styles

Sp :¼ 1;

Par :¼ null;

while Sp 6¼ SN do

ps :¼ 1;

while ps 6¼ PSN do

if PS½ps� ¼ 0^PS½psþ 1� > 0_ PS½ps� > 0^PS½psþ 1� ¼ 0

then Par :¼ ðPar; SpÞ fi;

ps :¼ psþ 1 od ;

Sp :¼ Spþ 1 od
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Evaluating the quality of program sections Let Quai be the quality of

program section i, CW and NW be the weights for comment and name

respectively where CW > 0, NW > 0, CWþ NW ¼ 1, CDi and NDi be the

density of comments and names in program section i respectively. Both CDi

and NDi can be easily calculated based on the algorithm in Table 7.10. We

will not give its algorithm separately. We have Quai ¼ CW · CDiþ

NW · NDi.

Search heuristic revisited Now we can look at the question of how to

efficiently select a good candidate knowledge slice. To calculate the quality

of candidate knowledge slices, let CKS be a candidate knowledge slice, PSS

be be the set of program sections where the participating domain concepts of

each knowledge slice comes from, QPSS be the set of metric with each

element being the quality of corresponding program section, and QCKS be

the quality for CKS; we have: QCKS ¼ minfQPSSg. The priority of choosing a

good candidate knowledge slice is therefore given to the knowledge slice (1)

with the highest QCKS; (2) in the same program partition with previous Epi

(see Table 7.7) if still can be decided by (1); (3) with highest previous

matching degree if it still can not be decided by (1) and (2); (4) if all else fails

randomly choose one.

7.6.5 The DKBA tool

In Figure 7.8, there are both control flow and data flow. The user is able to

check the reasoning results from the the DKBA tool. When necessary, the

user can issue a confirmation or a refutation of the relationship between a

variable and a domain concept. To naturally integrate this function into

DKBA tool’s own reasoning procedure, the user has control over the good

knowledge slice selector to perform his or her command immediately.

7.7 Reusing components

Reusing components in a reengineering process involves using a reverse

engineering method to expose components from the existing system and a

library to store and manage the components. Then the new system is

restructured and integrated with reusable generic components and newly

built components by forward engineering. In our approach reusable

components are mined from legacy systems and made potentially reusable.

New systems can be made by the integration of both mined and newly build

components (Figure 7.9).
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It is important that an efficient and feasible way to extract components

from the legacy systems is employed. This section explicitly defines

components and described a method.

Component-based development (CBD) is the industrialization of the

software development process based on the assembly of prefabricated

Figure 7.8 Architecture of the DKBA tool.

Figure 7.9 Process of component-based evolution.
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software components [39]. Two basic ideas underlie CBD. First, applica-

tion development can be significantly improved if applications can be

quickly assembled from prefabricated software components. Secondly,

an increasingly large collection of interoperable software components

will be made available to developers in both general and specialist

catalogs.

Manufacturing industries long ago learned the benefits of moving from

custom development to assembly from prefabricated components. Modern

manufacturing has evolved to exploit two crucial factors underlying today’s

market requirements: reducing cost and time-to-market by building from

prebuilt, ready-tested components, but adding value and differentiation by

rapid customization to targeted customers.

7.7.1 Definition of component

Components were defined in [40] as ‘‘bits of software that can be

replicated and, often with modifications, assembled repeatedly to form

any number of applications.’’ In this definition, components are not

regarded as off-the-shelf black boxes—modification of the components

may be made before they can be reused. More flexible and adaptable

components will only require configuration (rather than modification)

before they can be reused. Another view is that ‘‘a reusable software

component is a logically cohesive, loosely coupled module that denotes a

single abstraction’’ [41]. High cohesive and low coupling are the basic

features of components because of the variation in levels of abstraction,

but it is also important to mention the context in which a component

can be used. A further view is that ‘‘A software component is a static

abstraction with plugs’’ [42]. Here, static means that a software component

is a long-lived entity that can be stored in a software base, independent of

the applications in which it has been used; abstraction means that a

component puts a more or less opaque boundary around the software in

encapsulates; and with plugs means that there are well-defined ways to

interact and communicate with the component (such as parameters, ports,

and messages).

A typical component-based software reengineering process should

contain steps of identification, classification, storing, retrieval, adaptation,

and composition, such as the following:

w Mine components from the legacy systems;

w Wrap up components with well-defined interfaces;
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w Store the components in a component library;

w Build new reusable components if needed;

w Develop new systems by integrating components.

When we consider the components of a software system, the following

come to mind: program design documents, source code modules, object code

modules, copy libraries, file descriptions, screen definitions, and user

manuals, among others. Functions, macros, procedures, templates, and

modules may all be valid examples of components [43], and component

software may standardize interfaces and generic code for various kinds of

software abstractions. Furthermore, components in a system may be entities

other than just code (e.g., specifications, documentation, test data, and

example applications).

The importance of a precise definition of what constitutes a software

component and how to describe it have become a critical issue. Components

are larger than classes, can be in any programming language, can include

their own meta data, are assembled without programming, and need to

specify what they require to run.

Compared to objects, components are larger sized, physical entities,

instead of conceptual entities, and support encapsulation with defined

interfaces. A component’s strength is integration, so flexibility is key, and

components should also be highly scalable.

Thus, we regard a software component as follows:

A coherent and configurable software package, independent of the

applications in which it has been used, with well-defined interfaces in

different contexts to interact and communicate with other components, in

order to compose a larger system.

7.7.2 Mining components

Today, complex and high-quality computer-based systems need to be built

in a very short time period. This strongly demands a more organized and

more systematic approach to building software by reuse.

A great advantage of extracted components is that they have already

been tested to be reliable. By borrowing an existing suitable software

development method that has been well-developed, forward engineering

can then be carried out more easily in the process of building target systems.

The extracted components are more domain-specific than the newly

built ones and can be reused directly and efficiently. In our approach,
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a component consists of five elements: code, specification, interface, design,

and documentation [44–47]. Source code is the most elementary part of a

component, which can be used to extract other elements.

A component is more packaged than an ordinary object. The assumption

is that it will be used in many contexts unknown to its own designers.

It should be robust in anticipation of abuse from other components,

complaining rather than collapsing.

In addition to the executable code itself, there should be a specification

documenting its behavior unambiguously, using a suitable modeling and

design notation. Since a typical component will be used in more than one

product, it is worth investing in good specification and design even more

than usual. The specification is essential because clients do not have access to

the design and should not have to waste time experimenting. A clear

specification also tends to prolong the life of the designers’ original vision,

even through many updates and enhancements.

Components are identified by their interface. An interface should be

defined in different context to interact and communicate with other

components.

The term black box conveys the idea of a component whose internal

workings are hidden, and so inaccessible, with the complementary notion

that what is important about such a component are the ways in which it

interacts with other components over some well-defined interface: its

behavior.

It is important to consider how components fit together, rather than

how each performs its particular function. They should be functionally self-

contained (see Figure 7.10).

Finally, a well-structured library is needed to store all those elements,

where all associated software components may then be classified, stored,

compared, and retrieved, by software composition techniques.

These five elements can be obtained through reverse engineering in RA.

They are described as follows:

1. Code: This is straightforward EWSL code.

2. Specifications: These are usually formal and written in EWSL.

3. Documentation: The whole point is to make the program under-

standable by other people. Natural language is clearly a rich source

of conceptual information and is used in the documentation in the

form of manual pages or comments, usually associated with the

code.
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4. Interface: This is represented in terms of input/output variables [e.g.,

(In: var VarName, Out: var VarName, Local: var VarName, Global:

var VarName)].

5. Design: We present the design by DFDs.

7.8 Retargeting

Retargeting involves activities at the turning point between reverse

engineering and forward engineering. If we recall the three stages of

reengineering (i.e., reverse engineering, functional restructuring, and

forward engineering) retargeting involves functional restructuring and the

start of forward engineering.

Normally, the users’ new requirements are added on top of the existing

system when the system is reengineered, and these new requirements are

implemented in a small number of program functions (compared with the

total number of functions in the system). This small number of functions can

ideally be implemented using reusable components from the reuse library. If

not, new components will have to be developed. Since adding new

requirements to the new system is carried out at the specification level,

this stage is called functional restructuring.

In general, reverse engineering is the main thrust of reengineering

because it addresses a very difficult problem: program comprehension.

Figure 7.10 Five elements of a component.
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Forward engineering can always be undertaken with a sound and existing

software development method. Nevertheless, in the case of our reengineer-

ing approach, we are mainly concerned with intergrating existing reusable

components and newly developed components, and retargeting should put

component integration in the right direction (i.e., retargeting is to use the

RA to check whether reusable components in the reuse library are sufficient

to cover the new requirements and to indicate what new components need

to be developed).

7.9 Measuring software evolution

Due to the high risk and lack of approaches and methods to reverse–

engineer legacy systems, it is important that evolution processes be properly

assessed and controlled. The assessment of resources, products, and

processes when reverse engineering is a crucial activity that which needs

the development of software metrics for reverse engineering. Software

metrics are a key technology for managing reverse engineering projects.

Well-developed software metrics for reverse engineering will be a great aid

to software engineers.

The history of software metrics is not so long: About 30 years ago,

Maurice Halstead published his first paper, which was the beginning of the

first long-term software metrics research effort [48]. Thus software metrics

became a significant part of software engineering.

Metrics are critical to any engineering discipline, and software

engineering is no exception. Software metrics can be used throughout the

software life cycle to assist in cost estimation, quality control, productivity

assessment, and project control and can be used to help assess the quality of

technical work products and to assist in tactical decision making as a project

proceeds.

In the definitions of software metrics, three terms, measure, measurement,

and metrics, must be noticed and distinguished, because definitions of these

terms can easily become confusing. Within the software engineering

context, these terms are defined as follows:

w A measure provides a quantitative indication of the extent, amount,

dimensions, capacity, or size of some attribute of a product or process

[49].

w Measurement is the act of determining a measure [49]. It is the process

of empirically and objectively assigning numerical results to the

attributes of software in such a way as to describe the software.
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w A software metric is a quantitative measure of the degree to which a

system, component, or process possesses a given attribute.

There are three classes of software properties whose attributes should be

measured [50]:

1. Processes are collections of software-related activities.

2. Products are any artifacts, deliverables, or documents that result

from a process activity.

3. Resources are entities required by a process activity.

For example, in reverse engineering, it is mainly the product attributes

that will be measured. The products in reverse engineering are existing

systems.

Among these entities, a distinction between internal attributes and

external attributes can be made [50]:

w Internal attributes can be measured in terms of the entity itself, either

directly or indirectly.

w External attributes can be indirectly measured with respect to how the

entity relates to its environment; even its environment is important,

rather than the entity itself.

Other important definitions are listed as follows following classical texts

in the science of measurement [51–53].

w An attribute is a feature or property of an entity.

w Direct measurement of an attribute is measurement that does not

depend on the measurement of any other attribute.

w Indirect measurement of an attribute is measurement that involves the

measurement of one or more other attributes. (It is often useful in

making visible the interactions between direct measurements.)

7.9.1 Software metrics for reverse engineering

Reverse engineering metrics are clearly a much neglected area. First, people

fail to set measurable targets for their final reverse engineering products,
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such as specifications. Second, in many reverse engineering projects, people

fail to understand and quantify the component costs of these projects, since

excessive cost is a frequent complaint from many customers and software

engineers themselves. We cannot hope to control costs if we are not

measuring the relative components of cost. Third, we are not always told

how measures were designed and executed, or which entities were

measured and how. Without this additional information, we remain

skeptical and unable to decide whether to apply the results to situations

found in reverse engineering projects. In general, the lack of measurement

of reverse engineering is compounded by the lack of a rigorous approach and

the lack of wide acceptance by people.

As the motivation of software metrics, Tom Demarco said [54], ‘‘You

cannot control what you cannot measure.’’ Software metrics are necessary

for achieving reverse engineering.

Reverse engineering includes abstractions and transformations to

change the code to a higher abstraction level, in some cases to more

abstract object-oriented code, step by step until the final specification of the

raw code is reached. This is the main stage in the entire reverse engineering

process. In this stage, the most important entity is the abstraction level of

the code (i.e., abstractness). By measuring the abstraction level, engineers

can identify the extent to which irrelevant information about the code has

been omitted or hidden and whether the code is abstract enough to

understand. Also, engineers should control transformations and abstrac-

tions following the economic way. The economic way reflects another

entity that is important for not only engineers but also clients and

managers. It is the cost factors of the reverse engineering process. Every

step will cause an increase in the cost of the entire reverse engineering

project. Following the abstractions and transformations, engineers should

try to reduce the increasing rate of growth in the costs. When assessing the

quality of the specification gained from the abstractions and transforma-

tions, engineers and managers also want to obtain a value for the cost to

the entire process. In conclusion, it can be seen that the main properties

that need to be determined in reverse engineering are understandability,

complexity, reusability, abstraction level, and cost.

7.9.2 Adaptation and development

Concrete measures for reverse engineering can be developed hierarchically.

First, numbers of selected measures for forward engineering can be adapted

for reverse engineering. Then, new software measures for reverse

engineering can be developed, based on existing measures for forward
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engineering, or from scratch. For example, complexity measures are a major

part of software metrics. Much of the early research in the metrics field was

focused on measuring software complexity [55]. Some of these metrics

can be used for both forward engineering and reverse engineering.

The difference is that numerical results of complexity measures for forward

engineering tend to become larger as development progresses whilst results

of complexity measures for reverse engineering should become smaller.

New reverse engineering measures can also be produced based on some of

the existing measures for forward engineering [56–58].

7.9.3 Five categories of measures

Complexity measures Complexity is (1) the degree to which a system or

component has a design or implementation that is difficult to understand

and verify and (2) pertains to any of a set of structure-based metrics that

measure the attribute in (1) [59].

Complexity is one of the most pertinent characteristics of computer

software. Complexity measures comprise a fundamental element of software

metrics. This can be verified by the large number of existing complexity

measures for forward engineering: More than 200 complexity measures

can be found in the literature [60].

In forward engineering, complexity measures are mainly used to

indicate the quality of software. In a reverse engineering process, people

mainly want to understand an existing program through reverse engineer-

ing from the original program to less complex specifications, because the less

complex a program is, the easier it is for people to understand it. In general,

the complexity measures indicate the understandability of software—that is,

the difference between the use of complexity measures in forward engineer-

ing and reverse engineering. Some existing complexity measures can meet

the needs of reverse engineering. Normally, these measures are all direct

measures and give internal attributes of programs or systems.

Before starting a reverse engineering process, complexity measures can

help people to know the general complexity level of the object program and

to predict how hard it will be to carry out the next steps. When carrying out

abstractions and transformations, complexity measures can ensure that

reverse engineers carry out operations with the aim of always reducing the

complexity of the object program by hiding irrelevant information.

However, the main use of complexity measures lies in their ability to give

an overview of the raw code to managers and engineers (i.e., as an overall

indicator). Several complexity measures are used for reverse engineering.

They are presented below.
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Complexity metric 1: McCabe complexity (MCCM)

Definition 7.4 The number of linearly independent circuits in a program

flowgraph [61]. This measure is calculated as the number of predicates plus

one.

Complexity metric 2: Structural (STRUCT)

Definition 7.5 The sum of the weights of every construct in the program.

The construct is defined subjectively according to experience gained by

engineers and managers. See Table 7.11 for an example.

Complexity metric 3: Lines of code (LOC)

Definition 7.6 The number of statements in the program.

Complexity metric 4: Number of node (NON)

Definition 7.7 The number of nodes in the abstract syntax tree.

Complexity metric 5: Control-flow and data-flow complexity (CFDF)

Definition 7.8 The number of edges in the flowgraph (CF) plus the

number of times that variables are used (defined and referenced) (DF).

Complexity metric 6: Branch-loop complexity (BL)

Definition 7.9 The number of nonloop predicates plus the number of

loops. This is a modification of the measure defined by Moawad and Hassan

[62] and modified by Yang [57].

Table 7.11 Sample Weight Values of Constructs

Construct Weight Construct Weight Construct Weight

+ 1 - 2 * 2

/ 3 ** 3 = 0

<> 0 < 0 > 0

<= 0 >= 0 Min 1

Max 1 Div 2 Mod 2

If 4 And 1 Or 2

Not 2 Push 10 Abort 10

Array 0 Proc 20 For 10
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Complexity metric 7: Recursion and nesting complexity (RNC)

Definition 7.10 The number of instances of recursion and nesting in the

program.

Complexity metric 8: Function points (FPs) interface complexity (FPIC)

Definition 7.11 The weighted adjusting functions that count for the

external interface files through which data is stored elsewhere by another

application. The function complexity scores are simple, average, and

complex. This is a modification of the function points measure defined by

Albrecht [63] and modified by Banker [64].

Abstractness measures Abstractness measures are in a central position

for both reverse engineering measures and the five categories, because

abstraction and transformation are significant notions in reverse engineer-

ing, crossing the entire reverse engineering process. Both abstraction and

transformation are used to enhance the abstraction level of the software.

Abstractness measures are mainly used to measure the abstractness of

an object program, which is related to characteristics of complexity. In

reverse engineering, abstractness measures are concentrated on structural

abstraction, which shows the abstraction level of the program by analyzing

the structure of the program (i.e., by accounting and processing the internal

mechanism of a system or program). This includes control flow (connec-

tions among nodes, branches, and loops) and data flow (the degree of

abstraction of the data). Also, abstractness is a direct index of the

understandability, which relates to cognitive complexity (measuring the

weight of high abstract-level constructs in the program). The main property

of abstractions and transformations in the reverse engineering process is

hiding irrelevant information. Therefore, to represent hidden irrelevant

information numerically is a means of measuring the indicated abstractness.

Also, values of abstractness are always increasing following reducing the

number of pieces of irrelevant information (i.e., reflecting the raising

abstract level as indices).

Abstractness metric 1: Abstractness based on McCabe’s cyclomatic

complexity measure (ABST-MCCM)

Definition 7.12 The reciprocal of the number of linearly independent

circuits in a program flowgraph, which is calculated based on McCabe’s

cyclomatic complexity measure [61].
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Abstractness metric 2: Abstractness based on lines of code (ABST-LOC)

Definition 7.13 The quotient of the number of statements (LOC) over

the number of nodes (NON) in the abstract syntax tree.

Abstractness metric 3: Abstractness based on data-flow complexity

(ABST-DF)

Definition 7.14 The reciprocal of the number of times variables are

referenced in procedures and functions plus the number of times that

variables are defined. This is a modification of the measure defined by

Oviedo [65].

Abstractness metric 4: Abstractness based on loop complexity (ABST-

LOOP)

Definition 7.15 The reciprocal of the number of loops plus one. This is

a modification of the measure defined by Moawad and Hassan [62]. The

reciprocal of the original measure is used because it is believed that

the fewer loops there are in a program, the higher the abstraction level of

the program.

Abstractness metric 5: Abstractness in statement (ABST-STAT)

Definition 7.16 The percentage of statements at higher abstract levels

over the total statements.

Abstractness metric 6: Abstractness in vocabulary (ABST-VOC)

Definition 7.17 The percentage of constructs at higher abstract levels in

the total constructs in the programs.

Abstractness metric 7: Abstractness based on the weight of declaration

statements (ABST-WOS)

Definition 7.18 Measures the weight of special declaration statements

that are defined by different systems and requests.

Object-orientedness (OO) measures Object orientedness is the degree

to which a system or its components has a design or implementation that is

expressed in terms of objects and messages via encapsulation, inheritance,

and polymorphism between the objects.
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Following the strong trend toward object-oriented technology, object

orientedness measures have become an unavoidable subset of software

metrics required for reverse engineering. Nowadays, many software

managers and engineers want to reengineer their huge number of

conventional procedural systems into object-oriented systems. OO measures

for reverse engineering can be helpful to managers and engineers.

OO measures measure OO characteristics including inheritance

(mechanism allowing the reuse of class specifications), encapsulation

(information hiding supported by objects), and polymorphism (to hide

different implementations behind a common interface) [66]. Some OO

measures are also helpful to assess the pre-object-oriented characteristics of

procedural codes, but it is not the main aim of OO measures for reverse

engineering. These measures are highly relevant to OO applications.

In reverse engineering, OO measures give the complexity of classes

(templates for creating objects—that is, packets containing data and

procedures [66]) and relationships between classes (e.g., the class hierarchy,

which is a tree structure representing inheritance relations [66]). OO

measures can be used to measure source programs, transitional programs,

and specifications, which can help to reverse-engineer OO legacy systems

effectively and efficiently. Kemerer and Chidamber (KC)’s object-oriented

metrics suite has been adapted for reverse engineering measures [67], that

are suitable to measure the reverse engineering processes of OO legacy

systems. They are listed below along with an example of using some of those

measures to measure a program segment.

OO metric 1: Weighted methods per class (WMC)

Definition 7.19 Consider a class C1, with methods M1,...Mn that are defined

in the class. Let c1,...cn be the complexity of the methods. Then

WMC ¼
Xn

i¼1

ci

If all method complexities are considered to be unity, then WMC ¼ n, the

number of methods. Here the number of methods is calculated as the

summation of McCabe’s cyclomatic complexity of all local methods.

OO metric 2: Depth of inheritance tree (DIT)

Definition 7.20 Depth of inheritance of the class is the DIT metric for the

class. In cases involving multiple inheritance, the DIT will be the maximum

length from the node to the root of the tree.
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OO metric 3: Number of children (NOC)

Definition 7.21 Calculates the number of immediate subclasses subordi-

nated to a class in the class hierarchy.

OO metric 4: Coupling between object classes (CBO)

Definition 7.22 As for a class, it is a count of the number of other classes to

which it is coupled. It relates to the notion that two classes are coupled

when methods in one class use methods or instance variables defined by

another class.

OO metric 5: Response for a class (RFC)

Definition 7.23 RFC ¼ jRSj where the RS is the response set for the

class. The response set of a class is a set of methods that can potentially

be executed in response to a message received by an object of that

class.

