
1

1 2

1 2

! !

Centre for Software Maintenance

School of Engineering and Applied Science

University of Durham

Durham, DH1 3LE

England

The Maintainer's Assistant is a code analysis tool aimed at helping the maintenance pro-

grammer to understand and modify a given program. Program transformation techniques are

employed by the Maintainer's Assistant both to derive a speci�cation from a section of code

and to transform a section of code into a logically equivalent form. The general structure of the

tool is described and two examples of the application of program transformations are given.

Abstract

Software maintenance is the most costly stage of the software lifecycle, often consuming 50%{90%
of a project's total budget. The work of maintenance programmers is hampered by their lack of
tools. Much of their work involves code analysis of one form or another, whether it is �nding
an obscure bug, attempting to understand a piece of code prior to modi�cation or enhancement,
or analysing the possible e�ects of a modi�cation to the code. Some work has been done in this
area with the development of such tools as: interactive cross referencers [17], data
ow analysers
[6, 19, 22], call graph generators [21] and redocumentation tools [11, 12]. All of these tools help
the maintenance programmer in reducing the amount of time spent on code analysis activities, but
the task of understanding the program, i.e. determining what , remains the domain of the
maintenance programmer. The Maintainer's Assistant project [7] was conceived in order to address
this problem.

In his DPhil Thesis [23] M. Ward presents a theory of program equivalence and a program trans-
formation technique based on the in�nitary logic language L [3]. These transformations have
been shown capable of deriving a speci�cation for a given program [24] as well as the more conven-
tional program manipulation activities associated with program transformations [8].

The method used to prove the transformations in [23] is based on \weakest preconditions", of
Dijkstra [9]. For a given program and condition on the �nal state the weakest precondition

is the weakest condition on the initial state such that the program will terminate in a
state satisfying condition . It is possible to express the weakest precondition of any program or
speci�cation as a single formula in in�nitary logic (an extension of �rst order logic which allows
in�nitely long formulae). It is shown in [23] that two programs and are equivalent if and
only if the corresponding weakest preconditions and are equivalent formulas
for any formula . This reduces the problem of proving two programs to be equivalent to a problem
in logic to which all the standard methods and techniques of theorem proving can be applied. The
success of this technique may be judged by the large number of useful transformations which have
been proved and the wide range of problems to which they can be applied.

it does

S R
WP(S,R)

R

S S
WP(S ,R) WP(S ,R)

R

M. Ward, F.W. Calliss and M. Munro

1 Introduction

The Use of Transformations in
\The Maintainer's Assistant"

Program transformations are used in program development [4, 5, 13, 14]; however their methods
cannot cope with general speci�cations or with transforming programs into speci�cations. The
system employed by the Maintainer's Assistant uses a small \kernel language" that has a simple
mathematical semantics, associating a function with each program. This function maps each al-
lowed initial state to the set of possible �nal states. Two programs are said to be equivalent if
their associated functions are identical. The kernel consists of a few programming constructs; other
constructs are added by de�ning them in terms of the kernel. In this way a complete programming
language is built up.

As an example of the proof method, the simple transformation known as assignment merging will
be proved. Suppose we have the sequence: where we want to merge the two
assignments. The weakest precondition is:

where is with replaced by .

This has shown that is equivalent to .

An example of the application of program transformations to a program maintenance problem can
be found in [24] which analyses a published program (from [10]) written in such a way that the
structure and e�ect of the program are very hard to discern. Various transformations are applied to
the program in order to reveal its structure and enable its e�ect to be summarised as a speci�cation.

Figure 1 shows a diagrammatic representation of the Maintainer's Assistant. The boxes labelled
\Front Ends" and \Source Code Representation" are not being discussed in this paper. The rep-
resentation of the code in the Maintainer's Assistant is the actual code plus some extra information
that is needed by the transformations. The front ends are used to generate this extra information.
The interested reader is referred to [23, 24] for a detailed account of what extra information is
needed. This paper will concentrate of the of these transformation in the Maintainer's Assist-
ant.

Using the Maintainer's Assistant a maintenance programmer can do one of two things with a piece
of code: examine it or modify it. All modi�cations of the program are performed via the structure
editor, while all examinations of the code are done via the browser. The following subsections
describe the di�erent ways in which the Maintainer's Assistant allows a maintenance programmer
to view and manipulate a program.

2

�

� , �
, �

, �
, �
, �

� �

use

x:=x 2; x:=x+1

WP(x:=x 2; x:=x+1, R) WP(x:=x 2, WP(x:=x+1, R))
WP(x:=x 2, R[x+1/x])

R[x+1/x] R x x+1

R[x+1/x][x 2/x]
R[(x 2)+1/x]
WP(x:=(x 2)+1, R)

x:=x 2; x:=x+1 x:=x 2+1

1.1 The Proof Method

2 An Overview of The Maintainer's Assistant

Structure

ASCII

ASCII

View

Edit

Internal
Representation
of WSL code

File

Listing

Assembler
Lexical

Request

Based

Knowledge

System

Program

Transformer Editor

Maintainer

Source

The

X-Windows

Front End

PC menu

Front End

Browser

Interface

Analysis

Assembler

File

Low-Level

Select

Assembly

High-Level
WSL to

Z
WSL to

Assembler

F
ig
u
re

1:
T
h
e
M
ai
n
ta
in
er
's
A
ss
is
ta
n
t

3

The browser is used by the maintenance programmer to read the program; the output of the browser
is displayed on a VDU. In its simplest form the browser displays the program text, but it can also
be used to help the maintenance programmer understand that piece of text. This is done by the
programmer sending the browser a scaling instruction, which is a command either to replace some
program text by its speci�cation (a `contract' instruction), or to replace a speci�cation with the
appropriate program text (an `expand' instruction).