OO metric 6: Number of variables per class (NVC)

Definition 7.24 Calculated as the average number of public variables and

private variables per class.

OO metric 7: Average parameters per method (APM)

Definition 7.25 Calculated as the number of method parameters divided

by the total number of methods.

OO metric 8: Number of objects (NOO)

Definition 7.26 The number of objects extracted from source code.

Economic/cost estimation measures Economics is mainly the charac-

teristics of the duration, effort, and productivity of a reverse engineering

process.

The main aim of economics (cost estimation) measures is to indicate the

cost of reverse-engineering the existing code tactically and strategically. In

reverse engineering, effort, duration and productivity can be measured.

Effort in reverse engineering is a measure of the productive work to extract

specifications from raw code in the process of reverse engineering. Duration
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is the time to reverse engineer a system. Productivity is the ratio of the

quantity and quality of specifications and information produced from the

reverse engineering process per unit of time. In fact, as the name of this

category suggests, the main use of these measures is to supply several

estimated results of both reverse engineering products and process. Then, by

comparing actual results and estimated results, engineers can obtain a view

of the cost level and try to control the cost of their project to bring it closer to

estimated values obtained from economic measures. In order to control the

reverse-engineering process and reduce the cost of obtaining specifications,

engineers and managers must be able to estimate relevant quantities.

Economic measures are mainly based on the reduction in the number of

source code instructions, called the size reduction rate (SRR). Concrete

measures are presented below:

Economics metric 1: Cost ratio value in relation to lines of code (CRVL)

Definition 7.27 The cost unit of specifications in relation to the cost of

raw code.

Economics metric 2: Size reduction rate (SRR)

Definition 7.28 Source lines of code divided by lines of specification.

Economics metric 3: Cost ratio value in relation to SRR (CRV)

Definition 7.29 Gives a cost unit of specifications compared to reverse

engineered lines.

Economics metric 4: Effort assessment based on person-days (EPD)

Definition 7.30 Effort:

Person-days ¼ Ir · 2:4ðSRR=1;000Þ1:05 · 19

This measure is a modification of the basic COCOMO model defined by

Boehm [68].

Economics metric 5: Reverse engineering duration (RED)

Definition 7.31

Reverse engineering duration (days) ¼ 2:5 · ðEPDÞ0:38

This measure is a modification of the COCOMO model defined by Boehm

[68].
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Economics metric 6: One specification per hour (SPH)

Definition 7.32

SPH ¼
SRR · 8

Lines of specification · RED · 1;000

This measure is an adaption of the COCOMO model defined by Boehm [68].

Eight work hours per day is used here.

Economics metric 7: Productivity of reverse engineering (REP)

Definition 7.33

REP ¼
SRR

EPD · 1;000

This measure is another modification of the COCOMO model [68, 69].

Economics metric 8: Duration (scheduling time) for obtaining each

object (TFO)

Definition 7.34 This measure gives the scheduling duration for gaining one

object equally.

TFO ¼
RED

NOO

Reusability measures The last category of the five categories is

reusability measures. The main attributes of reusability are generality,

transportability, and retrievability. Understandability is also reflected by the

feature of reusability. Highly reusable components of a system are normally

easy to understand. Generality measures estimate whether the system or

components of the system perform a broad range of functions so that they

can be used in more than one computer program or software system.

Transportability measures also give the ease of translating programs.

Retrievability refers to the ease of design recovery.

One reason for using reusability measures in reverse engineering is that

reverse engineering can indicate whether a component is reusable or not.

This valuable information for reengineers is given by the reusability

measures. Depending on the results of reusability, people can know what
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should be done after reverse engineering (i.e., when rebuilding the system

based on specifications obtained from the reverse engineering process).

Another reason is that it is believed that the direction of heuristics is along

the trend of finding a component more reusable when reverse engineering.

The main basis of developing reusability measures is based on Selby’s

study [70]. The main rules of reusability in Selby’s study are elaborated

below. The characteristics of reusable components are listed as follows:

w Smaller size—generally less than 140 source statements;

w Simple interfaces;

w Few calls to other modules (low coupling);

w More calls to low-level system and utility functions;

w Fewer input-output parameters;

w Less human interaction (user interface);

w Good documentation, as shown by the comment-to-source state-

ment ratio;

w Few design changes during implementation;

w Less effort to design and build needed;

w More assignment statements than logic statements per source

statement.

Reusability measures are always used to measure resources and initial

products in the initial stages of the reverse engineering process. Normally,

reusability measures will not be supposed to measure the process and

transitional products in reverse engineering. Several reusability measures

are listed below.

Reusability metric 1: Weight of interfaces in relation to lines of code

(WOIL)

Definition 7.35 This is a measure calculated by dividing the number of lines

of interface code by the total number of lines of code.

Reusability metric 2: Human interaction level in relation to lines of code

(HIL)

Definition 7.36 This calculates human action level by lines of commands.
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HILL ¼
Lines of users’ commands

Source lines of code

Reusability metric 3: Average module size (AMS)

Definition 7.37 This measure is calculated by number of statements over

number of methods [71].

AMS ¼
LOC

Number of methods

Reusability metric 4: Environment independence level (EIL)

Definition 7.38 This assesses the weight of parts that must run under the old

environment in the object program.

EIL ¼
Lines of system-dependent codeþ lines of hardware-dependent code

Source lines of code

Reusability metric 5: Documentation level (DL)

Definition 7.39 This evaluates the size of documentation affiliated to the

program.

DL ¼
Number of comments/documentation

Source lines of code

Reusability metric 6: Self-descriptiveness (SD)

Definition 7.40 This estimates the weight of on-line comments and

statements with the self-descriptiveness characteristic in the program.

SD ¼
Number of on-line comments and special statements

Total number of statements

Reusability metric 7: Error tolerance level (ETL)

Definition 7.41 This measures the weight of parts in the program that can be

used to detect errors and remind errors.

ETL ¼
Lines of error detecting components

Source lines of code
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Figure 7.11 Menu buttons of the metric facility.
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Reusability Metric 8: Weight of reuse on lines of code (WOR)

Definition 7.42 This assesses the weight of reused parts of the object

program depending on documentation.

WOR ¼
Number of reused lines of code

Source lines of code

7.9.4 The metric tool in RA

In the Reengineering Assistant, a tool called the ‘‘Metric Facility’’ was

designed and built to measure the object program on which the user is

working. The metric facility can be invoked by the user at any time to

measure the object program. In this research, the tool component of the

metric facility is used to implement reverse engineering measures. Also, the

tool itself will be strengthened when developing reverse engineering

measures.

By using the Metric Facility, a user can calculate any one, or all of the

metrics, applied either to the current program item on which he or she is

working or to the whole program. During the process of abstracting and

transforming a program, the measures at each stage can be recorded and the

results can be plotted when required. Menu buttons are shown in

Figure 7.11.

The metric facility provides a function to plot graphs of metric results,

using the record generated by the automatic mechanism. One of measures is

plotted in one graph, including the name of the measure, the (index)

number of the measure at each line, and the name of the abstraction or

transformation applied. If by the time the graph is going to be plotted, the

number of the abstraction or transformation applied exceeds the maximum

number of characters that can be displayed in one line on the screen, the

graph is plotted vertically. Also, as with deep analysis, the plots are always

converted into smoothed curves. Then by analyzing the shape of the curves,

the status of a reverse engineering process can be judged more explicitly and

conveniently.
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Case Studies in Evolution

This chapter presents six case studies using the FermaT and

RA tools to evolve from source code to specifications or to

new source code in a different language.

Book index generator This case study illustrates detailed

steps for using our method. The purpose is to provide guidance

to readers to use the FermaT tool in their own practice.

Topological sorting After an extensive search of the litera-

ture, this algorithm by Knuth and Szwarcfiter, published in [1],

was selected as being one of the most difficult and challenging

programs for formal analysis, given its small size. It therefore

makes an ideal stress test of the transformation technology:

If we can handle this, then we can also handle the much larger

but significantly less complex programs found in typical

business computing systems.

Assembler reengineering The third case study starts with

an IBM 370 assembler module that is translated to WSL and

reengineered to an equivalent high-level language program

and ultimately to an abstract specification. The specification

precisely describes the behavior of the program while abstract-

ing away from the nonessential implementation details. As a

result, the specification is considerably shorter and easier to
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understand than either the original assembler or even the high-level lan-

guage program.

The original program was taken from ‘‘A Guided Tour of Program

Design Methodologies’’ by G. D. Bergland [2], where is it used as an

example of the complexities and poor structure that emerge after an

incorrect program is patched and fixed over a period of time. This program

was translated into assembler by a professional assembler programmer

whose brief was to use many of the programming tricks (such as EXecute

statements and self-modifying code) that make assembler so much more

difficult to maintain than high-level language code (the maintenance cost

per function point for assembler has been measured to be 2.8 times higher

than for COBOL).

The purpose of this study is to see if FermaT transformations can be used

to cover the whole reengineering process from very low-level code

(assembler) to abstract formal specifications and to a high-level program in

a different programming language.

Mass migration exercise The fourth case study is a test of how well the

migration technology will scale up to systems containing millions of lines of

code and cope with different styles of assembler from many different sources.

The study focuses on the code migration part of a migration project: taking

the assembler modules, translating to WSL, applying thousands of individual

restructuring, and simplifying transformations to each module, and finally

translating into equivalent maintainable C code. The case study took a

random selection of 1,925 assembler modules (comprising just over one

million lines of source, which expands into over 5 million lines of listing)

taken from over 25,000 modules provided by a number of large commercial

assembler users.

Migrating a telecommunications system from assembler to C The fifth

case study is a commercial migration project. The project is a fairly large

embedded system, consisting of about 500,000 lines of Intel 186 assembler

and 250,000 lines of C that runs on four different hardware platforms in 18

countries. The task was to use FermaT to migrate all the assembler code to

efficient, structured and maintainable C code to enable migration to a more

modern processor together with major enhancements to the functionality of

the system.

Mine drainage system The sixth case study shows how a real-time

system is reverse-engineered to obtain its specifications.
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8.1 First case study: Book index generator

In this case study we give an example of how to use program transformations

to extract a formal specification from source code and then develop two new

programs in different programming languages from the specification. The

example program is taken from a programming textbook [3], and was used

by the textbook’s author to generate the index for the book. The program

was originally written in DataFlex (a database programming language); we

have transcribed it to C while faithfully preserving the structure:

#include <stdio.h>

main() /* DataFlex transcription */

{

int morenum, filestat;

char page[6], theline[51], item[31], lastitem[31];

FILE *fopen(), *fp_in, *fp_out;

fp_in ¼ fopen("DIDB","r");

fp_out ¼ fopen("DID2INX.TXT","w");

theline[0] ¼ ’\0’;

morenum ¼ 0;

filestat ¼ fscanf(fp_in," %s%s",page,item);

goto inhere;

for(;;) {

filestat ¼ fscanf(fp_in," %s%s",page,item);

if (filestat ¼¼ EOF) goto alldone;

morenum ¼ 1;

if (strcmp(item,lastitem)) {

fprintf(fp_out," %s\n",theline);

theline[0] ¼ ’\0’;

morenum ¼ 0;

inhere:

strcpy(theline,item);

strcat(theline," ");

strcat(theline,page);

}

if (morenum) {

strcat(theline,", ");

strcat(theline,page);

}

strcpy(lastitem,item);

}
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alldone:

fprintf(fp_out," %s\n",theline);

close(fp_in);

close(fp_out);

}

At first glance this appears to be a nicely structured program—until one

notices that the program starts out with a goto inhere that branches to a

label in the middle of an if statement in the middle of a loop! The program

also uses a flag morenum to modify the control flow.

8.1.1 Goals

For any evolution project to be successful it is important for the project’s

goals to be clearly identified at the beginning. Our goals for this project are as

follows.

1. To restructure the program in order to reduce complexity and make

the program more maintainable;

2. To remove various restrictions on the program—specifically the

hard-wired file names, field length restrictions, and the fixed-width

format of the input file;

When the program was first written (in 1986) computers had much

smaller memories than today’s machines. More importantly, the original

implementation language (DataFlex) did not have any facilities for

dynamic memory allocation. Thus, it was vitally important for the

original implementation to use a fixed, small amount of memory. Modern

computers have much larger amounts of memory, and modern operating

systems have efficient virtual memory implementations, so it is accept-

able for the new implementation to load the entire file into memory.

Similarly, processing time is not a major issue for the reengineered

program.

8.1.2 WSL transformations

In order to translate to WSL, all the labels need to be at the top level, so that

they can be converted to actions in an action system. This is easily

accomplished by implementing the forð; ; Þ loop as action L at the top of the

loop and a call L at the end of the loop:
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var hmorenum :¼ 0, lastitem := ‘‘ ’’i:

actions PROG :

PROG �
morenum :¼ 0

!P fopen(‘‘DIDB’’, ‘‘r’’ var fp_in);

!P fopen(‘‘DID2INX.TXT’’, ‘‘w’’ var fp_out);

!P fscanf( var filestat, fp_in, page, item);

call INHERE:

L �
!P fscanf( var filestat, fp_in, page, item);

if filestat ¼ EOF then call ALLDONE fi;

morenum :¼ 1;

if item 6¼ lastitem

then !P fprintf(theline var fp_out);

theline :¼ ‘‘’’; morenum := 0; call INHERE fi;

call MORE:

INHERE�
theline :¼ item þþ ‘‘ ’’ þþpage; call MORE:

MORE�
if morenum¼ 1 then theline :¼ theline þþ ‘‘, ’’ þþpage fi;

lastitem :¼ item; call L:

ALLDONE�
!P fprintf(theline var fp_out); call Z: endactions end

The first stages in reverse engineering involve restructuring and

simplification transformations. These stages do not require any deep

knowledge of the overall structure or purpose of the program, but only

use local analysis. For example, we observe that morenum is set to zero in

PROG and tested in MORE (via the intervening call to INHERE). If we unfold

the call to INHERE in PROG and then the call to MORE we can eliminate the

test and also merge some assignments:

PROG�
morenum :¼ 0;

!P fopen(‘‘DIDB’’, ‘‘r’’ var fp_in);

!P fopen(‘‘DID2INX.TXT’’, ‘‘w’’ var fp_out);

!P fscanf( var filestat, fp_in, page, item);

theline :¼ item þþ ‘‘ ’’ þþpage;

lastitem :¼ item; call L:

We could continue in this way, unfolding and simplifying actions to

restructure the program, but this is not necessary. The FermaT system
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includes a metatransformation called Collapse Action System, which

implements the heuristics for restructuring action systems, selecting and

calling other transformations as appropriate. The result of applying this

transformation is

var hmorenum :¼ 0, last :¼ ‘‘ ’’i:

!P fopen(‘‘DIDB’’, ‘‘r’’ var fp_in);

!P fopen(‘‘DID2INX.TXT’’, ‘‘w’’ var fp_out);

!P fscanf( var filestat, fp_in, page, item);

theline :¼ item þþ ‘‘ ’’ þþpage;

lastitem :¼ item;

do !P fscan( var filestat, fp_in, page, item);

if filestat¼EOF

then !P fprintf(theline var fp_out);

exit(1) fi;

morenum :¼ 1;

if item 6¼lastitem

then !P fprintf(theline var fp_out);

theline :¼ ‘‘’’; morenum :¼ 0;

!P fscan( var filestat, fp_in, page, item);

theline :¼ item þþ ‘‘ ’’ þþpage fi;

if morenum¼1

then theline :¼ theline þþ ‘‘, ’’ þþpage fi;

lastitem :¼ item od end

Note that the statement lastitem :¼ item appears at the end of the loop

and also just before the loop. So loop inversion (see Chapter 4) can be applied

to merge the two copies of the statement. Also, within the loop body we set

morenum in the first if statement and test it in the next if statement.

By absorbing the second if into the first, we can remove all the tests of

morenum (which then becomes another redundant variable):

var hlast :¼ ‘‘ ’’i:

!P fopen(‘‘DIDB’’, ‘‘r’’ var fp_in);

!P fopen(‘‘DID2INX.TXT’’, ‘‘w’’ var fp_out);

!P fscanf( var filestat, fp_in, page, item);

theline :¼ item þþ ‘‘ ’’ þþpage;

do lastitem :¼ item;

!P fscan( var filestat, fp_in, page, item);

if filestat=EOF

then !P fprintf(theline var fp_out); exit(1) fi;

if item 6¼ lastitem
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then !P fprintf(theline var fp_out);

!P fscan( var filestat, fp_in, page, item);

theline :¼ item þþ ‘‘ ’’ þþpage

else theline :¼ theline þþ ‘‘, ’’ þþpage fi od end

There are two copies of the statement theline :¼ item þþ ‘‘ ’’ þþpage,

but the copy within the loop is not the last statement in the loop body. It

can however, very easily be made to be the last statement in the loop body

by converting the loop to a double loop and taking the statement out of

the new inner loop. This is accomplished by the single transformation

Take Outside Loop, which automatically checks for and applies loop

inversion:

var hlast :¼ ‘‘ ’’i:

!P fopen(‘‘DIDB’’, ‘‘r’’ var fp_in);

!P fopen(‘‘DID2INX.TXT’’, ‘‘w’’ var fp_out);

!P fscanf( var filestat, fp_in, page, item);

do theline :¼ item þþ ‘‘ ’’ þþpage;

do lastitem :¼ item;

!P fscan( var filestat, fp_in, page, item);

if filestat¼EOF

then !P fprintf(theline var fp_out); exit(2) fi;

if item 6¼ lastitem

then !P fprintf(theline var fp_out);

theline :¼ ‘‘’’;

!P fscan( var filestat, fp_in, page, item);

exit(1)

else theline :¼ item þþ ‘‘, ’’ þþpage fi od od end

The two copies of the fprintf call can be combined by merging the two if

statements, converting to a nested if statement and taking the common

code out of the two branches of the outer if:

do theline :¼ item þþ ‘‘ ’’ þþpage;

do lastitem :¼ item;

!P fscan( var filestat, fp_in, page, item);

if filestat¼EOF _ item 6¼ lastitem

then !P fprintf(theline var fp_out);

if filestat¼EOF then exit(2) else exit(1) fi

else theline :¼ item þþ ‘‘, ’’ þþpage fi od od

The statement if filestat ¼ EOF then exit ð2Þ else exit ð1Þ fi always

causes termination of the inner loop, so we can replace it by an exit ð1Þ and

take it, and the preceding fprintf, out of the inner loop:
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do theline :¼ item þþ ‘‘ ’’ þþpage;

do lastitem :¼ item;

!P fscan( var filestat, fp_in, page, item);

if filestat¼EOF _ item 6¼ lastitem then exit(1) fi;

theline :¼ item þþ ‘‘, ’’ þþpage od;

!P fprintf(theline var fp_out);

if filestat¼EOF then exit(1) fi;

The transformations have revealed the ‘‘true’’ structure of the program,

which involves a double loop; the ‘‘true’’ structure of a program is a structure

that closely matches the function and purpose of the program. This structure

was uncovered by simply following certain heuristics (in this case a

technique for merging similar statements) without needing to understand

the purpose of the program. When we look at the function of the program, as

described in the published documentation [3], we see that this double loop

does in fact precisely capture what the program is intended to do! The

program scans through a sorted file consisting of items and page references.

The outer loop scans through distinct items, and for each distinct item the

inner loop steps through the page references for that item. Writing the

program as a single loop whose body must distinguish the two cases of a new

item and a repeated item obscured the simple basic structure, which has

been revealed through transformations. This kind of transformation has

important applications in program maintenance; the second version is far

easier to understand and modify—there is only one copy of the statement

that writes to the file, and the flag morenum that was used to direct the

control flow is not needed. The transformation from first version to second

used only general transformations, which have been proved to work in all

cases, and so could be applied without having to understand the program

first.

Translating the WSL back into C gives this reengineered program:

#include <stdio.h>

main() /* DataFlex transcription */

{

int filestat;

char page[6], theline[51], item[31], lastitem[31];

FILE *fopen(), *fp_in, *fp_out;

fp_in ¼ fopen("DIDB","r");

fp_out ¼ fopen("DID2INX.TXT","w");

filestat ¼ fscanf(fp_in," %s%s",page,item);

for(;;) {
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strcpy(theline,item);

strcat(theline," ");

strcat(theline,page);

for(;;) {

strcpy(lastitem,item);

filestat ¼ fscanf(fp_in," %s%s",page,item);

if ((filestat ¼¼ EOF) || strcmp(item,lastitem)) break;

strcat(theline,", ");

strcat(theline,page);

}

fprintf(fp_out," %s%s",theline,"\n");

if (filestat ¼¼ EOF) break;

}

}

The program reads the file ‘‘DIDB,’’ a sorted text file that consists of a

number of lines each containing a page number followed by a word. It

produces an output file ‘‘DID2INX.TXT,’’ which lists one word per line with

each word followed by a list of the page numbers on which that word

appears. A sample input file is the following:

1 an

10 an

17 an

123 an

2 bat

3 bat

99 cow

while the corresponding output is

an 1, 10, 17, 123

bat 2, 3

cow 99

Note that the input is sorted alphabetically on the word field and then

numerically on the page number field.

With this knowledge of the program’s purpose we can see that the

transformations have also revealed a bug in the program: Note that the outer

loop has the test at the end (as in the usual repeat . . . until loop), so the body

of this loop is executed at least once. Recalling that the program reads an

input file and produces some output that summarizes the input, there is

something rather odd about this structure! In fact, the program will not
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work correctly if presented with an empty file: The documentation implies

that the program should produce no output for an empty input file, but this

program’s output consists of a single line composed from the contents of

uninitialized data structures! This bug is not immediately obvious in the first

version of the program. For the first version a typical fix would be to add a

test for an empty file and a goto that jumps to a new label at the end of the

program. In that case this fix is also typical in that it further obscures the

program structure, increases the program length, and increases the number

of identifiers used. In contrast with this, to carry out the same modification

to the second version we merely change the outer loop to a while loop.

An alternative (and even less drastic) method of correcting the bug is to

introduce the assertion filestat 6¼ EOF after the first call to fscanf. This

assertion states that the ‘‘empty input’’ case can be ignored. Using it we are

able to transform the outer loop into a while loop. On removing the assertion

we get a program that will work correctly for the empty file case and that is

proven to be equivalent to the original program in all other cases. Thus, we

have fixed the bug and proved that we have broken nothing else in doing

so.

8.1.3 Abstracting a specification

The transformations in the previous section were basically all at the source

code level. Our aim in this section is to cross the abstraction levels in order

to get to an abstract specification. The first step is to change the data

representation from files to a more abstract representation as lists of records.

The input file is a list of records of the form of hitem;pagei, while the output

file is a list of lines. The new variable i is used to denote the ‘‘current

position’’ in the input list (it is analogous to the file pointer in the C

program). We translate the fopen; fscanf and fprintf functions into the

corresponding abstract operations. The end of file test fstat ¼ EOF becomes

the test i > ‘ðinputÞ:

i :¼ 1;

item :¼ input½i �½1�; page :¼ input½i�½2�;

output :¼ hi;

while i<‘ðinputÞ do

theline :¼ item þþ ‘‘ ’’ þþpage;

do lastitem :¼ item;

i :¼ i+1;

item :¼ input½i �½1�; page :¼ input½i �½2�;

if i > ‘ðinputÞ _ item 6¼ lastitem then exitð1Þ fi
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theline :¼ theline þþ ‘‘, ’’ þþpage od;

output  

push

theline od

This change in data representation allows us to remove the variable

lastitem since the references to lastitem can be replaced by input ½i 
 1�½1�.

We can similarly remove the variables item and page. Finally, by duplicating

the statement i :¼ iþ 1 we can invert the inner loop to another while loop:

i :¼ 1; output :¼ hi;

while i < ‘(input) do

theline :¼ input½i�½1� þþ ‘‘ ’’ þþ input½i�½2�;

i :¼ i + 1;

while i < ‘ðinputÞ^ input½i�½1� ¼ input½i 
 1�½1� do

theline :¼ theline þþ ‘‘, ’’ þþ input½i�½2�;

i :¼ i + 1 od;

output  

push

theline od

We now have a double loop that scans through the sequence input. Each

step of the inner loop processes a single element of the sequence, so each

execution of the inner loop processes a segment of the sequence. Thus, the

key to the data restructuring is to split the input sequence into sections such

that the outer loop processes one segment per iteration. This is easily

achieved with the split function defined in Chapter 4—the terminating

condition on the inner loop provides the predicate on which to split. Define

the predicate same_item as

funct same_itemðx, yÞ �
x[1] ¼ y[1]:

Then the new variable q is introduced with the assignment

q :¼ splitðinput, same_itemÞ

We introduce q and its two index variables j and k to the program as

ghost variables. j and k step through q as i steps through p; more formally we

preserve the invariant

i ¼ þ
�
ð‘�q½1 . . . j 
 1�Þ þ k

which is the same as saying i ¼ indexqðj; kÞ. From this invariant and the

relation þþ
�
q ¼ input we get the invariant: input½i� ¼ q½j�½k�. Adding these

ghost variables to the program we get

i :¼ 1; output :¼ hi

q :¼ splitðinput, same_itemÞ; j :¼ 1; k :¼ 1;

while i < ‘ðinputÞdo
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theline :¼ input½i�½1� þþ ‘‘ ’’ þþ input½i�½2�;

i :¼ i+1;

k :¼ k+1; if k > ‘ðq[j]) then j :¼ j+1; k :¼ 1 fi;

while i < ‘ðinputÞ^ input½i�½1� ¼ input½i 
 1�½1� do

theline :¼ theline þþ ‘‘, ’’ þþ input½i�½2�; i :¼ i+1;

k :¼ k+1; if k > ‘(q[j]) then j :¼ j+1; k :¼ 1 fi od;

output  

push

theline od

The next stage is to replace references to the concrete variables input

and i by references to the new variables q, j and k using the invariants above.

Then the concrete variables become ghost variables and can be removed

from the program. Note that due to the structure of q the test input½i�½1� ¼

input½i 
 1�½1� is true as long as we are in the same section of input (i.e., as

long as we have not just incremented j and reset k to 1). However, this is the

case exactly when k 6¼ 1. Also, if i > ‘ðinputÞ in the inner loop we must have

just incremented j (and k will be 1), so the whole test in the inner loop is

equivalent to k 6¼ 1. We have

output :¼ hi;

q :¼ splitðinput, same_itemÞ; j :¼ 1; k :¼ 1;

while j < ‘(q) do

theline :¼ q[j][k][1] þþ ‘‘ ’’ þþ q[j][k][2];

k :¼ k+1; if k > ‘(q[j]) then j :¼ j+1; k :¼ 1 fi;

while k 6¼ 1 do

theline :¼ theline þþ ‘‘, ’’ þþ q[j][k][2];

k :¼ k+1; if k > ‘(q[j]) then j :¼ j+1; k :¼ 1 fi od;

output  

push

theline od

We want to show that the inner loop processes exactly one segment of q;

to do this we need to change its termination condition to k < ‘ðq½j�Þ.

The easiest way to do this is to convert the inner loop to a do . . .od loop and

absorb the if statement and increment of k to get

do k :¼ k+1;

if k > ‘(q[j]) then j :¼ j+1; k :¼ 1 fi;

if k 6¼ 1 then exit fi;

theline :¼ theline þþ ‘‘, ’’ þþ q[j][k][2] od

If k > ‘ðq½j�Þ at the beginning of this loop body then the if statement will

be executed and the loop terminated. Conversely if k < ‘ðq½j�Þ, then it is

certainly >1; so after k is incremented, the if statement has no effect and the

loop is not terminated (since now k > 1). So, we can transform the inner

loop into the following while loop:
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while k < ‘(q[j]) do

k :¼ k+1;

theline :¼ theline þþ ‘‘, ’’ þþ q[j][k][2] od;

j :¼ j+1; k :¼ 1

The local variable k is only used in this loop (its value is always 1 outside

the loop) so we can transform it into a for loop. Our program now looks as

follows:

output :¼ hi;

q :¼ splitðinput, same_itemÞ; j :¼ 1;

while j < ‘(q) do

theline :¼ q[j][1][1] þþ ‘‘ ’’ þþ q[j][1][2];

for k :¼ 2 step 1 to ‘(q[j]) do

theline :¼ theline þþ ‘‘, ’’ þþ q[j][k][2] od;

j :¼ j+1;

output  

push

theline od

where we have replaced the occurrences of k outside the for loop by 1.

q½j� is a sequence of pairs, but in the inner for loop we only use the

second element of each pair. Thus, we can represent q½j� by the sequence of

second elements (i.e., the sequence r ¼ p2�q½j� where p2ðha; biÞ ¼ b is a

projection function) (this is another data refinement). With this abstraction

the inner loop takes on the following form:

var r :¼ p2�q[j]:

theline :¼ theline þþ r[1];

for k :¼ 2 step 1 to ‘(r) do

theline :¼ theline þþ ‘‘, ’’ þþ r[k] od end

These statements implement a ‘‘splice’’ function; they are equivalent to

the simple assignment: theline :¼ theline þþ
�
sepð‘‘, ’’Þ

�
r
�

where sep is

defined: sepðsÞða;bÞ ¼ a þþ s þþb. Thus, we can rewrite this as follows:

var r :¼ p2 �q[j]:

theline :¼ theline þþ
�
sep

�
‘‘, ’’

��
r
�

end

The program simplifies to

output :¼ hi;

q :¼ splitðinput, same_itemÞ; j :¼ 1;

while j < ‘(q) do

theline :¼ q[j][1][1] þþ ‘‘ ’’ þþ
�
sep ð‘‘, ’’Þ

�
ðp2�q[j]Þ

�
;

j :¼ j + 1;

output  

push

theline od

8.1 First case study: Book index generator 187



Finally, this program constructs output by applying a function of each

element of the list q so we can implement the remaining loop as a map

operation:

begin var q :¼ splitðinput, same_itemÞ:

output :¼ process�q end

where

funct process ðseqÞ

seq½1�½1� þþ ‘‘ ’’ þþ
�
sepð‘‘, ’’Þ

�
ðp2�seqÞ

�
:

end

To summarize this specification: We split input into a list of sections q

starting a new section at each point where the head of one pair differs from

the head of the next pair. We process each section to create a line of output

that contains the head of the first pair (the item), a space and the list of

second elements of the pairs (the numbers), separated by the string ‘‘,’’. The

output variable is a list of the lines of output.

This is now in the form of an abstract specification that defines the

precise relationship between the input and output states.

8.1.4 Reimplementation

The final stage in a reengineering process is to reimplement the specification

(perhaps after some modification) in the same or a different language. For

improved maintainability and flexibility we decided to reimplement the

specification as a Perl script:

#!/usr/bin/Perl

# DataFlex transcription -- reengineered version

use strict;

use warnings;

sub same_itemð$$Þ;

sub processð$Þ;

sub split_listð$&Þ;

my @input ¼ map {½splitð/\s+/; $_; 2Þ�} <>;

my $q ¼ split_listð\@input; \&same_itemÞ;

print map f processð$_Þ . "\n" } @$q;

sub same_itemð$$Þ f

my ð$x; $yÞ ¼ @_;

returnð$$x½1� eq $$y½1�Þ;

}

188 Case Studies in Evolution



sub processð$Þ {

my ð$seqÞ ¼ @_;

returnð$$seq½0�½1� . " " . joinð", ", map { $$_½0� } @{$seq}ÞÞ;

}

sub split_listð$&Þ {

my ð$in, $testÞ ¼ @_;

my @out ¼ ðÞ;

while ð@$inÞ {

pushð@out, ½shiftð@$inÞ�Þ;

while ð@$in && &$testð$$in½0�; $out½
1�½
1�ÞÞ {

pushð@{$out½
1�}, shiftð@$inÞÞ;

}

}

returnð\@outÞ;

}

Notes

w The Perl script follows very closely the format of the specification,

including separating out the same item function;

w The split list function (which implements the split function of

Chapter 4) could be taken out into a separate Perl module containing

generic list operations.

Comparing this version with the goals listed in Section 8.1.1 we can see

the following:

1. All the restrictions from the C and DataFlex implementations have

been removed. The Perl script takes its input either from the

command line arguments or from standard input (if no arguments

are given on the command line) and writes to standard output. It

thus becomes a standard utility program that can appear in a

pipeline. The input format is now free text rather than fixed field:

each line of input contains a page number plus a word separated by

spaces. The page numbers are not restricted to five digits and the

words are not restricted to 30 characters. More importantly, the

output lines are not restricted to 50 characters;

2. The Perl script is much easier to understand and modify; for

example, to change the program to ignore case differences in
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the words it is sufficient to change the return line in the same item

function to

returnðlcð$$x½1�Þ eq lcð$$y½1�ÞÞ;

To enhance the program so that it will also sort the input file before

processing only requires adding a line of code:

my @input ¼ map { ½split� } <>;

@input ¼ sort { ð$$a½1� cmp $$b½1�Þ && ð$$a½0� <¼> $$b½0�Þ }

@input;

3. The Perl version is less efficient than either of the C versions

(approxumately 28 times slower); however, it is able to process a

7Mb input file and generate a 4Mb output file in under 26 seconds

on a 1-GHz PC. The same PC took about 50 seconds to sort the input

file, and for larger files the sorting time will dominate the processing

time, so even at 28 times slower, processing time is not an issue.

8.1.5 Conclusion

The Perl reimplementation of the original C program is far superior, when

measured by the goals listed in Section 8.1.1. Program transformation theory

gives a solid foundation to the reengineering process, enabling much greater

accuracy, flexibility, and reliability.

8.2 Second case study: Topological sorting algorithm

Our second case study is a topological sorting algorithm presented by Knuth

and Szwarcfiter in [1]. This algorithm is highly unstructured with complex

control flow combined with complex data structures used for multiple

purposes; although quite small in the number of lines of code, it is

considerably more complicated than most commercial modules of this size

and presents a considerable challenge to any program understanding

technique. Our aim is to use program transformations to reverse-engineer

a formal specification for the algorithm (and thereby also prove the

correctness of the algorithm as given). If FermaT can handle programs of

this complexity, then it should be able to handle lesser programs with ease!

The analysis of the algorithm breaks down into several stages, listed as

follows:
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1. Restructure to remove some of the control-flow complexity;

2. Recast as an iterative procedure, abstracting away the error cases

so that the iteration-to-recursion transformation (in Appendix A)

can be applied to generate an equivalent recursive procedure;

3. Restructure the resulting recursive procedure;

4. Add abstract variables to the program and update them in parallel

with the actual (concrete) variables;

5. Replace references to concrete variables by equivalent references to

abstract variables;

6. Remove the concrete variables to give an abstract program;

7. Replace the recursive call by a copy of the specification and show

that the result is a refinement of the specification. Then the

recursive implementation theorem shows that the recursive

program (and therefore the original program) is a correct refine-

ment of the topological sorting specification.

8.2.1 Topological sorting

Topological sorting involves ordering a set of elements in such a way as to

satisfy a set of constraints on the final order. One common example is

where a task is broken down into a set of subtasks: Suppose that we have a

set of tasks to do but that certain tasks have to be performed before other

tasks. For example, the author has to write the text of a book and the

designer has to design the layout of the text on the page before the printer

can typeset the book. But the page design and text writing tasks can be

carried out in either order. Thus, there are two different ‘‘valid’’ orderings of

the three tasks:

1. write 
! design 
! typeset;

2. design 
! write 
! typeset.

For a valid ordering to exist there must be no cycles in the set of

constraints.

More formally, we are given a set P of pairs of elements taken from the

set B. The pair hx; yi in P indicates that x must appear before y in the solution.

The aim is to find all the ways to list the elements of B that satisfy the set P of

constraints. This will be possible if and only if there are no cycles in the set of

8.2 Second case study: Topological sorting algorithm 191



pairs, (i.e., if there is no sequence hc1; c2; . . . ; cmi of elements of B, where

cm ¼ c1 and for each 1 < i < m the pair hci; ciþ1i is in P).

The following theorem proves the existence of a topological sort

whenever there are no cycles.

Theorem 8.1 Topological sorting of a finite set P of pairs of elements in a

finite base set B is possible if and only if P is cycle free.

Proof: The proof is by induction on the size of B. If B is empty, then the

empty sequence hi is a solution. Otherwise, if B is cycle-free then there must

be a minimum element of B (an element that does not appear as the second

element of a pair in P). To find a minimal element, start with any element

and ‘‘work backwards’’ through the pairs on P. Call this minimal element

x1. The set B0 formed from B by removing x1 is smaller than B, so by the

induction hypothesis we can topologically sort B0 to give the list hx2; . . . ; xni.

Prepend x1 to this list to get a topological sort of B.

We give the proof of this well-known result, because the proof that a

solution exists also provides an algorithm for constructing the solution: Start

with any minimal element, then pick a minimal element in the remainder,

and so on. In addition, we note that any topological sort of P could be

constructed by this algorithm. In other words, if hx1; x2; . . . ; xni is a topological

sort of P, then x1 must be a minimal element (or there will be an arrow in the

wrong direction) and, by induction, hx2; . . . ; xni must be a topological sort of

the remainder.

So, a small modification of the algorithm will give a list of all the

topological sorts of P: For each minimal element x1 of B, prepend it to each of

the topological sorts of the set Bnfx1g over the set P0 of pairs formed by

removing all the pairs containing x1 from P. This will form the list of all

topological sorts of P.

The algorithm in [1] prints the list of topological sorts; our algorithm will

call a procedure process once for each topological sort of B over P. In WSL

notation the specification is

process all(P, B) ¼DF for t2 TOPSORTS(P, B) do process(t) od

Here the for loop iterates over the set in an arbitrary (nondeterministic)

order. The set TOPSORTS(P, B) is the set of all topologically sorted

sequences, as defined above.

For efficiency reasons, we will assume that B is nonempty. Clearly, if B is

a singleton, say B ¼ fxg, then TOPSORTSðP;BÞ ¼ fhxig. The proof of

Theorem 8.2.1 shows that process all(P, B) is equivalent to the following:

192 Case Studies in Evolution



if #B¼1

then process ðhB[1]iÞ

else for q2MINS(P, B) do

for t 2 TOPSORTS(Pnfhx, yi2 P | x ¼ qg, Bnfqg) do

process(hqi þþ t) odod

where B½1� is the single element of B (when B has only one element) and

MINSðP;BÞ is the set of minimal elements.

These observations motivate the following definition of a generalization

of process all, which has an extra argument, a sequence to be prepended to

each topological sort before process is called:

process allðs; P;BÞ ¼DF for t 2 TOPSORTSðP;BÞ do processðs þþ tÞ od

By Theorem 8.1 we see that process allðs; P;BÞ is equivalent to

if #B¼1

then process ðs þþ hB[1]iÞ

else for q 2 MINS(P, B) do

for t 2 TOPSORTS(P, Bnfqg) do

process(s þþ hqi þþ t) od od

So process allðs; P;BÞ is equivalent to

if #B¼1

then process ðs þþ hB[1]iÞ

else for q 2 MINS(P, B) do

process_all(s þþ hqi, P, Bnfqg) od

This shows that process all is equivalent to a program containing a copy

of process all applied to a smaller argument (the set B is reduced in the

loop). Thus we can use the recursive implementation theorem to get a

recursive procedure that implements the topological sorting program:

process allðs; P;BÞ is equivalent to Tðs; P;BÞ where

proc T(s, P, B) �
if #B¼1 then processðs þþ hB[1]iÞ

else for q2MINS(P, B) do

T(s þþ hqi, P, Bnfqg) od

8.2.2 Knuth’s topological sorting algorithm

The algorithm presented by Knuth and Szwarcfiter [1] is written in a pseudo

PASCAL notation. Although the title claims it is a structured program, it in

fact contains various features that make the program very difficult to analyze
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and prove correct. These include the use of comments as the labels for goto

statements, jumping into and out of the middle of loop structures, and the

use of pointers into arrays to represent linked lists.

We have translated the algorithm into WSL, with some slight changes:

w The input is taken from an array R rather than by calling the read

procedure.

w Instead of printing the result, we call process(s) for each topological

sorting arrangement s. This generalizes the algorithm without

introducing any complications.

for j :¼ 1 to n step 1 do

count½j� :¼ 0; top½j� :¼ 0 od;

for k :¼ 1 to m step 1 do

hi, ji :¼ R[k]; suc½k� :¼ j; next½k� :¼ top½i�; top½i� :¼ k;

count½j� :¼ count½j�+1 od;

link½0� :¼ 0; d :¼ 0;

for j :¼ 1 to n step 1 do

if count½j� ¼ 0 then link½d� :¼ j; d :¼ j fi od;

actions start:

start �
if d = 0 then call done else link½d� :¼ link½0� fi;

k :¼ 0; t :¼ 0; call alltopsorts:

alltopsorts �
if k = n
1 then s[n] :¼ d; processðsÞ

else base½k� :¼ link½d�; call L fi;

call endloop:

L �
q :¼ link½d�; d1 :¼ link½q�;

p :¼ top½q�;

while p 6¼ 0 do

j :¼ suc½p�;

count½j� :¼ count½j�
1;

if count½j� ¼ 0 then if d¼q then d :¼ j else link½j� :¼ d1 fi;

d1 :¼ j fi;

p :¼ next½p� od;

link½d� :¼ d1;

s[k+1] :¼ q;

if d1¼q then comment : Input contains an oriented cycle;

call done fi;

count½q� :¼ t; t :¼ q; k :¼ k+1;
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call alltopsorts :

return �
k :¼ k
1;

q :¼ t; t :¼ count½q�; count½q� :¼ 0;

p :¼ top½q�;

while p 6¼ 0 do

j :¼ suc½p�;

count½j� :¼ count½j]+1;

p :¼ next½p� od;

link½d� :¼ q; d :¼ q;

if link½d� 6¼ base½k� then call L fi;

call endloop:

endloop �
if k > 0

then call return fi; call done:

done �
call Z: endactions

8.2.3 Restructuring

The first step in analyzing the program involves simple restructuring. We

begin by looking for procedures and variables that can be ‘‘localized.’’ In this

case the variables p and j are used locally in two sections of code, which we

turn into procedures. Since we have yet to determine what these procedures

do, they have been called P1 and P2. Finding blocks of code that can be taken

out into self-contained procedures with local data is a very valuable exercise

in reengineering: It allows the engineer to tackle a large monolithic block of

code via divide-and-conquer techniques.

The next step is to do some basic restructuring, using the techniques we

have developed for removing an action system by introducing loops in

appropriate places using the transformations in [4–6]:

begin

for j :¼ 1 to n step 1 do

count½j� :¼ 0; top½j� :¼ 0 od;

for k :¼ 1 to m step 1 do

hi, ji :¼ R½k�; suc½k� :¼ j; next½k� :¼ top½i�; top½i� :¼ k;

count½j� :¼ count½j�+1 od;

link½0� :¼ 0; d :¼ 0;

for j :¼ 1 to n step 1 do

if count½j�¼0 then link½d� :¼ j; d :¼ j fi od;
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if d 6¼ 0

then link½d� :¼ link½0�; k :¼ 0; t :¼ 0;

do if k ¼ n
1

then s½n� :¼ d; processðsÞ;

do if k < 0 then exit(2) fi;

k :¼ k
1;

q :¼ t; t :¼ count½q�; count½q� :¼ 0; P2ð Þ;

if link½d� 6¼base½k� then exitð1Þ fi od

else base½k� :¼ link½d� fi;

P1ðÞ; s½kþ 1� :¼ q;

if d1 ¼ q then comment : Input contains an oriented cycle;

exitð1Þ fi;

count½q] :¼ t; t :¼ q; k :¼ kþ 1 od fi

where

proc P1ðÞ �
var p, j:

q :¼ link½d�; d1 :¼ link½q�; p :¼ top½q�;

while p 6¼0 do

j :¼ suc½p�;

count½j� :¼ count½j�
1;

if count½j� ¼ 0

then if d¼q then d :¼ j else link½j� :¼ d1 fi; d1 :¼ j fi;

p :¼ next½p� od;

link½d� :¼ d1 end:

proc P2ðÞ �
var p, j:

p :¼ top½q�;

while p 6¼0 do

j :¼ suc½p�; count½j� :¼ count½j� þ 1; p :¼ next½p� od;

link½d� :¼ q;

d :¼ q end: end

Our next aim is to restructure the program in the form of a recursive

procedure, by applying the iteration to recursion transformation (Appendix

A). First we introduce the procedure and create an action system for its

body. The do . . .od loop above (which starts with if k ¼ n 
 1 then . . .) is

replaced by a call to FðÞ where the new procedure F is defined as

proc FðÞ �
actions F:

F �
if k ¼ n 
 1
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then s½n� :¼ d; processðs); call F

else base½k� := link½d�; call B fi:

B �
P1ðÞ;

s½kþ 1� :¼ q;

if d1 ¼ q then comment : Input contains an oriented cycle;

call Z fi;

count½q� :¼ t;

t :¼ q;

k :¼ k+1;

call F:

F�
if k< 0

then call Z

else k :¼ k
1;

q :¼ t; t :¼ count½q�; count½q� :¼ 0;

P2ðÞ;

if link½d� 6¼base½k� then call B

else call F fi fi:

For the iteration to recursion transformation (Appendix A) to be

applicable there must be a single call Z statement in the F action, and no

call Z elsewhere. At the moment, there are two call Z’s (one in B and one

in F). However, the comment suggests that the call Z in B is in fact an

error case. At this stage of the analysis, we are only interested in the normal

behavior of the program, ignoring its behavior for erroneous input data.

We will therefore abstract the program (i.e., carry out the reverse of a

refinement operation) by replacing the statement if d1 ¼ q then call Z fi

by a more abstract (less refined) statement: the assertion fd1 6¼ qg. For the

normal case, both if statement and assertion are equivalent to skip, while

for the error case, the latter statement aborts, while the former statement

terminates the program. With this change, the program is now in the right

form to apply the recursion removal/introduction theorem. We do so and

restructure the new action system to get

proc F() �
if k¼ n
1

then s½n� :¼ d; processðsÞ

else base½k� :¼ link½d�;

do P1ðÞ;

s[k+1] :¼ q;

fd1 6¼qg;
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count½q� :¼ t; t :¼ q;

k :¼ k+1; F(); k :¼ k
1;

q :¼ t; t :¼ count½q�; count½q� :¼ 0;

P2ðÞ;

if link½d� ¼ base½k� then exitð1Þ fi od fi:

An alternative to the abstraction step is to set a flag and call F. If k > 0

but the flag is set, then the new F can decrement k and call itself again. As a

result, there will be only one call to Z.

It is often very important to cast a program into a recursive form, as early

as possible in the analysis process. This is because recursive programs are

generally much easier to analyze than their iterative equivalents.

As a first step in the analysis, we can remove the array base since it is

only used to save the value of link½d� across the inner recursive calls.

Assuming that base is not used outside the program, we can replace the array

by a local variable. It is also clear that the array elements s½kþ 1 . . .n� are not

used, so we will replace s by a sequence of length k. The variable k is then

redundant, as its value is available as the length of s:

proc F() �
if ‘(s) ¼ n
1

then s :¼ s þþ hdi; processðsÞ; s :¼ butlastðsÞ

else var hbase :¼ link½d�i:

do P1ðÞ;

fd1 6¼ qg;

count½q� :¼ t; t :¼ q;

s :¼ s þþ hqi; F(); s :¼ butlastðsÞ

q :¼ t; t :¼ count½q�; count½q� :¼ 0;

P2ðÞ;

if link½d� = base then exitð1Þ fi od end fi:

Notice that the concept of saving and restoring a variable over a

recursive call does not make sense for the original version of the program:

converting to a recursive program allows us to raise the abstraction to a

higher level.

8.2.4 Abstraction to a specification

In reverse-engineering a complex recursive program such as this one, it can

be very valuable to have some idea of the expected specification of the main

procedures. In this case, it is clear that we expect the specification of FðÞ to be

something like this:
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process all(s, set(R), f1; 2; . . . ; ngnset(s))

This becomes clear when we compare the structure of FðÞ to the structure of

Tðs; P;BÞ above. Most of the variables and array elements assigned in FðÞ

seem to be restored before the end of FðÞ (this is a conjecture that we will

have to prove). The exceptions are the variable q and the link array: q is

saved in t and t is saved in count½q�. It is clear that some elements of link are

overwritten in P1ðÞ and P2ðÞ. In P1ðÞ, we decrement a count value and, if it

reaches zero, assign to the corresponding link value. Thus we conjecture that

FðÞ preserves link½j� for all j such that count½j� ¼ 0. Our specification for FðÞ is

therefore conjectured as

SPEC ¼DF process allðs; setðRÞ; f1; 2; . . . ; ngnsetðsÞÞ;

q :¼ q0:true;

link :¼ link0:ð"j; 1 < j < n:count½j� ¼ 0) ðlink0½j� ¼ link½j�ÞÞ

(In a real software maintenance task on a large system, programmers make

such conjectures all the time, either base on comments or on a knowledge

of how the system words, or on an analysis of the source code itself: ‘‘OK, so

it looks like he is saving x here and it gets restored over there. . .’’. The

problem is that they have no means of formally verifying such conjectures.

Unverified assumptions about the behavior of one part of a system, when

applied to another part of the system, can be a fruitful source of bugs!)

Note that the variable k is incremented before the recursive call of FðÞ

and is no greater than n. So the positive expression k 
 n is reduced before

every recursive call. Consider the following nonrecursive procedure, where

we have replaced the recursive call of FðÞ by SPEC:

proc F’() �
if ‘ðs)¼ n
1

then s :¼ s þþ hdi; processðsÞ; s :¼ butlastðsÞ

else var hbase :¼ link½d�i:

do P1ðÞ;

fd1 6¼qg;

s :¼ s þþ hqi; SPEC; q 

last

s;

count½q� :¼ 0;

P2ðÞ;

if link½d� ¼ base then exitð1Þ fi od end fi:

If we can prove that F 0ðÞ is a refinement of SPEC then we can apply the

recursive implementation theorem to prove that the recursive procedure FðÞ

is also a refinement of SPEC, and we will have derived a specification for the

whole program.
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Procedure F 0ðÞ can immediately be simplified somewhat, and the result

makes some progress towards the proof; for example, it is clear that k and t

are preserved by F 0. In order for count½q� to be preserved, we conjecture that

the assignment count½q� :¼ 0 restores its original value (this is bourne out by

Knuth’s commentary on the algorithm which refers to using a spare count

value to save the value of t). Thus we abstract the procedure by inserting the

assertion count½q� ¼ 0 just after P1ðÞ, in the hope that this can be removed by

a later transformation, thus demonstrating that the ‘‘abstraction’’ step was in

fact an equivalence. With this addition, some further simplification becomes

possible:

proc F’() �
if ‘(s)¼ n
1

then SPEC

else var hbase :¼ link½d�i:

do P1ðÞ;

fcount½q� ¼ 0g;

fd1 6¼qg;

s :¼ s þþ hqi; SPEC; q 

last

s;

P2ðÞ;

if link½d� ¼ base then exitð1Þ fi od fi:

8.2.5 Changing the data representation—adding abstract variables

The program makes much use of linked lists to represent sets of integers. Our

aim in this section is to replace these concrete data structures by the

equivalent abstract data structures (i.e., actual sequences and sets instead of

linked lists). The program represents a small set of (positive) integers by

using a variable, v, and an array a. The first integer is stored in v (which is

zero for if the set is empty), and for each integer i, the next integer is in a½i�

(which is zero if i is the last integer in the set). Thus the set is represented as

an unordered list without duplicates. We define an abstraction function,

listðv; a;wÞ, which returns the list represented by v and a, where w is the

special value (in this case, zero), which indicates the end of the list:

listðv; a;wÞ ¼DF
hi; if v ¼ w

hvi þþ listða½v�; a;wÞ if v 6¼ w

�

For a (possibly empty) set of positive integers, represented as a linked list

terminated by 0, the list is listðv; a; 0Þ which gives the list hv; a½v�; a½a½v��; . . .i.

If v is nonzero, then the effect of the assignment v :¼ a½v� is to remove
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the first element from the list, while the assignments a½x� :¼ v; v :¼ x add the

element x to the front of the list.

If we know that the list will be nonempty, then we can avoid the need

for a terminating value by creating a circular-linked list. We do this by

setting a½l� to v, where l is the last element in the list: so, for example, a one

element list will have a½v� ¼ v. The list represented by a circular-linked list

is listða½v�; a; vÞ þþ hvi. Note that here, the value in v is the last element in

the list. In this representation, the assignment v :¼ a½v� has the effect of

rotating the list by one step, rather than removing the first element.

The first for loop in the program simply initializes the arrays count and

top to zeros. The second loop reads each pair in the R list and updates count,

top, and suc. We claim that count records for each element how many pairs

in R have that element as the second component. The arrays top and suc

partition the set f1; 2; . . . ; kg of indices of elements of R into a collection of

disjoint subsets, one per element, where each subset contains all the indices

of pairs with the same first component. We add an abstract variable A that

records the set of active indices of R (it records which pairs of R are currently

included in the representations).

count½j� is the number of pairs read so far that have j as the second

element (this is not necessarily the number of predecessors of j in the input

relation, since the same pair may appear more than once in the input).

After the second for loop, the statements link½0� :¼ 0; d :¼ 0 set up an

empty, zero-terminated list in variable d and array link. The third for loop

iterates over the set of elements that have zero count (i.e., they do not

appear as the second component of any pair), and puts these elements into

the list formed by d and the link array. We add another abstract variable B

(the active base), which records which elements have been processed so far.

The statement link½d� :¼ link½0� turns the list into a circular list with

link½d� as the first element (provided d 6¼ 0). We can ignore the case d ¼ 0

since this implies a cycle in R.

Note that after the third for loop, if d ¼ 0 then the input sequence R

contains a cycle, which is not allowed. Thus as above, we abstract the if

statement to an assertion, ignoring the error case.

Having established the abstract variables and the invariants relating

these to the concrete variables, the next step is to add assignments to the

abstract variables to ensure that the invariants are preserved throughout the

program. At this stage the abstract variables have no effect on the behavior

of the program, so they are called ghost variables. To add the ghost variables

and ensure that the invariants are preserved it is sufficient to examine each

block of code in turn, without needing to understand the program as a

whole. Then the invariants will be used to replace references to concrete

8.2 Second case study: Topological sorting algorithm 201



variables by the equivalent abstract variables. Again, it is sufficient to

examine each block in turn, using only local information to carry out these

replacements. Eventually the concrete variables themselves become ghost

variables and can be removed as all the work is now being done by the

abstract variables.

This ghost variables approach is therefore able to scale up to much larger

programs, because at each stage only a small part of the program needs to be

examined. Only at a much later stage, when we have a more abstract and

high-level version of the program, do we need to consider the program as a

whole.

At this point it is sufficient to work on each small ‘‘chunk’’ at a time,

inserting assignments to abstract variables in order to preserve the invariants

that relate abstract to concrete variables.

The detailed steps whereby the abstract variables are inserted and the

assertions proved correct are a little tedious, but not difficult, and so are

omitted. See [7] for the details. These formal proofs are very important for

safety-critical systems, but for less critical systems a more informal argument

may be appropriate.

8.2.6 The abstract program

We have now built the scaffolding around the various parts of the program:

This consists of adding abstract variables with assignments to them, and

invariants relating the abstract and concrete variables. We were able to do

this for each section of the program independently of the others, without

needing to determine the big picture. We are now in a position to put all the

pieces together to form a hybrid program. Having done so, we can make use

of the assertions to replace references to concrete variables by equivalent

references to abstract variables; for example the test count½j� ¼ 0 is replaced

by the equivalent test :$ x 2 A:R½x�½2� ¼ j by appealing to an invariant.

References to concrete variables appearing in assignments to other concrete

variables do not need to be removed; for example the statement count½j� :

¼ count½j� þ 1 can remain. Once all relevant references to concrete variables

have been removed, these become ghost variables, since they have no effect

on the execution of the program, and the concrete variables can be removed

in their entirety. This ghost variables technique has been applied to program

development in [8–11].

The result is an abstract procedure equivalent to F 0ðÞ. We can make use of

the assertions to simplify the abstract program still further, in particular by

removing the two for loops. This is because the assertions tell us the final

values of the variables modified by the loops.
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proc F’’() �
if ‘ðsÞ ¼ n
1

then SPEC

else D :¼ sortðMINSðR, BÞÞ;

var hbase :¼ D[1]i:

do var hD0 :¼ Di:

q :¼ D[1];

B :¼ Bnfqg;

D :¼ sort(MINS(R, B));

s :¼ s þþ hqi; SPEC; q 

pop

s;

D :¼ D0[2::] þþ hD0[1]i

B :¼ B ¨ fqg end

if D[1]¼base then exitð1Þ fi od end fi:

But D and B do not appear in SPEC, so there is no need to modify and

then restore them (they were part of the scaffolding needed to relate the

abstract and concrete variables):

proc F 00ðÞ �
if ‘(s)¼ n 
 1

then SPEC

else D :¼ sort(MINS(R, B));

var hbase :¼ D[1]i:

do q :¼ D[1];

s :¼ s þþ hqi; SPEC; q 

pop

s;

D :¼ D[2..] þþ hD[1]i

if D[1]¼base then exit(1) fi od end fi:

Now it is clear that the loop simply iterates over the elements of

MINSðR;BÞ, so we can abstract it to a nondeterministic iteration:

proc F’’() �
if ‘ðsÞ ¼ n
1

then SPEC

else for q 2 MINS(R, B)) do

s :¼ s þþ hqi; SPEC; q 

pop

s od fi:

Finally, if we maintain the invariant B ¼ f1; 2; . . . ;ngnsetðsÞ, then the for

loop is equivalent to SPEC so we have:

proc F’’() � SPEC:

Hence F 0ðÞ is a refinement of SPEC, and this was what we needed at the

end of Section 8.2.4 to show that FðÞ is a refinement of SPEC.
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The program as a whole is therefore a refinement of the abstract

program

B :¼ f1, 2, . . ., ng; s :¼ hi;

for t 2 TOPSORTS(set(R), B) do process(s þþ t) od

which simplifies to

for t 2 TOPSORTS(set(R), f1, 2, . . ., ng) do process(t) od

8.2.7 Remarks

This case study demonstrates that the FermaT approach can be used to

reverse-engineer a highly complex program (for its size) all the way to a

highly abstract specification. This case study took about 2 to 3 days of work

using a combination of applying transformations with the FermaT transfor-

mation engine plus manual analysis. This may seem like a lot of work for

quite a small program, but in a safety-critical or mission-critical system to get

a formal verification of the code for such a small effort represents a very good

investment.

The next case study looks at another challenging task—that of reverse

engineering from an assembler program to a specification.

8.3 Third case study: Assembler reengineering

8.3.1 IBM 370 assembler

Experiments have been undertaken on modules of assembler taken from

real application programs. The majority have been between 500 and 2,000

lines but some have up to 40,000 lines. These experiments have shown that

programs that have been transformed using the tool can be expressed in a

form that subjectively is much easier to understand than the original. This

applies particularly to real programs which have been modified over many

years. A professional assembler programmer who examined the output files

found the C code much easier to understand, despite having less familiarity

with C than with assembler. He commented that the C code would be a

useful aid to understanding the assembler prior to debugging or enhance-

ment tasks, even in cases where migration to C was not an option.

8.3.1.1 Modeling assembler in WSL

Constructing a useful scientific model necessarily involves throwing away

some information: in other words, to be useful a model must be inaccurate,
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or at least idealized, to a certain extent. For example ideal gases,

incompressible fluids, and billiard-ball molecules are all useful models that

gain their utility by abstracting away some details of the real world. In

the case of modeling a programming language, such as assembler, it is

theoretically possible to have a perfect model of the language that correctly

captures the behavior of all assembler programs. Certain features of

assembler, such as branching to register addresses and self-modifying code

would imply that such a model would have to record the entire state of the

machine, including all registers, memory, disk space, and external devices

and interpret this state as each instruction is executed. Unfortunately, such a

model is useless for inverse engineering1 purposes since such trivial changes

as deleting a NOP instruction, or changing the load address of a module, can

in theory change the behavior of the program.

What we need is a practical model for assembler programs that is suitable

for inverse engineering and is wide enough to deal with all the programming

constructs we are likely to encounter. Our approach involves three types of

modeling, described as follows.

1. Complete model: Each assembler instruction is translated into WSL

statements that capture all the effects of the instruction. The

machine registers and memory are modeled as arrays, and the

condition code as a variable. Thus, at the translation stage we do

not attempt to recognize if statements as such; we translate

into statements that assign to cc (the condition code variable),

and statements that test cc. The automatic restructuring and

simplification state can usually remove all references to cc,

presenting the maintainer with a structured program expressed in

if statements, loops and actions.

2. Partial model: Branches to register are modeled by attempting to

determine all possible targets of such a branch (including all labels

and jump instructions that follow labeled instructions). Each label is

turned into a separate action with an associated value (the relative

address). A store return address instruction stores the relative

address in the register. A branch to register instruction passes the

relative address to a dispatch action that tests the value against the

set of recorded values and jumps to the appropriate label. This can

deal with simple cases of address arithmetic (including jump tables)

1. We use the term inverse engineering to mean reverse engineering through formal transformations.
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but may theoretically be defeated if more complex address

manipulations are carried out before a branch to register instruction

is executed.

3. Self-modifying code: This is not addressed, except for some special

cases that are recognized by the translator. In many environments

the code must be re-entrant, or is to be blown into a ROM, and

therefore cannot be modified. In other cases, the self-modification

may be recognized by the translator and may require human

intervention to determine a suitable WSL equivalent.

One of the major drawbacks of automatic program restructurers [12] is

that complex control structures are replaced by complex data flow structures

involving additional flag and sentinel variables with meaningless names

inserted by the tool. This does not occur with our tool, and users resolve the

underlying structural problems because the transformations make it easy to

do so. It is also straightforward to avoid dispersing code that previously was

together. This method has the advantage that performance problems and

errors that exist deeply buried in heavily modified code become much more

easily observable.

8.3.1.2 Assembler to WSL translation

The aim of the assembler-to-WSL translator is to generate WSL code that

models as accurately as possible the behavior of the original assembler

module, without worrying too much about the size, efficiency, or complex-

ity of the resulting code. Typically, the raw WSL translation of an assembler

module will be three to five times bigger than the source file and have a very

high McCabe cyclomatic complexity (typically in the hundreds, often in the

thousands). This is, in part, because every branch to register instruction

branches to the dispatch routine, which in turn contains branches to every

possible return point. In addition, every instruction that sets the condition

code flags will is translated into WSL code which assigns an appropriate

value to a special variable cc (to emulate the condition code)—whether or

not the condition code is subsequently tested. See [13] for further details of

the assembler-to-WSL translation process and the various features of

commercial assembler code it has to deal with.

However, the FermaT transformation engine includes some very

powerful transformations for such tasks as simplifying WSL code, removing

redundancies, and tracking dispatch codes. In most cases FermaT can

automatically unscramble the tangle of branch and save and branch to
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register code to extract self-contained, single-entry single-exit procedures

and so eliminate the dispatch procedure. In addition, FermaT can nearly

always eliminate the cc variable by constructing appropriate conditional

statements.

8.3.2 The sample program

Our sample program is from G. D. Bergland in [2], who in turn took it from a

story called ‘‘Getting it Wrong’’ that has been related by Michael Jackson on

numerous occasions:

proc Management_Report �
var hSW1 :¼ 0, SW2 := 0i:

Produce_Heading;

read(stuff);

while NOT eof(stuff) do

if First_Record_In_Group

then if SW1¼1

then Process_End_Of_Previous_Group

fi;

SW1 :¼ 1;

Process_Start_Of_New_Group;

Process_Record;

SW2 :¼ 1

else

Process_Record; SW2 :¼ 1

fi;

read(stuff)

od;

if SW2 ¼ 1 then Process_End_Of_Last_Group

fi;

Produce_Summary

end

The program is a simple report generator that reads a sorted transaction

file; each transaction contains the name of an item and the amount received

or distributed from the warehouse. The program generates a report showing

the net change in inventory for each item in the transaction file.

Jackson describes in a very entertaining way how initial wrong design

decisions led to a buggy program that was subsequently fixed and patched.

The fixes introduced the two flag variables SW1 and SW2. The result is

rather complicated and hard to understand.
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Our resident assembler guru was given the above pseudocode and asked

to write an assembler implementation that uses as many ‘‘features’’ of

assembler as possible. The result is given in Section 8.3.3. (I should like to

point out on his behalf that this is not his normal coding style!) The program

includes self-modifying code: the first time through switch SW1 is imple-

mented by modifying the branch labeled LAAA to a NOP in the instruction

labeled LAB, and an EXecute statement has been used to get a variable

length move.

8.3.3 The assembler source

********************************************

* TST004A0 SAMPLE PROGRAM (MCDONALDS) *

********************************************

*

REGEQU

*

* PRINT NOGEN

TST004A0 CSECT

STM R14,R12,12(R13)

LR R3,R15

USING TST004A0,R3

ST R13,WSAVE+4

LA R14,WSAVE

ST R14,8(R13)

LA R13,WSAVE

*

OPEN (DDIN,(INPUT))

OPEN (RDSOUT,(OUTPUT))

*

MVC WPRT(17),=CL17’MANAGEMENT

REPORT’

BAL R10,WRITE1

BAL R10,WRITE1

MVC WPRT(20),=CL20’ITEM NET

CHANGE’

BAL R10,WRITE1

BAL R10,WRITE1

*

MVI XSW1,0

LAA EQU *

GET DDIN,WREC

CLC WRITEM,WLAST

BE LAC

LAAA B LAB

BAL R10,ENDGROUP

LAB MVI LAAA+1,0

MVC WLAST,WRITEM

ZAP WNET,=P’0’

BAL R10,PROCGRP

MVI XSW1,X’FF’

B LAA

LAC BAL R10,PROCGRP

MVI XSW1,X’FF’

B LAA

*

LAD CLI XSW1,X’FF’

BNE LADA

BAL R10,ENDGROUP

LADA EQU *

MVC WPRT(17),=CL17’NUMBER

CHANGED = ’

ED WORKB,WCHANGE

LA R4,WORKB

LA R1,9
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LADB CLI 0(R4),C’ ’

BNE LADC

LA R4,1(R4)

BCT R1,LADB

LADC EX R1,WMVC1

*WMVC1 MVC WPRT+17(1),0(R4)

BAL R10,WRITE1

*

CLOSE DDIN

CLOSE RDSOUT

*

L R13,WSAVE+4

LM R14,R12,12(R13)

SLR R15,R15

BR R14

*

PROCGRP EQU *

ST R10,WST10A

PACK WORKA,WRQTY

CLI WRTYPE,C’R’

BNE LBA

AP WNET,WORKA

B LBB

LBA SP WNET,WORKA

LBB L R10,WST10A

BR R10

*

ENDGROUP EQU *

ST R10,WST10A

MVC WPRT(4),WLAST

MVI WSIGN,C’+’

CP WNET,=P’0’

BNL LCA

MVI WSIGN,C’-’

LCA EQU *

MVC WPRT+7(10),=

X’40206B2020206B202120’

EDMK WPRT+7(10),WNET

BCTR R1,0

MVC 0(1,R1),WSIGN

BAL R10,WRITE1

BAL R10,WRITE1

AP WCHANGE,=P’1’

L R10,WST10A

BR R10

*

WRITE1 EQU *

PUT RDSOUT,WPRT

MVC WPRT,WSPACES

BR R10

*

WMVC1 MVC WPRT+17(1),0(R4)

*

WSAVE DC 18F’0’

WST10A DS F

WREC DS 0CL80

WRITEM DS CL4

DS CL1

WRTYPE DS CL1

DS CL1

WRQTY DS CL3

DS CL70

WPRT DC CL80’ ’

WSPACES DC CL80’ ’

WLAST DC CL4’****’

WCHANGE DC PL4’0’

WNET DC PL4’0’

WORKA DC PL2’0’

WORKB DC XL10’40206B2020206B202120’

WSIGN DC CL1’ ’

XSW1 DC X’00’

*

LTORG

*

DDIN DCB DDNAME=DDIN,

DSORG=PS,

EODAD=LAD,

MACRF=GM

RDSOUT DCB DDNAME=RDSOUT,

DSORG=PS,

MACRF=PM

*

END
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8.3.4 Automatic program transformation

The first stage in the transformation process is data translation. This

transformation uses the restructured data file to change the data

representation in the program. Initially, all data is accessed directly from

memory (represented as a byte array a) by adding the base register to the

displacement to get an address. The restructured data file gives the layout of

all data in memory, so by making some reasonable assumptions about

nonoverlapping DSECTS etc., FermaT is able to transform the program into

an equivalent program where the data is accessed directly through variables

and structures. In the case of our simple program, there is only one structure

to uncover: the wrec print record that contains fields writem, wrtype and

wrqty plus some unnamed fillers.

The next stage is control flow restructuring: eliminating nonessential

labels and branches, introducing loops. This is carried out in a series of passes

through the program; at each iteration the program is searched for points

where a simplifying transformation (such as loop insertion or branch

merging) can be applied. The iteration is continued until no further

improvement can be achieved.

The raw WSL is written as an action system, a collection of parameterless

procedures (actions) where execution of any action will always lead to either

calling another action, or calling the special action Z, that terminates the

whole action system. An action system itself is a simple statement, so action

systems can be nested inside each other, but a subaction system cannot call

actions in the main system.

The system then analyzes the remaining actions to determine which

actions may form the body of a simple procedure. To do this it uses both

control flow and data flow analysis. If it determines that a collection of

actions form a procedure, then these actions are extracted out as a subaction

system in the body of the procedure.

After control flow restructuring we have data flow analysis: In particular

an extended form of constant propagation that can propagate return

addresses through procedure calls. If a dispatch call is encountered with a

known destination value, then it can be unfolded and simplified. The same

transformation also deals with conditional assignments to the condition code

(cc) in order to remove references to cc where possible.

FermaT was able to extract a collection of actions to form the endgroup

procedure, so that the code

r10 :¼ 112; call endgroup

becomes

r10 :¼ 112; endgroupðÞ; call dispatch
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FermaT determines that the value in r10 will be copied into destination

by the body of endgroup. Within dispatch the value in destination is

compared against the offsets of all the possible return points. Offset 112 is

associated with the label lab, so this call dispatch can be replaced by

call lab.

The control flow and data flow restructuring transformations are

iterated until no further improvement is possible. Table 8.1 lists the metrics

for the raw WSL translation and after automatic restructuring and

simplifying transformations have been applied. This order of magnitude

improvement in most of the metrics is typical for all sizes of assembler

module. See [13] for more details of this part of the transformation process.

begin

f laaa :¼ 1;

!P openðddin ddname; input var osÞ;

!P openðrdsout ddname;output var osÞ;

wprt½1::17� :¼ ‘‘MANAGEMENT REPORT’’;

write1ðÞ; write1ðÞ;

wprt½1::20� :¼ ‘‘ITEM NET CHANGE’’;

write1ðÞ; write1ðÞ;

xsw1 :¼ 0;

do r0 :¼ 0; r1 :¼ 0; r15 :¼ 0;

!P getðddin ddname var os; r0; r1; r15;wrecÞ;

if !XC end of fileðddin ddnameÞ

then exitð1Þ fi;

if wrec:writem 6¼wlast

then if f laaa 6¼ 1

then endgroupðÞ fi;

Table 8.1 Metrics Before and After Transformation

Metric Raw WSL Structured WSL

Statements 561 106

Expressions 1,589 210

McCabe 184 17

Control/data flow 520 156

Branch–loop 145 17

Structural 6,685 751
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f laaa :¼ 0;

wlast :¼ wrec:writem;

wnet :¼ 0 fi;

worka :¼ !XF packðwrec:wrqty; 2Þ;

if wrec:wrtype 6¼ ‘‘R’’

then wnet :¼ wnet 
worka

else wnet :¼ wnetþworka fi;

xsw1 :¼ ‘‘hex 0xFF’’od;

if xsw1 ¼ ‘‘hex 0xFF’’ then endgroupðÞ fi;

wprt½1::17� :¼ ‘‘NUMBER CHANGED ¼ ’’;

!P edðwchange½1::10� var workbÞ;

r4 :¼ !XF address ofðworkbÞ; r1 :¼ 9;

do if a½r4; 1� 6¼ ‘‘ ’’ then exitð1Þ fi;

r4 :¼ r4þ 1;

r1 :¼ r1 
 1;

if r1 ¼ 0 then exitð1Þ fi od;

a½!XF address ofðwprtÞ þ 17; r1þ 1�

:¼ a½r4; r1þ 1�;

write1ðÞ;

!P closeðddin ddname var osÞ;

!P closeðrdsout ddname var osÞ

where

proc endgroupðÞ�
wprt½1::4� :¼ wlast;

wsign :¼ ‘‘þ ’’;

if wnet < 0 then wsign :¼ ‘‘ 
 ’’ fi;

wprt½8::17� :¼ ‘‘hex 0x40206B2020206B202120’’;

!P edmkðwnet½1::10� var wprt½8::17�; r1Þ;

r1 :¼ r1 
 1; a½r1; 1� :¼ wsign;

write1ðÞ; write1ðÞ;

wchange :¼ wchangeþ 1 end;

proc write1ðÞ :¼

!P putðrdsout ddname;wprt var osÞ;

wprt :¼ wspaces end

end
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8.3.5 Abstracting a specification

This is about as far as the FermaT system can get by purely automatic

transformation applications with no human intervention. The next step in

the abstraction process is to change the data representation so that files

become lists. We unfold the write1 procedure and abstract away from the

layout of the output file by creating a list of the data elements that appear on

each line of output and appending this list to the output array:

begin

i :¼ 0; f laaa :¼ 1;

output :¼ h h‘‘MANAGEMENT REPORT’’i;

h‘‘ITEM NET CHANGE’’i i;

xsw1 :¼ 0;

do i :¼ iþ 1;wrec :¼ input½i�;

if i > n then exitð1Þ fi;

if wrec:writem 6¼ wlast

then if f laaa 6¼ 1

then endgroupðÞ fi;

f laaa :¼ 0;

wlast :¼ wrec:writem;

wnet :¼ 0 fi;

if wrec:wrtype 6¼ ‘‘R’’

then wnet :¼ wnet 
wrec:wrqty

else wnet :¼ wnetþwrec:wrqty fi;

xsw1 :¼ ‘‘hex 0xFF’’od;

if xsw1 ¼ ‘‘hex 0xFF’’ then endgroupðÞ fi;

output :¼ output þþ hh‘‘NUMBER CHANGED = ’’, wchangeii;

where

proc endgroupðÞ�
output :¼ output þþ hhwlast;wnetii;

wchange :¼ wchangeþ 1 end

end

We can get rid of the switches xsw1 and f laaa by unrolling the first step

of the do . . .od loop and simplifying. We then use loop inversion to move

some statements to the top of the loop:
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i :¼ iþ 1;wrec :¼ input½i�;

if i > n

then skip

else wlast :¼ wrec:writem;

wnet :¼ 0;

do if wrec:wrtype 6¼ ‘‘R’’

then wnet :¼ wnet 
wrec:wrqty

else wnet :¼ wnetþwrec:wrqty fi;

i :¼ iþ 1;wrec :¼ input½i�;

if wrec:writem 6¼wlast_ i > n

then endgroupðÞ;

if i > n

then exitð1Þ

else wlast :¼ wrec:writem;

wnet :¼ 0 fi fi od fi;

We want to roll the two statements wlast := wrec.writem; wnet : ¼ 0

into the top of the loop, so convert the loop to a double-nested loop (loop

doubling) and take the statements out of the inner loop (take out of loop).

Then apply loop inversion. We can then take the statements starting with

endgroupðÞ out of the inner loop also:

i :¼ iþ 1;wrec :¼ input½i�;

if i > n

then skip

else do wlast :¼ wrec:writem;

wnet :¼ 0;

do if wrec:wrtype 6¼ ‘‘R’’

then wnet :¼ wnet 
wrec:wrqty

else wnet :¼ wnetþwrec:wrqty fi;

i :¼ iþ 1;wrec :¼ input½i�;

if wrec:writem 6¼wlast_ i > n

then exitð1Þ fi od;

endgroupðÞ;

if i > n then exitð1Þ fi od fi;

Finally, the outer if statement can be removed by converting the outer

loop to a while loop (this is the floop to while transformation):
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i :¼ iþ 1;wrec :¼ input½i�;

while i < n do

wlast :¼ wrec:writem;

wnet :¼ 0;

do if wrec:wrtype 6¼ ‘‘R’’

then wnet :¼ wnet 
wrec:wrqty

else wnet :¼ wnetþwrec:wrqty fi;

i :¼ iþ 1;wrec :¼ input½i�;

if wrec:writem 6¼wlast_ i > n

then exitð1Þ fi od;

endgroupðÞ od;

Note that, after the initialization code, the invariant wrec ¼ input½i� is

always true, and for i > 1, wlast ¼ input½i 
 1�:writem is also true, as is

the invariant wchange ¼ ‘ðoutputÞ 
 2. Thus, we can remove these three

variables from the program.

The program now consists of two simple nested loops; the outer while

loop iterates over the groups of records and ends with a call to endgroupðÞ,

while the inner do . . .od loop iterates over the records in the group.

This suggests that we restructure the data to more closely match the

control structure of the program by converting the input array to a list of lists

where each sublist consists of a single group of data elements, so that the outer

loop processes sublists one at a time, and the inner loop processes elements of

each sublist. The key to the data restructuring is to split the input sequence

into sections such that the outer loop processes one segment per iteration.

This is easily achieved with a function splitðp;BÞ, which splits p into

nonempty sections with the section breaks occurring between those pairs of

elements of p where B is false (see Chapter 4). In our case, the terminating

condition on the inner loop provides the predicate on which to split:

funct same itemðx; yÞ�
x:writem ¼ y:writem:

Then the new variable q is introduced as q :¼ splitðinput; same itemÞ.

We index the q list with two variables k1 and k2 so that q½k1�½k2� ¼ input½i�.

To do this we preserve the invariant

i ¼ þ
�
ð‘�q½1::k1 
 1�Þ þ k

which, together with the invariant input ¼ þþ
�
q gives the required relation-

ship. Adding these ghost variables to the program we get
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q :¼ splitðinput; same itemÞ;

i :¼ 1; k1 :¼ 1; k2 :¼ 1;

while i < ‘ ðinputÞ do

wnet :¼ 0;

do if input½i�:wrtype 6¼ ‘‘R’’

then wnet :¼ wnet 
 input½i�:wrqty

else wnet :¼ wnetþ input½i�:wrqty fi;

i :¼ iþ 1;

k2 :¼ k2 þ 1;

if k2 > ‘ ðq½k1�Þ then k1 :¼ k1 þ 1; k2 :¼ 1 fi;

if input½i�:writem 6¼ input½i 
 1�:writem_ i > ‘ðinputÞ

then exitð1Þ fi od;

endgroupðÞ od;

We can now replace references to the concrete variables input and i by

references to the new variables q, k1 and k2. The key point is that i < ‘ðinputÞ

if and only if k1 < ‘ðqÞ and

input½i�:writem 6¼ input½i 
 1�:writem

is true when we have just moved into a new section of the input—in other

words, precisely when k2 ¼ 1. Therefore, we can remove the concrete

variables from the program:

q :¼ splitðinput; same itemÞ;

k1 :¼ 1; k2 :¼ 1;

while k1 < ‘ðqÞ do

wnet :¼ 0;

do if q½k1�½k2�:wrtype 6¼ ‘‘R’’

then wnet :¼ wnet 
 q½k1�½k2�:wrqty

else wnet :¼ wnetþ q½k1�½k2�:wrqty fi;

k2 :¼ k2 þ 1;

if k2 > ‘ðq½k1�Þthen k1 :¼ k1 þ 1; k2 :¼ 1 fi;

if k2 ¼ 1 then exitð1Þ fi od;

endgroupðÞ od;

Now the inner loop reduces to a simple for loop

q :¼ split ðinput; same itemÞ;

k1 :¼ 1;
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while k1 < ‘ðqÞ do

wnet :¼ 0;

for k2 :¼ 1 to ‘ðq½k1�Þ step 1 do

if q½k1�½k2�:wrtype 6¼ ‘‘R’’

then wnet :¼ wnet 
 q½k1�½k2�:wrqty

else wnet :¼ wnetþ q½k1�½k2�:wrqty fi od;

k1 :¼ k1 þ 1;

endgroupðÞ od;

We can express the change to wnet as a function of the structure:

funct changeðsÞ ¼

if s:wrtype 6¼ ‘‘R’’ then 
 s:wrqty else s:wrqty fi:

It is clear that the inner loop is computing the sum of the change outputs for

all the structures in the sublist q½k1�, so we can collapse the inner loop to a

reduce of a map operation:

q :¼ splitðinput; same itemÞ;

k1 :¼ 1;

while k1 < ‘ðqÞ do

wnet :¼ þ
�
change � q½k1�;

k1 :¼ k1 þ 1;

endgroupðÞ od;

The endgroup procedure simply appends an element to the output list:

q :¼ splitðinput; same itemÞ;

k1 :¼ 1;

while k1 < ‘ðqÞ do

wnet :¼ þ
�
change � q½k1�;

output :¼ output þþ hhq½k1�½1�;wnetii;

k1 :¼ k1 þ 1 od;

So, we can collapse the outer loop to a map operation to get the final WSL

specification:

begin

q :¼ splitðinput; same itemÞ;

output :¼ header þþprocess � q

þþ hh‘‘NUMBER CHANGED ¼ ’’; ‘ðqÞii
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where

funct same itemðx; yÞ ¼ x:writem ¼ y:writem:

funct processðLÞ ¼ hL½1�;þ
�
change � Li:

funct changeðsÞ�
if s:wrtype 6¼ ‘‘R’’ then 
 s:wrqty else s:wrqty fi:

end

This extracted specification looks very different to the original assembler

(see Section 8.3.3), but both programs are semantically equivalent and

generate identical output files (when the output from the specification is

formatted to match the assembler).

8.3.6 Comments

This case study is a particularly challenging reverse engineering task: using

formal program transformations to extract a high-level abstract specification

from an IBM 370 assembler program. The original assembler program

contains several layers of complexity including self-modifying code, a flag

used to direct control flow, and a convoluted control flow structure.

Fortunately the powerful automatic transformations implemented in

FermaT allow us to remove the first few layers of complexity before we

even have to look at the program. Moving to higher levels of abstraction

requires a certain amount of human intervention, particularly to select

appropriate abstract data structures. However, this intervention requires

only localized analysis of the program. The higher-level control flow

transformations such as loop unrolling, loop rolling, and taking code out of

loops are all implemented in the FermaT system and any global analysis

required by these transformations is handled automatically.

8.4 Fourth case study: A mass migration exercise

The second case study made considerable use of formal transformations to

derive the specification of a very complex piece of code. Such a level of

detail is entirely justified for a safety-critical system, but a less formal and

more automated approach may be appropriate for a typical commercial

system. The third case study illustrated the automated translation of

assembler to WSL followed by automatic restructuring and simplification of

the WSL program. The resulting high-level WSL may be sufficient for many

users, but for more demanding requirements (such as a formal proof of

correctness) the case study went on to derive an abstract specification of the

program.
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This case study shows what can be achieved by entirely automatic

processes. It involves the migration of a large number of assembler modules

to C using the FermaT transformation system with no human intervention.

8.4.1 The assembler problem

Legacy assembler systems form a significant proportion of the total software

in use throughout the world (see Table 8.2). The average complexity of a

COBOL program is 50 function points while the average complexity of an

assembler program is 125 function points, and the maintenance cost per

function point for assembler is 2.8 times higher than for COBOL (see

Table 8.3).

In addition, approximately 60% of the total IT budget is spent on

maintenance, and more than half of which is code comprehension (see Table

8.4). Yet there are few automated tools to assist with understanding and

reengineering legacy assembler systems.

Table 8.3 Maintenance Costs per Func-

tion Point

Language Annual Cost/FP (£)

Assembler 48.00

PL/1 39.00

C 21.00

COBOL 17.00

Source: Capers Jones Research.

Table 8.4 Maintenance Effort

Maintenance Area Effort (%)

Code comprehension 55

Code change 15

Testing and implementation 30

Table 8.2 Worldwide Use of Code by Function Points

Language Number of Function Points Worldwide

COBOL 605,000,000

C 156,000,000

Assembler 93,750,000

PL/1 13,500,000

Source: Capers Jones Research.
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8.4.2 Decompilers

There is a long history of work in the area of decompilation—attempting to

recover the source code of a compiled program. See [14] for an excellent

summary. One example is the dcc decompiler for the Intel i80286

architecture running the DOS operating system [15, 16], but this is not

able to determine data types, specifically arrays. The 8086 C decompiling

system [17, 18] is a first attempt to recognize the types of arrays, pointers,

and structures, but little detail is given in the paper.

All of these systems are limited to processing the output of a compiler. In

general, they work by recognizing fragments of code produced when various

high-level language (HLL) constructs are compiled, and attempting to

regenerate the original constructs (if statements, while loops, for example).

Generating good-quality high-level language code from hand-written

assembler is widely acknowledged to be an extremely difficult (if not

impossible) undertaking. Tools such as the Autocoder to Cobol Conversion

Aid Program and the Falcon Assembler to C translator by Sapiens, Ltd.,

simply do a one-to-one mapping of assembler instructions to HLL statements

and make no attempt to analyze the program and reduce the number of

instructions generated.

Tools that work with compiled C code have the advantage that function

call and return points are shown by clearly recognizable instruction

sequences, and return addresses are processed on a stack. In contrast, with

the handwritten IBM 370 assembler a subroutine call is implemented as a

BAL or BAS instruction (branch and link or branch and save), which stores

the return address in a register and branches to the subroutine entry point.

To return from a subroutine the programmer ensures that the right return

address is available in a register and executes a BR (branch to register)

instruction. However, there is nothing to stop the programmer from

branching from the middle of one subroutine to the middle of another, or

overwriting a stored return address, or having several entry points to the

same subroutine. Merely determining subroutine boundaries can require a

substantial and detailed analysis of the program logic. In addition, human

programmers (unlike compilers) may make extensive use of programming

tricks such as self-modifying code, which a migration tool must be able to

cope with.

8.4.3 Our approach

The success of our approach to language migration depends on the

transformability of WSL:
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1. First the source is translated line-by-line into equivalent WSL code.

No attempt is made at program analysis or efficiency of the

translation; the aim at this stage is to ensure that the semantics of

the original assembler is captured in equivalent WSL. Typically,

each assembler instruction translates to several WSL statements.

2. Next we apply program transformations to the WSL code. Some

transformations work at the local level and are applied repeatedly

throughout the code. Other transformations work on the program

as a whole. Some transformations use heuristics to direct the

application of other transformations (so these are, in a sense,

metatransformations). The transformation process is iterated until

no further improvement is possible.

3. Finally, the resulting structured WSL code is translated into the

target language (in this case, C code), perhaps with the aid of

further transformations to remove WSL constructs that do not

translate easily into C.

8.4.4 The assembler modules

A total of 1,925 assembler listings were selected for this experiment. Apart

from a handful of test files, these are all live code taken from large

commercial assembler systems, mostly from large financial institutions. The

files came from more than 10 different organizations. Most of the listings

were assembled on-site from customer-supplied source and macro files; a

number of these were incomplete due to missing macro files, but these were

included anyway since we wanted to test the robustness of the FermaT

system in the presence of incomplete or erroneous listing data. The

remaining listings were supplied by our customers and had been assembled

using a number of different IBM and third-party assemblers (e.g., HLASM

R1.0, HLASM R2.0, ASM H, Siemens, and Tachyon).

The 1,925 listing files contained a total of 5,884,620 lines (see Figure

8.1), of which 3,090,548 were source, copybook, or macro expansion lines

(see Figure 8.2) and the remainder were page and file headers and cross

reference tables. See Figure 8.1 for a distribution graph of the listing file

sizes. This corresponds to approximately 1,090,000 lines of assembler source

(excluding macros). The expansion of a source file into a listing varies

widely, depending on the file. For example, a small source file that

references one or more large copybooks or macros will generate a large

listing.
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Figure 8.1 Listing files ranged from 113 to 36,897 lines in size (average 3,057).

Figure 8.2 Listing files contained 3 to 23,672 lines of code (average 1,605).
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The listings were organized into 127 directories, each directory contain-

ing between 1 and 41 files with an average of 15 files per directory. The

directories were organized so that each contained listings from about 10,000

lines of source modules, so that they could be processed in batches a

directory at a time. The analyze Perl script reads a directory of files and

processes each file in turn: executing all the translation and transformation

scripts and checking the output for validity. Figure 8.3 shows the distribu-

tion in file sizes for the raw WSL translation of each listing.

8.4.5 Experimental method

For this experiment we use two Sun UltraSparc processors, one had 128 Mb

of RAM and the other had 64 Mb. We had previously determined that 64 Mb

is ample for processing the largest assembler listings, so the experiment was

set up to run one process on the second machine and two concurrent

processes on the first machine. (Running two concurrent processes gives a

small improvement in total throughput, about 20%, since one process can

run while the other is accessing files.)

A Perl script was used to control the experiment, it monitored both

machines and fired up a new batch process (an analyze script) as each one

completed. Each batch process handled one directory full of files; for each

Figure 8.3 Raw WSL files ranged from 17 to 28,905 lines (average 2,049).
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file in the directory, the analyze script translated the assembler listing to

WSL, applied a standard sequence of transformations to the WSL, restru-

ctured the data layout, and generated executable C code and header files.

The experiment completed successfully after 4 days and 18 hours of

elapsed time. Every module was successfully migrated to C, and every

generated C file compiled with no warnings or errors. We were not able to

check the semantics of each generated file against the original assembler: All

the modules were components of larger systems, and we did not have access

to any test harnesses or test data. However, selected modules were com-

pared against the original source code by an experienced assembler and C

programmer who could find no errors in the translation.

Since this first run of the experiment the performance of the FermaT

transformation system has been improved by a factor of more than two and a

half (when processing the same files on the same hardware). In addition,

faster processors are now readily available; the experiment was recently

repeated on a single 1-GHz PC with 256 Mb of RAM and completed in just

over 12 hours elapsed time.

The generated C files would still require some work regarding such tasks

as file handling, depending on whether the customer wanted to migrate to

a different environment. Much of this work can be automated. In addition,

the user needs to check for FIXME comments in the generated C code, which

indicate areas where the translated code may be incorrect (for example, an

EXecute instruction where FermaT cannot determine at compile time which

instrution will be executed).

The overall performance for the original experiment on Sun UltraSparcs

was about 600 KLOC/day per CPU, or about 7 minutes CPU time per

assembler module2. Note however that processing times vary widely,

depending on the file contents. Short files and files consisting mostly of

data declarations can take less than a minute each, while larger files with lots

of executable code can take an hour or more. In our case, the times ranged

from 2 seconds to 20,473 seconds (5 hours 41 minutes) with an average of

398 seconds (6 minutes 40 seconds). (See Figure 8.4.)

8.4.6 Results

A total of 1,132,278 lines of C code were generated (excluding the header

files) of which 179,138 lines are data initialization code (generated from the

data declarations in the original assembler). (See Figures 8.5 and 8.6.)

2. With the new version of FermaT and more modern hardware, this time is reduced to less than 23 seconds per

module (over 10 MLOC/day).
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Figure 8.4 Time to process each module in seconds (average 398).

Figure 8.5 Generated C files ranged from 10 to 15,436 lines (average 495).
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Note that more than half of the files (1,069) required no extra data

initialization code.

A total of 7,793 C header files were generated, totaling 1,232,156 lines.

(See Figure 8.7). Each assembler module generated a header file for local

data plus header files for each of the DSECTs it referenced. Note that modules

in the same directory, which use the same DSECTs, will share header files

since the DSECT header file is named after the DSECT. This is because the

same DSECT referenced in two or more listings should generate the same

header file.

In total, the 482 Mb of assembler listings were migrated into 39.5 Mb of

C source files plus 46.3 Mb of C header files.

FermaT could automatically eliminate dispatch from 1,265 of the 1,925

files (66%) and could eliminate the cc condition code variable from 1,745

files (91%).

This experiment [13] clearly shows that assembler-to-C migration using

the FermaT workbench is a practical solution to the high costs and skills

shortage in assembler maintenance and to the problem of migrating legacy

systems away from the mainframe environment.

The above pattern was obtained by transforming several existing

programs and shows the marked reduction in complexity as a result of

transformation. To provide some check on semantic equivalence a few

Figure 8.6 Data initialization code ranged from 16 to 12,676 lines (average 94).
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modest examples have been transformed and then (in the absence of a

suitable translator) hand-converted to assembler, reinstalled, and reexe-

cuted. Apart from minor errors caused by hand translation, the examples

worked first time.

A major attraction of the tool has turned out to be the transformations

that convert in-line code to procedures, and global variables into parameters.

This enables the user to convert a large, unstructured, monolithic piece of

code into a main program that calls a set of single-entry single-exit

procedures. These transformations alone can make a large difference to the

understandability of the code and prepare it for the recognition of abstract

data types.

8.4.7 Contributing factors

We believe that the following main features have contributed to the success

of FermaT:

w Using the weakest preconditions expressed in infinitary logic;

w Starting with a small, tractable kernel language, extended via

definitional transformations;

Figure 8.7 Generated C header files ranged from 1 to 17,729 lines (average 158).
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w Using an imperative kernel language, with functional constructs

added via definitional transformation, rather than a functional kernel

language;

w Developing the transformation theory in parallel with the language

development;

w Dealing with the assembler via simple translation followed by

automatic restructuring and simplification;

w Developing an interactive, semi-automatic tool, rather than attempt-

ing complete automation;

w Mechanically checking the correctness conditions at each step, with

only valid transformations appearing in the menus;

w Using the prototype and manual case studies to see how the

experienced user solves problem, and then implementing these

methods and heuristics via knowledge elicitation;

w Using generic transformations for such processes as merging, moving,

and separating, which are automatically expanded into the appro-

priate transformation for each situation;

w Rapidly developing a prototype, with the system organized as a

collection of abstract machines with formally defined interfaces;

w Separating front-end issues into a separate program.

8.5 Fifth case study: Migrating a telecommunications system

This case study involved a fairly large embedded system consisting of about

500,000 lines of Intel 186 assembler, in 316 modules, and 250,000 lines of C

code. The system controls a private automatic branch exchange (PABX)

and runs on four different hardware platforms in 18 countries. The aim of

the project was to use FermaT to migrate all the assembler code to efficient,

structured, and maintainable C code to enable migration to a more modern

processor followed by major enhancements to the functionality of the

system.

8.5.1 Assembler-to-WSL translation

The first step involved developing an assembler-to-WSL translator for 186

assembler. As for IBM assembler, this worked by translating each instruction
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separately, capturing all the side-effects of each instruction without

worrying about introducing redundancies or inefficiancies.

In this case the system consisted of relatively clean assembler; for

example there was no use of self-modifying code because this is an

embedded system loaded on a ROM. One complication was that the

generated C code needed to be consistent with the existing C code and able

to use the same header files. Because of this we developed a C header file

parser that was used to determine the structure of the memory layout (the

assembler code gave the layout of data but imposed no structure on this

layout).

8.5.2 WSL restructuring

Once the assembler had been translated to WSL, the same general-purpose

restructuring and simplifying transformations used for IBM assembler could

be used to restructure the WSL code. New transformations were developed

for dealing with pushing and popping registers onto the stack (not present in

IBM assembler) and dealing with segmented addressing.

8.5.3 WSL-to-C translation

The WSL-to-C translator used for IBM assembler migration required only

minor modifications (such as changing the lists of flag names and register

names) in order to process 186 translated WSL. This shows the advantages of

using language-independent WSL code for the core of the system.

8.6 Sixth case study: Mine drainage system

The last case study commonly appears in the literature and concerns the

software necessary to manage a simplified pump control system for a mining

environment [19]. It is a good demonstration of the real-time aspect of the

proposed approach.

The system is used to pump mine water, which collects in a sump at the

bottom of the shaft, to the surface. The main safety requirement is that the

pump should not be operated when the level of methane gas in the mine

reaches a high value due to the risk of explosion. A simple schematic

diagram of the system is given in Figure 8.8.

The functional specification of the system is divided into four compo-

nents: the pump operation, the environment monitoring, the operator

interaction, and system monitoring.
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The required behavior of the pump is that it monitors the water levels in

the sump. When the water reaches a high level, the pump is turned on and

the sump is drained until the water reaches the low level. At this point, the

pump is turned off. A flow of water in the pipe can be detected if required.

The pump should be allowed to operate only if methane level in the mine is

below a critical level.

The environment must be monitored to detect the level of methane in

the air; there is a level beyond which it is not safe to cut coal or operate the

pump. The monitoring also measures the level of carbon monoxide in the

mine and detects whether there is an adequate flow of air. Alarms must be

signaled if gas levels or air flow become critical.

The system is controlled from the surface via an operator’s console.

The operator is informed of all critical events. All the system events are to be

stored in an archival database and may be retrieved and displayed upon

request.

The nonfunctional requirements include three components: timing,

dependability, and security. This case study is mainly concerned with the

Figure 8.8 A mine drainage control system.
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timing requirements, which appear as monitoring periods, the pump shut-

down deadline, and the operator information deadline.

8.6.1 Extracting the specification

Translated CSL code The mine drainage system is implemented in ADA.

As preliminary process, we first translated this implementation into CSL.

Here we focus on two selected modules: pump control and methane

detection. For conciseness, we assume that all the global variables and

constants have been defined in the main procedure.

Pump module The CSL code is as follows:

proc motor unsafeðÞ�
if motor status ¼ On

then sw :¼ Off;

motor status :¼ Off;

motor logðIn ‘‘motor stopped’’Þ fi;

motor condition :¼ Disabled;

motor logðIn ‘‘motor unsafe’’Þ end;

proc motor safeðÞ�
if motor status ¼ Off

then sw :¼ On;

motor status :¼ On;

motor logðIn ‘‘motor started’’Þ fi;

motor condition :¼ Enabled;

motor logðIn ‘‘motor safe’’Þ end;

proc set pumpðIn pump status : Boolean; Þ�
if pump status ¼ On

then if motor status ¼ Off

then if motor condition ¼ Disabled

then err msgðIn ‘‘pump 
 not 
 safe’’Þ fi;

if ch4 status ¼ Motor safe

then motor status :¼ On;

sw :¼ On;

motor logðIn ‘‘motor started’’Þ

else err msgðIn ‘‘pump 
 not 
 safe’’Þ fi fi
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else if motor status ¼ On

then motor status :¼ Off;

if motor condition ¼ Enabled

then sw :¼ Off;

motor logðIn ‘‘motor stopped’’Þ fi fi fi end;

As the first step, we abstract the three procedures separately into the ITL

specification:

motor unsafeðÞ ¼
^

motor status ¼ On ^ ðsw :¼ Off;

motor status :¼ Off; motor logð‘‘motor stopped’’ÞÞ;

motor condition :¼ Disabled; motor logð‘‘motor unsafe’’Þ

motor safeðÞ ¼
^

motor status ¼ Off ^ ðsw :¼ On; motor status :¼ On;

motor logð‘‘motor started’’ÞÞ;

motor condition :¼ Enabled; motor logð‘‘motor safe’’Þ

set pumpðpump statusÞ ¼
^

ðpump status ¼ On ^

ðmotor status ¼ Off ^

ðmotor condition ¼ Disabled ^ err msgð‘‘pump not safe’’ÞÞ;

ðch4 status ¼ Motor safe ^ ðmotor status :¼ On; sw :¼ On;

motor logð‘‘motor started’’ÞÞÞ

_ðch4 status ¼ Motor unsafe ^ err msgð‘‘pump not safe’’ÞÞÞÞ

_ðpump status ¼ Off^

motor status ¼ On ^ ðmotor status :¼ Off;

motor condition ¼ Enabled ^ ðsw :¼ Off; motor logð‘‘motor stopped’’ÞÞÞÞ

In the above specification, there are several things that need to be

simplified. First, some chop operators could be replaced by logic conjunction

and therefore result in further logic composition. Second, there are quite a

lot of exception test and handling details in the specification. In the high-

level specification, these kinds of descriptions could be considered as

implementation details and therefore be abstracted away. A more abstracted

specification is given as follows:

motor unsafeðÞ ¼
^

motor status ¼On ^ ðsw :¼Off; motor status :¼Off^

motor logð‘‘motor stopped’’ÞÞ;

motor condition :¼ Disabled ^ motor logð‘‘motor unsafe’’Þ

motor safeðÞ ¼
^

motor status ¼Off ^ ðsw :¼On; motor status :¼On^
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motor logð‘‘motor started’’ÞÞ;

motor condition :¼ Enabled ^ motor logð‘‘motor safe’’Þ

set pumpðpump statusÞ ¼
^

ðpump status ¼ On^

ðmotor status ¼ Off^

ðch4 status ¼ Motor safe ^ ðmotor status :¼ On; sw :¼ On;

motor logð‘‘motor started’’ÞÞÞÞÞ

_ðpump status ¼ Off^

motor status ¼ On ^ ðmotor status :¼ Off;

motor condition ¼ Enabled ^ ðsw :¼ Off ^ motor logð‘‘motor stopped’’ÞÞÞÞ

More concisely, the specification is as follows:

motor unsafeðÞ ¼
^

motor status¼On^ ðsw :¼Off; motor status :¼Off^

motor logð‘‘motor stopped’’ÞÞ;

motor condition :¼ Disabled ^motor logð‘‘motor unsafe’’Þ

motor safeðÞ ¼
^

motor status¼Off ^ ðsw :¼On; motor status :¼On^

motor logð‘‘motor started’’ÞÞ;

motor condition :¼ Enabled^motor logð‘‘motor safe’’Þ

set pumpðpump statusÞ ¼
^

ðpump status¼On^motor status¼Off ^ ch4 status¼Motor safe^

ðmotor status :¼On; sw :¼On^motor logð‘‘motor started’’ÞÞÞ

_ ðpump status¼Off ^motor status¼On^

ðmotor status :¼Off; motor condition¼ Enabled ^ ðsw :¼Off^

motor logð‘‘motor stopped’’ÞÞÞÞ

The log function is not directly related to system performance and

therefore could be abstracted away:

motor unsafeðÞ ¼
^

motor status¼On^ ðsw :¼Off; motor status :¼OffÞ;

motor condition :¼ Disabled

motor safeðÞ ¼
^

motor status¼Off ^ ðsw :¼On; motor status :¼OnÞ;

motor condition :¼ Enabled

set pumpðpump statusÞ ¼
^

ðpump status¼On^motor status¼Off ^ ch4 status¼Motor safe^
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ðmotor status :¼ On; sw :¼ OnÞÞ

_ ðpump status ¼ Off ^ motor status ¼ On^

ðmotor status :¼ Off; motor condition ¼ Enabled ^ sw :¼ OffÞÞ

Methane model The CSL code is as follows:

proc initðÞ�
comment : enable device;

ch4 sensor status :¼ Enabled;

ch4 status :¼ Motor unsafe end;

proc ch4 processðÞ�
read tm; ch4 level from ch4 sensor;

if ch4 level > ch4 Max

then if ch4 status ¼ motor safe

then motor unsafeðÞ;

operator console alarmðIn‘‘High methane’’Þ;

ch4 status :¼ motor unsafe fi

else if ch4 level < ch4 Max jitterrange

then motor safeðÞ;

ch4 status :¼ motor safe fi fi;

ch4 logðIn ch4 levelÞ end;

proc ch4 periodðÞ�
initðÞ;

while true do

duration in 30 ch4 processðÞ end;

delayð80 
 30Þ od end;

As the first step, we abstract the three procedures separately into the ITL

specification:

initðÞ ¼
^

ch4 sensor status :¼ Enabled; ch4 status :¼ Motor unsafe

ch4 processðÞ ¼
^

tm ¼
p

ch4 sensor ^ ch4 level ¼ readðch4 sensorÞ;

ðch4 level > ch4 MaxÞ^

ch4 status ¼ motor safe^

ðmotor unsafeðÞ; operator console alarmð‘‘High methane’’Þ;
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ch4 status :¼ motor unsafeÞ

_ ðch4 level < ch4 MaxÞ^

ðch4 level < ch4 Max jitterrangeÞ ^ ðmotor safeðÞ;

ch4 status :¼ motor safeÞ; ch4 logðch4 levelÞ

ch4 periodðÞ ¼
^

initðÞ; ðch4 processðÞ ^ len < 30ms; len ¼ 50msÞ�

Similarly, we replace possible chop operators with logic conjunction,

leaving out the unused timestamp tm. The final result will appear as follows:

initðÞ ¼
^

ch4 sensor status :¼ Enabled ^ ch4 status :¼ Motor unsafe

ch4 processðÞ ¼
^

ch4 level ¼

readðch4 sensorÞ;

ðch4 level > ch4 MaxÞ ^ ch4 status ¼ motor safe^

ðmotor unsafeðÞ ^ operator console alarmð‘‘High methane’’Þ^

ch4 status :¼ motor unsafeÞ _ ðch4 level < ch4 MaxÞ^

ðch4 level < ch4 Max jitterrangeÞ ^ ðmotor safeðÞ^

ch4 status :¼ motor safeÞ; ch4 logðch4 levelÞ

ch4 periodðÞ ¼
^

initðÞ; ðch4 processðÞ ^ len < 30ms; len ¼ 30msÞ�

8.6.2 Comments

The purpose of the mine drainage case study is to demonstrate that the

proposed approach has the ability to tackle systems with a critical time

requirement. This is achieved through the following points:

1. EWSL has the power to represent time-critical systems from

specification level to the source code level.

2. The abstraction rules are specially designed to deal with time

feature.

3. ITL is powerful for real-time system specification.

8.7 Summary

These case studies illustrated a reverse engineering method that is based on

the following stages:

1. Establishing the reverse engineering environment: This will involve a

CASE tool to record results and to maintain different versions of
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code, specifications, and documentation and the links between

them, together with a (E)WSL code browser and transformation

system.

2. Collecting the software to be reverse-engineered: This involves finding the

current versions of each subsystem and making these available to

the CASE tool.

3. Producing a high-level description of the system: This may already be

available in the documentation, since the documentation at this

level rarely needs to be changed and is therefore more likely to be

up-to-date. The documentation is supplemented by the results of a

cross-reference analysis, which records the control flow and data

dependencies among the subsystems.

4. Translating the source code into (E)WSL: This will usually be an

automatic process involving parsing the source files and translating

the language structures into equivalent (E)WSL structures.

5. Inverse engineering, or reverse engineering through formal transforma-

tions: This involves the automatic and manual application of various

transformations to restructure the system and express it at increas-

ingly higher levels of abstraction. This is carried out by iterating

over the following four steps:

a. Restructuring transformations. These include removing goto

statements, eliminating flags, removing redundant tests, and

other optimizations. The effect of this restructuring is to reveal

the true structure of the program, which may be obscured by

poor design or subsequent patching and enhancements. This

stage is more radical than can be achieved by existing automatic

restructuring systems [12, 20] since it takes note of both data

flow and control flow and includes both syntactic and semantic

transformations [21]. We have however had considerable

success with automating the simpler restructuring transforma-

tions, by implementing heuristics elicited from experienced

program transformation users.

b. Analyzing the resulting structures in order to determine suitable

higher-level data representations and control structures.

c. Redocumenting. This involves recording the discoveries made so

far and any other useful information about the code and its data

structures.
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d. Implementing the higher-level data representations and control

structures using suitable transformations. A powerful technique

we have developed for carrying out these data refinements is to

introduce the abstract variables into the program as ghost

variables (variables whose values are changed but that do not

affect the operation of the program in any way), together with

invariants that make explicit the relationship between abstract

and concrete variables. Then, one by one, the references to

concrete variables are replaced by references to the new

abstract variables. Finally, the concrete variables become

ghost variables and can be removed. See [5] for an example

of this process; it is also used extensively in [10]. In general, if

our analysis in step (5b) is correct then the result of this stage is

likely to be in a form suitable for further restructuring.

6. Acceptance testing: We now have a high-level specification of the

whole system that should go through the usual acceptance tests.
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Concluding Remarks

This book is intended for readers who face software

evolution problems. Certain theoretical aspects have been

analyzed to show how complicated the situation is and certain

practical issues have been discussed to tackle, or at least give a

starting point for tackling real applications. The book is

accompanied by the FermaT tool, which readers can download

and experiment with (please see the Preface for URLs).

At the beginning of the book, we mentioned that people are

fighting a losing battle in evolution. Though we cannot claim

that people will suddenly start fighting a winning battle as soon

as they have read this book, we can definitely say that they will

understand the situation more clearly and be in a much better

position to take appropriate actions for the practical problems

they face.

9.1 Is software evolution a bridge too far?

Computing techniques have been applied to almost every

aspect of people’s lives and have had a profound impact on

quality of life in many areas. Computers are becoming more

powerful and the number of application areas is increasing.

Meanwhile, the requirements on software developers and

redevelopers are increasing with increasing software complex-

ity. In a majority of cases, when a software system has been

developed and needs to change to meet people’s new require-

ments, the cost of evolving software is lower than developing

from scratch; this is likely to remain so for the foreseeable
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future. As a result, there will continue to be a need for evolution techniques.

Will these techniques cope with constant software changes (i.e., is software

evolution a bridge too far—see Figure 3.4)? Software evolution techniques

can only be developed when evolution issues are met. Efforts made by

evolution researchers and practitioners, including those described in this

book, will undoubtedly help to close the gap.

9.2 Formal or not formal?

Formal methods or not formal methods? This is still an unsolved question for

both software development and evolution. It can be fair to say that formal

methods are more suitable for some tasks of software evolution than other

tasks.

Currently, formal methods are both oversold and underused. However,

our book presents an approach to practical evolution. In fact, formal

methods have applications in the following areas:

w Safety critical systems;

w Reverse engineering and reengineering sequential legacy systems;

w Software migration as a commodity formal methods application;

w Object-oriented systems;

w Real-time and parallel systems.

Nevertheless, our view is that in all these areas we need to integrate

formal methods with appropriate tools so that users do not need a deep

knowledge of the foundations of the formal methods in order to benefit from

them. An example of such a tool is the FermaT program transformation

system, which embodies program transformation theory so that an engineer

can use and apply program transformations without needing to know about

correctness proofs, infinitary logic, and the rest of the theoretical founda-

tions. Another example is the FermaT migration workbench where the

formal methods are used almost as a black box technology: taking code in

the source language and generating equivalent code in the target language.

9.3 Coping with new development paradigms

On one hand, software needs to be changed very rapidly. On the other

hand, a good software development method takes a long time to mature

and to be accepted by software engineers. The number of years that
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the object-oriented technology took to emerge and the number of years that

unified modeling language (UML) object-oriented technology took to

emerge are two examples.

At present, there are several main development paradigms that

software evolution needs to cope with. The first one is the UML-based

paradigm. Object-oriented development is a landmark of software

engineering; it organizes data as objects in ways that ‘‘echo’’ how things

appear, behave, and interact with each other in the real world. Object-

oriented analysis and design (OOA/D) follows the concept of object

oriented technology and thus has become a major trend for methods of

modern software development and system modeling. A sign of the

maturity of OOA/D is the convergence of object-oriented modeling

notations in the form of the UML. UML is used to specify, visualize,

construct, and document artifacts of software systems. UML defines

diagrams, and enables users to build software models and to express

important domain-related concepts, such as use case diagrams, class

diagrams, collaboration diagrams, and component diagrams. UML allows

the user to easily understand a system analysis or design through these

diagrams as well as its widely accepted modeling notations. UML is rapidly

growing to be the first choice of standards for object-oriented modeling in

general. However, the lack of formality in UML limits evaluation of

completeness, consistency, and content in requirements and design

specifications. All the modeling techniques used in a design, including

UML need more formalization to achieve system comprehension and

integration in software development and reengineering.

Another development paradigm with which software evolution needs to

cope is the use of design patterns. During a system design, we can observe

familiar usages and constructs, known as design patterns, that are

recognizable traces or blocks found in a series of observations or in a

system. The objective of applying design patterns is to enable designers to

reuse well-known and successful designs and architectures from expert

experiences more easily. Expressing proven techniques precisely, such as

design patterns do, makes them more accessible to designers of new systems.

Design patterns help users choose design alternatives that make a system

reusable and avoid alternatives that compromise reusability. Design patterns

can even improve the documentation and maintenance of existing systems

by furnishing an explicit specification of class and object interactions and

their underlying intent.

A third current development paradigm with which evolution technol-

ogy needs to cope is frameworks. A framework is a software technology that

combines software component reuse with design reuse. Using a framework
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to develop a group of software systems within the same domain on an

existing architecture gives high reusability and efficiency. A framework

consists of a set of related abstract classes and concrete classes, as well as the

interface definitions of instances of the classes. A framework consists of

reusable application architectures for a specific domain. A developer can

inherit useful features and functions from the instances of the classes to

construct new systems. Basically, a framework provides an environment to

support all the activities for software development.

It can be predicted that more advanced software development paradigms

will be available in the future and therefore that evolution for software

systems built with these new paradigms will also be needed. Modifying

evolution techniques to keep up with the pace of emerging development

paradigms is a challenge.

Ubiquitous or pervasive computing represents the concept of computing

everywhere, making computing and communication essentially transparent

to the users. Applications in this type of environment are context-sensitive,

which means they use various contexts to adaptively communicate with

each other in mobile ad hoc networks; and situation-aware, which means

they can respond to both current and historical relationship of contexts and

specific user actions.

It might be too early to talk about software evolution in a ubiquitous

computing environment, since currently there are no well-accepted

methods to facilitate the development of applications for this environment.

Nevertheless, we would like to predict that evolution for this type of

environment will be required very soon.

9.4 Questions answered

The readers may now be confident to face the questions posed at the end of

Chapter 1. The small summary here may help the readers and the authors

to finish this book together: The approach described in the book is based on

a formal foundation; the framework we have developed presents a

complete picture when facing a legacy software evolution situation; the

evolution process suggests what to do step-by-step; the available tools help

to apply rules (obtained through research and practice over many years) to

the legacy system; and a metric facility is available to assess the quality of

the evolution work. Because of the formal and rule-based way that

evolution is conducted here, the evolved software may be regarded as

having quality.
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WSL Transformations

This appendix lists details of basic transformations (i.e., those

for dealing with assertions, abstract data types, simplifica-

tions, assignments, if statements, while loops, for loops,

reordering, and dead variable elimination and subsumption)

and examples of their applications in program development; for

example:

Comment : Set z to xn where n > 0 is an integer. Slow version.

z :¼ 1;

while n 6¼ 0 do

n :¼ n � 1; z :¼ z � x od;

Comment : Set z to xn where n > 0 is an integer. Fast version.

z :¼ 1;

while n 6¼ 0 do

while evenðnÞ do

n :¼ n=2; z :¼ x � x od;

n :¼ n� 1; z :¼ z � x od;

A.1 Assertions

Assertions give information about the context in which they

occur; an assertion statement fPg can only be inserted at a

particular point in a program if the condition P is guaranteed to

be true at that point. This section provides some basic

transformations for introducing assertions and moving them
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around the program. These transformations allow us to migrate information

from one part of the program to another. They also help in establishing

global invariants—assertions that are true throughout the body of the

program.

We start with some simple transformations that are trivially proved from

the weakest preconditions:

Theorem A.1 Assertion weakening: If DrP) P0 then

Dr fPg < fP0g

Theorem A.2 Introducing assertions: D ¨ fPgrS1 <S2 if and only if

Dr fPg;S1 < fPg;S2

A.2 Conditionals (see Table A.1)

Theorem A.3 Prune conditional:

(i) Dr fBg; if B then S1 else S2 fi < fBg;S1

(ii) Dr f:Bg; if B then S1 else S2 fi < f:Bg;S2

(iii) Dr if B then S else S fi <S

(iv) Dr fBig; if B1!S1 . . . Bn!Sn fi < fBig;Si

Theorem A.4 Reorder conditional:

Dr if B then S1 else S2 fi < if :B then S2 else S1fi

A.3 Assignments

Theorem A.5 Assignment merging: Drx :¼ t1;x :¼ t2 <x :¼ t2½t1=x�.

Proof:

WPðx :¼ t1;x :¼ t2;RÞ ()WPðx :¼ t1;WPðx :¼ t2;RÞÞ

()WPðx :¼ t1;R½t2=x�Þ

() R½t2=x�½t1=x�

() R½t2½t1=x�=x�

since the only free x’s in R½t2/ x] are those in t2:

()WPðx :¼ t2½t1=x�;RÞ
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Theorem A.6 Subsumption: If the variable m is constant in S and all the

variables in the term t are constant in S, and m � var ðtÞ, then

Drvar m :¼ t : S end<S½t=m�

The next transformation provides one way in which a complex

specification statement can be analyzed into an if statement and two (or

more) simpler specifications. This it is a kind of factoring operation on

specifications.

Theorem A.7 Exportation of independent conditions: If no variable in x occurs

free in the formulae P and Q, then

Table A.1 Transformations for Inserting Assertions

Condition Before After

P)WPðS;QÞ fPg; S fPg; S; fQg

x :=t x :=t; {x = t }

fPg;

if B1!S1

. . .

Bn!Sn fi

fPg;

if B1!fP^B1g; S1

. . .

Bn! fP^Bng; Sn fi

if B1! S1

. . .

Bn!Sn fi; fQg

if B1! S1; fQg

. . .

Bn!Sn; fQg fi

while B do S od while B do S od; f:Bg

do B1 ! S1

. . .

Bn!Sn od

do B1 ! S1

. . .

Bn ! Sn od;

f:B1 ^ . . . ^:Bng

For each i :

D r fP^Big;Si

< fP^Big;Si;

fPg

fPg;

do B1 ! S1

. . .

Bn ! Sn od

fPg;

do B1 ! fPg; S1

. . .

Bn ! fPg; Sn od;

fPg

setðxÞ˙ var ðPÞ ¼ 0= fPg;

var x :¼ t :

S end;

fQg

fPg;

var x :¼ t :

fPg; S; fQg end;

fQg
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D ¨ fP^Q )($x.P’,$x.Q’)g r
x:=x’.(P^P’ _Q^Q’) < if P !x:=x’.P’ Q !x:=x’.Q’ fi

The transformation relies on Lemma A.1.

Lemma A.1 If setðxÞ˙ var ðBÞ ¼ 0= then Dr fBg;x :¼ x0:Q<x :¼ x0:
ðQ^BÞ<x :¼ x0:Q; fBg.

Theorem A.8 Dead statement elimination: If the only assignments in T are to

variables in x, then:

(i) Drvar x :¼ t : S;T end < var x :¼ t : S end

(ii) DfWPðT; trueÞgrvar x :¼ t : S;T end<var x :¼ t : S end

Theorem A.9 Dead variable elimination: If the variables x in S only appear in

assignments to themselves, then

Drvar x :¼ t : S end <S½skip=x :¼ x0:Q�

Here we are replacing all assignments to x by skip statements. If all the

assignments are guaranteed to terminate (for example, if we can insert the

assertion f$x0:Qg before each assignment x :¼ x0:Q), then the refinement

becomes an equivalence. The equivalence provides a mechanism for

introducing ghost variables into a program.

A.4 Invariants

We say that B is invariant over S if the formulae

B ^WPðS; trueÞ )WPðS;BÞ

and

:B ^WPðS; trueÞ )WPðS;:BÞ

are both true.

Lemma A.2 If B is invariant over S then Dr fBg;S <S; fBg and

Dr f:Bg;S <S; f:Bg.

Theorem A.10 Back expansion of a conditional: If B is invariant over S, then

DrS; if B then S1 else S2 fi < if B then S;S1 else S;S2 fi
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Theorem A.11 Forward expansion: For any B and S:

Dr if B then S1 else S2 fi ;S < if B then S1;S else S2;S fi

A.5 Loops

Theorem A.12 Loop unrolling:

Dr while B do S od < if B then S; while B do S od fi

Theorem A.13 Unroll first step:

Dr for i :¼ b to f step s do S od

< if b < f then S½b=i�; for i :¼ bþ s to f step s do S od fi

Theorem A.14 Unroll last step:

Dr for i :¼ b to f step s do S od

< if b < f then var i :¼ b : while i < f � s do S;

i :¼ iþ s od; S

end fi

Theorem A.15 Unroll middle step: If S does not assign to any variables in m,

then

Dr fb < m < f g; for i :¼ b to f step s do S od

<var i :¼ b :

while i < m do S; i :¼ iþ s od;

S; i :¼ iþ s; while i < f do S; i :¼ iþ s od end

Theorem A.16 Loop merging: If B1 ) B2, then

Dr while B2 do S od < while B1 do S od ; while B2 do S od

Theorem A.17 Loop elimination: If S does not assign to any variables in m

and there exists a natural number n such that m ¼ bþ n:s and b < m < f ,

then

Dr for i :¼ b to f step s do if i ¼ m then S fi od <S½m=i�
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A.6 Unbounded Loops

As well as the usual for and while loops, there is a notation for unbounded

loops. Statements of the form do S od, where S is a statement, are infinite

or unbounded loops that can only be terminated by the execution of

a statement of the form exitðnÞ, which causes the program to exit the n

enclosing loops. We use exit as an abbreviation for exitð1Þ. To simplify

the language we disallow exit which leave a block or a loop other than

an unbounded loop. We also insist that n be an integer, not a variable

or expression—this ensures that we can always determine the target of

the exit .

Definition A.1 Global substitution

If PðS; pÞ is a predicate on a statement S and position p within S, and S0ðS; pÞ

is a function that returns a statement for any given statement S and position

p, then the effect of replacing or appending to the statement at position p in S

with S0ðS; pÞ for every p such that PðS; pÞ holds is denoted:

S½S0ðS; pÞ=pjPðS; pÞ�

If the statement at position p in S is an exit statement, then it is replaced by

S0ðS; pÞ. Otherwise, S0ðS; pÞ is appended in sequence after the statement at

position p.

Within a global substitution we use dðS; pÞ to denote the depth of a

component of a statement. This is the number of enclosing do . . .od loops

surrounding the component. We use tðS; pÞ to denote the terminal value of a

statement. This is the number of enclosing loops around S which might be

terminated by execution of the statement at position p in S. If the statement

at position p in S does not terminate S then tðS; pÞ ¼ �1. For example,

any exitðnÞ has terminal value n. If S contains an exitðnÞ within m nested

loops (where m < n) then the terminal value of S itself, denoted tðS; hiÞ, will

be at least n �m.

A statement S with terminal value zero cannot terminate any enclosing

loops, so the next thing to be executed after S will be the next statement in

the sequence containing S (if there is one). Such a statement is called a

proper sequence. If S is a proper sequence, then

Dr do if B then exit fi ;S od < while :B do S od

In the following transformations, the global substitutions are all applied

to the simple terminal statements of S. These are the statements that are
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neither a sequence, a conditional, or a do . . . od loop and that will terminate

S if they are executed; for example, in:

if B then x:= 1; y := 2 else exit fi

the terminal statements are y :¼ 2 and exit. If the statement is enclosed in

a do . . . od loop, only the exit will be a terminal statement.

We usually omit the parameters from d and t in a global substitution

when these are obvious from the context.

Definition A.2 Incrementation

The incrementation of S by n (where n is any nonnegative integer) is defined

as the incrementation of all simple terminal statements in S. An exit is

incremented by incrementing its parameter, while any other simple

statement is incremented by appending an exit :

S þ n ¼DF S½ exit ðnþ dÞ=pjt > 0�

For example:

if B then x:= 1; y := 2 else exit fi + 2

is

if B then x:= 1; y := 2; exit (2) else exit (3) fi

while

do if B then x:= 1; y := 2 else exit fi od + 2

is

do if B then x:= 1; y := 2 else exit (3) fi od

Definition A.3 Partial incrementation

The notation S þ ðn;mÞwhere m > 0 denotes incrementation of the terminal

statements in S with terminal value m or greater:

S þ ðn;mÞ ¼DF S½ exit ðnþ dÞ=pjt > m�

Note that do S od þ ðn;mÞ ¼ do S þ ðn;mþ 1Þ od.

A.7 Absorption

For any statements S1 and S2:

DrS1;S2 <S1½S2 þ d=pjt ¼ 0�
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For example:

Dr do if B then x :¼ 1; y :¼ 2 else exit fi od ; z := 1

< do if B then x :¼ 1; y :¼ 2 else z := 1;

exit fi od

This transformation can be applied in reverse to take out code from a loop.

A.8 False loop

We can insert a loop around any statement, by incrementing it first:

DrS < do S þ 1 od

(This is a ‘‘false’’ loop because the body of the loop can only be executed

once.)

A.9 Loop doubling

Any loop can be converted to a double loop by the last transformation, or by

incrementing the body of the loop:

Dr do S od < do do S od þ 1 od

< do do S þ 1 od od

More generally, we can arbitrarily decide whether or not to increment each

terminal statement in S with terminal value zero:

Dr do S od < do do S[ exit (d+1)/p j t > 0 _ t = 0 ^W(S, p) ]

od od

where W is any condition on S and p.

This can be combined with the inverse of absorption to isolate part of a

loop body; for example:

Dr do S; if B then S1 else S2 fi od

< do do S þ ð1; 1Þ;

if B then exit else S2+(1, 1) fi od ;

S1 od

A.10 Loop inversion

If S1 is a proper sequence, then

Dr do S1;S2 od <S1; do S2;S1 od
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More generally, for any statements S1 and S2:

Dr do S1;S2 od < do S1; do S2;S1 od þ 1 od

A.11 Loop unrolling

If all the exits of S with terminal value 1 are in terminal positions, then we

can unroll the first step of a loop:

Dr do S od <S½do S od þ d=pjt ¼ 0�

½exit ðtþ d � 1Þ=pjt > 1�

where the RHS contains two successive global substitutions on S.

For example, the loop

do if x=10 then exit fi ;

y := y � 2; x := x + 1 od

has an exit that is not in a terminal position. But after applying absorption to

the loop body the exit is moved to a terminal position:

do if x¼10

then exit

else y :¼ y � 2; x :¼ x þ 1 fi od

and we can unroll the first step of the loop to get

if x=10

then skip

else y :¼ y � 2; x :¼ x þ 1;

do if x=10

then exit

else y :¼ y � 2; x :¼ x þ 1 fi od fi

A reducible statement in which all the terminal statements with terminal

value 1 are in terminal positions. In general any statement can be made

reducible by repeated applications of absorption (but in the worst case this

can cause an exponential increase in the program size).

More generally, we can insert a copy of the whole loop, with certain

terminal statements of the loop body incremented, after certain terminal

statements in the loop body. Let S0 be formed from S by incrementing

selected terminal statements with terminal value zero:
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S0 ¼ S½exit ðdþ 1Þ=pjt ¼ 0^FðS; pÞ�

where F is any condition (see Section A.10). Then

Dr do S od

< do S0½do S0 od þ dþ 1=pjt ¼ 0^WðS; pÞ�

½exit ðtþ d � 1Þ=pjt > 1� od

where W is any condition.

This transformation is valid for any statement S (not just reducible

statements) and any conditions F and W.

A.12 The induction rule for recursion

Our next transformation shows that to prove a refinement of a recursive or

iterative program, it is sufficient to examine the set of finite truncations of

the program. This result is extremely valuable in proving many transforma-

tions involving recursive and iterative statements since, in a great many

cases, the proof can be carried out by induction over the set of all finite

truncations. The theorem shows that the set of all finite truncations of a

recursive statement tells us everything we need to know about the full

recursion. Using this induction rule we have proved a powerful collection of

general-purpose transformations. These enable many algorithm derivations

to be carried out by appealing to general transformation rules rather than ad

hoc induction proofs.

The nth truncation of a procedure proc F � S: is defined recursively:

ðproc F � S:Þ0 ¼DF abort

and

ðproc F � S:Þnþ1 ¼DF S½ðproc F � S:Þn=F�

Here, the notation ¼DF indicates that the left-hand side of the symbol is

defined to mean the right-hand side and should be distinguished from

the notation < , which means that the statement on the left-hand side is

semantically equivalent to the statement on the right-hand side.

The nth truncation of any statement Sn is formed by replacing each

recursive component by its nth truncation.

A statement has bounded nondeterminacy if each specification state-

ment within it has a finite set of values it can assign to the variables to satisfy
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the given condition. For statements with bounded nondeterminacy we have

the following induction rule:

Theorem A.18 The induction rule for recursion: If S is any statement with

bounded nondeterminacy, and S0 is another statement where DrSn <S0 for

every n < q, then DrS <S0.

This transformation is related to the concept of a sequence of approximations

to a continuous function: a fundamental concept in denotational semantics

[1, 2]. The semantics of the truncations Sn form a sequence of approxima-

tions to the semantics of the full statement S.

An example of a transformation proved by induction is the following:

Theorem A.19 Invariant maintenance:

(i) If for any statement S1 we can prove

fPg; S½S1=X� < S½fPg ;S1=X�

then

fPg; proc X � S < proc X � fPg;S:

(ii) If in addition

fPg; S1 < S1; fPg

implies

fPg; S½S1=X� < S½S1=X�; fPg

then

fPg; proc X � S: < proc X � S:; fPg

A.13 General recursion removal

Our third transformation is a general transformation from a recursive

procedure into an equivalent iterative procedure, using a stack. It can also be

applied in reverse: to turn an iterative program into an equivalent recursive

procedure (which may well be easier to understand). The theorem was

presented in [3], and the proof may be found in [4].

Suppose we have a recursive procedure whose body is a regular action

system in the following form (where a call Z appearing in one of the action
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bodies in the action system will terminate the action system, and hence only

the current invocation of the procedure):

proc F(x)�
actions A1:

A1�
S1:

. . .

AM �
SM:

. . .

Bj�
Sj0; Fðgj1ðxÞÞ; Sj1; Fðgj2ðxÞÞ; . . . ; Fðgjnj

ðxÞÞ; Sjnj

. . . endactions:

The actions in the action system that forms the body of the procedure are

divided into two classes, the A-type actions Ai and the B-type actions Bj. The

A-type action bodies may contain calls to any actions and assignments to any

variables but contain no calls to F. All the calls to F are as listed explicitly in

the B-type actions, which must be in the form of a sequence of statements

separated by calls to F. The statements after the first call (i.e., Sj1; . . . ;Sjnj
)

must preserve the value of x and all the statements but the last

(i.e., Sj0;Sj1 . . . ; Sjnj�1) must contain no action calls. Since the whole system

is a regular action system, the last statement in each B-type action (i.e., Sjnj
)

must contain action calls. There are M þ N actions in total, M A-type actions

A1; . . . ;AM, which contain no recursive calls, and N B-type actions B1; . . . ;BN ,

each of which contains one or more recursive calls. Note that the since the

action system is regular, it can only be terminated by executing call Z,

which will terminate the current invocation of the procedure. A procedure

written in this way is said to be in AB-format.

At first sight the restrictions may appear stringent, but in actual fact any

recursive procedure can be cast into AB-format simply by taking out each

recursive call into its own B-type action. Note that there are no restrictions

on the A-type actions other than not containing recursive calls. In general,

there may be many different ways to restructure a recursive procedure into

AB-format, and these will generally lead to different iterative versions of the

procedure.

The aim of the transformation is to remove the recursion by introducing

a local stack K, which records postponed operations. When a recursive call

is required we postpone it by pushing the pair h0; ei onto K (where e is the

parameter required for the recursive call). Execution of the statements Sjk

also has to be postponed (since they occur between recursive calls),
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we record the postponement of Sjk by pushing hhj; ki; xi onto K. Where the

procedure body would normally terminate (by calling Z) we instead call a

new action F, which pops the top item off K and carries out the postponed

operation. If we call F with the stack empty then all postponed operations

have been completed and the procedure terminates by calling Z.

Theorem A.20 The procedure FðxÞ above is equivalent to the following

iterative procedure, which uses a new local stack K and a new local

variable m:

proc F’(x) �
var hK:=hi, m:=0i:

actions A1:

A1�
S1½call F=call Z�

. . .

AM�
SM½call F=call Z�:

. . .

Bj�
Sj0;K :¼ hh0; gj1ðxÞi; hhj; 1i; xi; h0; gj2ðxÞi; . . . ;

h0; gjnj
ðxÞi; hhj; nji; xii þþK;call F:

. . .

F�
if K ¼ hi

then call Z

else hm,x i �
pop

K;

if m ¼ 0 ! call A1

. . . m ¼ hj; ki ! Sjk½call F=call Z�;call F

. . . fi fi: endactions end:

Proof: See [3, 4]

In contrast to the usual iteration plus stack method of recursion removal

(discussed in [5] and elsewhere), in which only a single statement (the

return point) is stacked, our method allows a whole sequence of recursive

calls an intermediate statements to be stacked. As discussed above, any

recursive procedure can be restructured into a suitable form for

Theorem A.20 simply by putting each recursive call into its own B-type

action. Many recursive procedures can be restructured differently (but still
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meeting the requirements of the theorem) by collecting two or more

recursive calls into B-type actions. These different recursive forms will lead

to very different iterative versions of the program. See [3, 4] for some

examples and further applications of the theorem.

The proof of Theorem A.20 is rather involved and too long to include

here. It relies on applying various transformations which have been proved

using weakest preconditions, together with multiple applications of the

general induction rule (Theorem A.18).

Corollary A.1 By unfolding some calls to F in Bj and pruning, we get a

slightly more efficient version:

Bj�
Sj0;

K:=hhhj; 1i; xi; h0; gj2ðxÞi; . . . ; h0; gjnjðxÞi; hhj; nji; xii þþK;

x :¼ gj1ðxÞ;call A1:

In the case where nj ¼ 1 for all j, this version will never push a h0; xi pair

onto the stack. This fact can be significant for a parameterless procedure with

a small number of j values, since it enables us to reduce the amount of

storage required by the stack. For example, if there are two j values, the stack

can be represented as a binary number.

A particularly simple case is a parameterless procedure with only one B

action, which contains only one recursive call. In this case, all the elements

pushed on the stack will be equal; in fact they will all be h1; 1i, so we only

need to record the length of the stack, ignoring its actual contents. Techni-

cally, we prove the following corollary by introducing a new local variable k,

which records the length of K, and then replacing the test K ¼ hi by k ¼ 0.

Corollary A.2 The parameterless procedure:

proc FðÞ �
actions A1:

A1�
S1:

. . .

AM�
SM:

B1�
S10; FðÞ;S11: endactions:

(where the only recursive call is the single call in B1) is equivalent to the

nonrecursive procedure:
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proc FðÞ�
var hk :¼ 0i:

actions A1:

A1�
S1½call F =call Z�:

. . .

AM�
SM ½call F =call Z�:

B1�
S10; k :¼ kþ 1; call A1:

F�
if k ¼ 0 then call Z

else k :¼ k � 1;S11; call F fi:

endactions end:

Proof: This is a simple application of Theorem A.20 and Corollary A.1.

Since there is but a single B-type action and no parameters, the stack K

consists of a list of identical elements. Such a stack can be more efficiently

implemented as an integer k, where k ¼ ‘ðKÞ, and K ¼ hh1; 1i; h1; 1i; . . .i.

A.14 Recursion removal examples

Consider the simple recursive procedure:

proc F(x) �
if x ¼ 0 then G(x)

else Fðx � 1Þ;HðxÞ; Fðx � 1Þ fi:

There are two ways to convert the body of the procedure into an action

system appropriate for Theorem A.20. The first method is to put both

recursive calls into the same B-type action:

proc F(x)�
actions A1:

A1�
if x=0 then GðxÞ; call Z else call B1 fi:

B1�
Fðx � 1Þ;HðxÞ; Fðx � 1Þ;call Z: endactions:

So for Theorem A.20 S1 is the statement

if x ¼ 0 then GðxÞ; call Z else call B1 fi
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S11 is the statement HðxÞ and S12 is the statement call Z: Applying the

theorem gives:

proc F’(x)�
var hK: = hi; m: = 0i:

actions A1:

A1�
if x ¼ 0 then GðxÞ; call F else call B1 fi:

B1�
K :¼ hh0; x � 1i; hh1; 1i; xi; h0; x � 1i,

hh1; 2i; xii þþK; call F:

F �
if K = hi

then call Z

else hm; xi �
pop

K;

if m ¼ 0 ! call A1

m ¼ h1; 1i ! HðxÞ; call F

m ¼ h1; 2i ! call F;call F fi fi:

endactions.

We can represent the values h1; 1i and h1; 2i on the stack and in m by 1

and 2 respectively. Then, unfold everything into F, replace the initial call to

A1 by K :¼ hh0; xii, remove the recursion in F and then remove the action

system:

proc F 0ðxÞ �
var hK :¼ hh0; xii m :¼ 0i :

while K 6¼ h i do

hm; xi  �
pop

K;

if m ¼ 0 ! if x ¼ 0

then GðxÞ

else K :¼ hh0; x � 1i; h1; xi,

h0; x � 1i; h2; xii þþK fi

m ¼ 1 ! HðxÞ; call F

m ¼ 2 ! skip fi od end:

The other way to restructure the recursive program is to put the two

recursive calls into separate B-type actions:

proc FðxÞ �
actions A1:

A1 �
if x ¼ 0 then GðxÞ;call Z else call B1 fi:
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B1 �
Fðx � 1Þ;HðxÞ; call B2:

B2 �
Fðx � 1Þ; call Z: endactions:

So for Theorem A.20, S1 is the statement

if x ¼ 0 then GðxÞ; call Z else call B1 fi

S11 is the statement HðxÞ;call B2 and S21 is the statement call Z. Applying

the theorem gives

proc F 0ðxÞ �
var hK :¼ hi;m :¼ 0i:

actions A1:

A1 �
if x ¼ 0 then GðxÞ;call F else call B1 fi:

B1 �
K :¼ hh0; x � 1i; hh1; 1i; xi i þþ K;call F:

B2 �
K :¼ h h 0; x � 1 i; h h2; 1i; xi i þþ K;call F:

F �
if K ¼ hi

then call Z

else hm; xi  �
pop

K;

if m ¼ 0 ! call A1

m ¼ h1; 1i !HðxÞ; call B2

m ¼ h2; 1i ! call F fi fi:

endactions.

Note that hh0; x � 1ii þþ K; call F is equivalent to x :¼ x � 1; call A1. Then

we never need to push h0; xi onto K. Also we can represent the values h1; 1i

and h2; 1i on the stack and in m by 1 and 2 respectively. Then, unfold B1 into

A1, unfold B2 into F, remove the recursion in F, unfold everything into A1,

remove the recursion and the action system:

proc F 0ðxÞ �
var hK :¼ hi;m :¼ 0i :

do do if x ¼ 0

then GðxÞ; exit

else K :¼ hh1; xii þþK;

x :¼ x � 1 fi od ;

do if K ¼ hi then exit ð2Þ fi ;

hm; xi  �
pop

K;
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if m ¼ 1 ! HðxÞ;K :¼ hh2; xii þþ K;

x :¼ x � 1; exit

m ¼ 2 ! skip fi od od end:

Notice how the two different restructurings of the initial recursive

procedure led to very different (but equivalent) interative procedures.

The power and generality of the recursion removal transformations

comes from the fact that the body of the procedure is expressed as an action

system, with the recursive calls collected into a number of actions. Because

of this, a wide variety of recursive programs can be easily restructured into

one or more forms, where the theorem can be applied.

We can also apply the theorem in reverse to produce a recursive program

from an iterative one, and this is where the generality of the theorem is

particularly useful since it reduces the amount of work required to reverse

engineer from an iterative program to an equivalent recursive program.

References

[1] Stoy, J. E., Denotational Semantics: The Scott-Strachy Approach to Programming

Language Theory, Cambridge, MA: MIT Press, 1977.

[2] Tennet, R. D., ‘‘The Denotational Semantics of Programming Languages,’’

Comm. ACM, Vol. 19, No. 8, August 1976, pp. 437–453.

[3] Ward, M., ‘‘A Recursion Removal Theorem,’’ Proc. of the 5th Refinement

Workshop, London, U.K., January 8–11, 1992 (http://www.dur.ac.uk/

dcs0mpw/martin/papers/ref-ws-5/ps.gz), pp. 43–69.

[4] Ward, M., ‘‘A Recursion Removal Theorem—Proof and Applications,’’

Durham University, Durham, U.K., Technical Report, 1991 (http://www.dur.-

ac.uk/ dcs0mpw/martin/papers/rec-proof-t.ps.gz).

[5] Knuth, D. E., ‘‘Structured Programming with the GOTO Statement,’’ Comput.

Surveys, Vol. 6, No. 4, 1974, pp. 261–301.

260 Appendix A



Abstraction Rules

B.1 Elementary abstraction rules

B.1.1 Primitive abstraction rules

Primitive abstraction rules aim at converting the simple

statements in WSL to ITL formulae. The formal definition of

primitive abstraction rules is as follows:

St X Sp

where St denotes a simple statement in concrete code, and Sp is

the abstract specification for St—that is, the semantics of St in

logical form.

Rules listed in this subsection are instances of the primitive

abstraction rules and are proven sound in ITL based on the

semantic weakening definition of abstraction.

Assume A; B; Ai; Bi are system representations, and

F;W;Fi;Wi are formulae, then we have the following primitive

abstraction rules:

1. Assignment:

x :¼ e X fxg : .x ¼ e

This rule extracts a logic formula of the assignment

statement, which assigns the value of expression e to

variable x.

261

A P P E N D I X

B
Contents

B.1 Elementary abstraction rules1

B.2 Further abstraction rules6



2. Input statement:

ðx; yÞ  s X fx; yg : x ¼
p

s ^ y ¼ read ðsÞ

This rule extracts a logic formula of the input statement, which reads

the value in shunt s to variable y and store the timestamp in x.

3. Output statement:

x ! s X fsg : skip ^ .s ¼ ð
p

sþ 1; xÞ

This rule extracts a logic formula of the output statement, which

writes the value of variable or expression x to shunt s, and changes

the timestamp of s to the time when last write operation happened.

4. Type definition:

x : T X $x • fT ðxÞ ^ scopeðxÞ

The statement declares variable x of type T . This is expressed in logic

as variable x has the feature of type T , which is described with

function fT ðxÞ, and the valid scope of x is described with scopeðxÞ,

which depends on the definition context.

5. Delay:

delay n X len ¼ n

Delay means doing nothing during the specified period. The

statement defines a delay lasting n time units, which is expressed

with the formula len ¼ n.

B.1.2 Compound abstraction rules

Compound abstraction rules aim at converting composite statements to ITL

formulae. The formal definition of compound abstraction rules is as follows:

Si X Fi

CðSiÞX fCðFiÞ

where fC denotes logical construction corresponding to composition operator

C, and Si denotes simple statements or composite statements.

Rules listed in this subsection are instances of the compound abstraction

rules and are proven sound in ITL based on the semantic weakening

definition of abstraction.
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Assume A; B; Ai; Bi are system representations, and F;W;Fi;Wi are

formulae, then we have the following abstraction rules:

1. Sequential composition:

AX F

BX W

A ;BX frame ðFÞ¨ frame ðWÞ : F ;W

If two representation fragments have a sequential composition

relation, they can be abstracted separately, and the result

representations should be composed with a sequential operator.

The new frame is the union of both original frames.

2. Conditional statement:

Ai X Fiðfor all i 2 IÞ

if
G

i2I

gi then Ai fi X
[

i2I

frame ðAiÞ : ð
_

i2I

ðgi ^ FiÞÞ _ ð
^

i2I

:giÞ

This rule extracts a logic formula from a conditional statement. Each

guarded branch can be abstracted separately and then composed

together with disjunction. The new frame is the union of the frames

of all branches.

3. Iteration statement:

AX F

while g do A od X frame ðFÞ : ðg ^ FÞ	 ^ fin ð:gÞ

This rule extracts a logic formula of an iteration statement. The

iteration is mapped into ‘‘chopstar’’ formula in ITL, and the iteration

body can be abstracted separately and then joined into the chopstar

structure. The new frame equals the frame of the iteration body.

4. Procedure definition:

A0 X F

proc PðIn pini : Ti; Out poutj : T 0j ÞfA
0gX fpoutjg¨ frame ðFÞ : F

where Observables ¼ fpini; poutj; global variables to Pg

Scope ¼ flocal variables of Pg
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A procedure definition is abstracted into a separate specification in

ITL with its input parameters stable and output parameters possibly

nonstable. The procedure body can be abstracted separately and

then join the parameter part with conjunction. The new frame is the

union of poutj and the frame of the procedure body. Observables are

defined to include parameters and global variables of the procedure,

which form the interface of the procedure. Local variables should be

deleted with their effects recorded in further abstraction because

they are considered as implementation details.

5. Procedure invocation:

A0 X F

PðIn ei; Out xjÞX fxjg : Fðpini=ei; poutj=xjÞ

where proc PðIn pini : Ti; Out poutj : T 0j ÞfA
0g

The invocation of a procedure equals the execution of the

procedure’s abstracted body with the input parameters’ values

passed in and output parameters returned.

6. Parallel:

AX F; BX W

parbegin AkB parend X frame ðFÞ¨ frame ðWÞ : ðF ^ WÞ

Two concurrency or parallel representations can be abstracted

separately, and the results are composed through the conjunction

operator. The new frame is the union of both original frames.

7. Duration:

AX F

½t�AX frame ðFÞ : ðDt ^ F ; trueÞ ^ ðF � len <¼ tÞ

Duration means that the execution of the specified representation

should be finished within the indicated time duration. This rule

extracts a logic formula from duration statement. It indicates that

the execution body within a duration statement can be abstracted

separately.
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8. Signal:

A1 X F1

A2 X F2

A1 5
t
s A2 X frame ðF1Þ¨ frame ðF2Þ¨ fsg : ðDt ^ stable ð

p
sÞ ;F1Þ

_ðDt ^ : stable ð
p

sÞ ;F2Þ

The two execution bodies in a signal statement can be abstracted

separately and then joined together with the formula defined above.

This rule extracts a logic formula from the signal statement.

9. Object definition: As type specification, classes defined in COOL

or ObTAM programs will disappear once they are abstracted to

ITL specification. Only objects exist as formulae with frames in

ITL.

Let T ¼ fxi : Ti; mjðIn pinjk
: Tk; Out poutjl : T 0l Þ½Aj�g, then

Aj X Wj

x : T X Wx : f

where Wx ¼
[

i2I

xi

f ¼
^

i2I

fTi
ðxiÞ ^ ð

_

j2J

frame ðWjÞ¨ fpoutjl
g : WjÞ

	

This rule transforms the definition of an object in source code

into a logic description. Wx is the data fields of the object, it

forms the object’s observables. f is the behavior description of the

object where frame ðWjÞ¨ fpoutjl
g : Wj is the description of method

mj.

10. Object hierarchy:

Let T ¼ fxi : Ti; mjðIn pinjk
: Tk; Out poutjl

: TlÞ½Aj�g

T 0 ¼ fyi0 : T 0i0 ; m0j0 ðIn pinj0
k0
: T 0k0 ; Out poutj0

l0
: T 0l0 Þ½A

0
j0 �g; then

Aj X Wj; A0
j0 X W0j0

x : T <sub T 0 X Wx : f
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where Wx ¼
[

i2I

xi ¨
[

i02I 0

yi0 iff for all xi i 2 I; yi0 6¼xi

f ¼
^

i2I

fTi
ðxiÞ ^

^

i02I 0

fTi0
ðyi0 Þ ^ ð

_

j2J

Fj _
_

j02J 0

F0j0 Þ
	

iff for all xi i 2 I; yi0 6¼ xi; and iff for all Fj j2 J;F0j0 6¼Fj

"j 2 J• Fj ¼ frame ðWjÞ¨ fpoutjl
g : Wj

"j0 2 J 0 • F0j0 ¼ frame ðW0j0 Þ¨ fpoutj0
l0
g : W0j0

The subclass relation<sub is transitive. This rule transforms the object

hierarchy definition, including inheritance, into a logic formula.

Assume that T is a subclass of T 0, for any object x of class T , it will

inherit all the data fields and methods in T 0 if they are not redefined

in T . On the other hand, all the data fields and methods in T 0 will be

overridden with the counterparts in T if they are redefined in T .

11. Method invocation:

AX F

x:mðei; yjÞX fyjg : Fðpini=ei; poutj=yjÞ

where mðIn pini : Ti; Out poutj : TjÞ½A�

A method invocation equals the execution of the method’s

abstracted agent with the input parameters passed in and the result

of output parameters returned.

12. Field reference:

x:d X d 2 Wx

A data field of an object is a variable belonging to the frame of the

object.

B.2 Further abstraction rules

Assume A; B; Ai; Bi are representations, and F;W;Fi;Wi are formulae,

then we have the following abstraction rules.

1. Transitive:

AXB

BX C

AX C
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This rule states that a system representation can be abstracted step

by step, and the final result will be an abstraction of the original

representation if it is guaranteed that each step is an abstraction.

2. Monotonic:

AXB

CX ¼ ^ _ ; j k j )

CXðAÞX CXðBÞ

For the context of conjunction, disjunction, sequential composition,

parallel composition, and implication, all abstractions discussed in

Chapter 7 are monotonic in the sense of weakening, temporal,

hiding, and structural abstraction.

3. Sequence folding:

½½A ;B�� ) ½½A ^B��

A ;BXA ^B

If no contradiction is caused when substituting the sequential

composition between two representations to conjunction composi-

tion, then the sequence can be folded through conjunction. This

rule can be applied when the execution order of a sequence is not

crucial. In nonparallel systems, this is true under most situations

except any operation provides parts of the preconditions of its

successor within the sequence. However, in parallel systems, if the

sequence relates with communication or shared resources, it cannot

be folded with conjunction.

4. Specification combination:

4:1 ðW1 : F1Þ ^ ðW2 : F2Þ ¼ ðW1 ¨ W2Þ : F1 ^ F2

4:2 ðW1 : F1Þ _ ðW2 : F2ÞX ðW1 ¨ W2Þ : F1 _ F2

This rule is used to combine specifications in ITL because there are

often quite a number of specifications within one software system

and some of them can be potentially combined for further

abstractions. Two specifications with conjunction relation can be
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merged into one specification with their frames united and their

description formulae conjunctively composed. Similarly, two speci-

fications with disjunction relation can be merged into one

specification with their frames united and their description formulae

disjunctly composed.

5. State test and exception handling: State tests and exception handling

are often used in programs to assure smooth execution. Although

they may be important in system implementation, these details do

not involve the crucial functionality of the system. Therefore, in a

high-level specification, these details are unnecessary and should be

abstracted away. The related abstraction pattern is called ‘‘state test

and exception handling pattern,’’ which consists of the following

cases:

w State test and exception handling branch: The identified state test

and exception handling parts are branches in conditional

structures. In this case, the branches should be abstracted away.

w State test and exception handling loop: The identified state test and

exception handling part is a loop structure. In this case, the loop

should be abstracted away.

w State test and exception handling component: The identified state test

and exception handling part is a procedure or function (compo-

nent). In this case, the component should be abstracted away.

w State test and exception handling expression: An expression is

identified as related with state test and exception handling. In

this case, the expression together with the smallest representation

unit (statement or ITL formula) in which the expression directly

locates should be abstracted away.

w State test and exception handling variable: A variable is identified

as related with state test and exception handling. In this case, all

the smallest representation units (statements or ITL formulae)

that the variable directly locates should be abstracted away.

6. Trivial elements: If a part of the system’s functionality is

considered too trivial to be kept in high-level specification, the

elements related to this part of functionality are identified as

trivial elements, which should be abstracted away in further

abstraction.
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Trivial elements could be the following cases:

w Trivial branch: The identified trivial element is a branch in a

conditional structure. In this case, the branch should be abstracted

away.

w Trivial loop: The identified trivial element is a loop structure. In this

case, the loop should be abstracted away.

w Trivial component: The identified trivial element is a procedure or

function (component). In this case, the component should be

abstracted away.

w Trivial expression: The identified trivial element is an expression.

In this case, the expression together with the smallest representation

unit (statement or ITL formula) in which the expression directly

locates should be abstracted away.

w Trivial variable: The identified trivial element is a variable. In this

case, all the smallest representation units (statements or ITL

formulae) in which the variable directly locates should be abstracted

away.
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