When maintenance programmers read a piece of text, it is common for them to misread it (i.e. without
noticing the absence (or presence) of some statements, e.g. a missing statement from a func-
tion), and this can have serious repercussions.

Ward has shown developed transformations that are capable of deriving the speci�cation for a
piece of program text [24]. The browser automates part of this transformation process; hence the
maintenance programmer can be sure that he is looking at an up{to{date speci�cation as it is
generated from the actual code. The theory of program equivalence presented in [23] ensures that
the speci�cation received by the maintenance programmer is an accurate portrayal of the code that
it represents.

The browser is the only means by which a maintenance programmer can view a program with the
Maintainer's Assistant.

The Maintainer's Assistant allows a maintenance programmer to manipulate the source code in
three ways:

by directly modifying the source using editing commands,

by selecting a particular transformation from the library of transformations,

by requesting the IKBS to search for a sequence of transformations which will achieve a given
e�ect.

The \editing commands" form of program manipulation is the only method that allows a program
to be transformed into a program that is not logically equivalent to the original, whereas the
other two methods transform a program into a structurally di�erent, but semantically equivalent
program. The following three subsections describe the di�erent program manipulation methods,
starting with the IKBS.

The maintenance programmer sends `request instructions' to the knowledge{base to transform a
given piece of program text into a logically equivalent piece. The program is analysed by the
Maintainer's Assistant and a suitable set of transformations are automatically derived. `Select
transformation' instructions are then sent to the transformation library where the appropriate
transformation is performed on the program text.

Some transformations are too complicated to be derived automatically. In these circumstances, the
maintenance programmer can explicitly select suitable transformations. This is done by sending a
`select transformation' to the transformation library.

4

�

�

�

return

2.1 The Browser

2.2 The Knowledge{Base

2.3 The Transformation Library

1 2

1

2

1

2

1

1

th

When the transformation library receives a `select transformation' instruction the appropriate trans-
formation is recalled from the library together with the \applicability conditions" (the conditions on
the program which must be satis�ed for the transformation to guarantee equivalence). These con-
ditions may range from trivial restrictions on the type of statement (e.g. a transformation that can
only be applied to an statement) to more complex requirements. Some applicability conditions
may not be automatically derivable; for example, they could depend on the structure of the data
to which the program will be applied for instance. The system will then ask the programmer for an
\assurance" that the condition does indeed hold in this case, the correctness of the transformation
will then be dependent on the correctness of this assertion and this fact will be recorded in the
documentation accompanying the program. Once the system is satis�ed (or has been assured) that
the transformation is applicable, the transformation is applied to the selected piece of the program
text by sending a sequence of edit commands to the structure editor.

The Structure Editor closely resembles a normal editor and is the only means that the Maintainer's
Assistant provides for manipulating the source code's internal representation. Commands are
entered and the program text is modi�ed in accordance with these instructions. The structure editor
can receive edit commands directly from the maintenance programmer or from the transformation
library.

The structure editor is used to supply the transformation library with details about the source
code, a prerequisite for the application of transformations.

In addition to the usual loops we will be using loops of the form: where is the body
of the loop. When a statement is encountered (where is an integer constant) then the

-loop enclosing the statement will be terminated with execution continuing after the loop.
is written and is equivalent to , i.e. a null statement. Such loops have been

used in program transformations in [1] and [2]. Peterson et. al. [20] show how these statements
can be used to remove statements from a program without increasing the size of the text or
introducing
ag variables or extra tests.

A \proper sequence" is de�ned as a sequence of statements which contains no statements which
would leave a loop enclosing the sequence. Suppose is a proper sequence and is any statement.
Then the following programs are equivalent:

This is often described as \moving the statement to the beginning/end of the loop": it is a
special case of the \loop inversion" transformation proved in [23].

5

if

while do S od S
exit(n) n

n do
exit(1) exit exit(0) skip

goto

exit
S S

do S ;
S od

S ;
do S ;

S od

S

2.4 The Structure Editor

3.1 Loop Inversion

3 Examples of the use of Transformations

0

0

1

1

1

1

2

1 2

1

2

1

0 0 0

0

1

2(2)

n

n n

n

n n

n n=

�

This transformation may be invoked in the Maintainer's Assistant by selecting the loop and send-
ing the appropriate command to the transformation library. However it can also be invoked by
requesting the IKBS to �nd a sequence of transformations which achieve a given e�ect. The \e�ect"
required can be indicated in two other ways by means of editing commands:

Selecting and moving it outside the loop.

Selecting and moving it to the end of the loop.

In either case the transformation library will check that the appropriate applicability conditions
hold (in this case that is indeed a proper sequence).

This transformation can be used in the reverse direction for removing duplicate copies of a sequence
and in the forward direction for converting a loop of the form:

where and are proper sequences to the loop:

For the �nal example we show how the development and improvement of a simple algorithm can
be carried out entirely using program transformations. The algorithm is for positive integer expo-
nentiation with the following speci�cation:

This speci�cation is implemented using a loop with invariant (where and are
the initial values of and respectively) and variant . The terminating condition is when
we have as required. The loop takes the form:

is now set up
=
Reduce n while maintaining

Using the fact that we get the following implementation:

=
, ,

One way to make this more e�cient is to reduce by more than one in the body of the loop. For
example, if is even we can use the fact that and square and halve when is even:

6

�

�

�

�

�

f g
6

f g

6
h i h i

S

S

S

do S ;
if B then exit �;
S od

S S while

S ;
while B do

S ;
S od

PROG z:=x .

P z.x =x x n
x n n n=0

z.1=x

z:=1; P
while n 0 do

P od

x =x.x

z:=1;
while n 0 do

z n := x.z n-1 od

n
n x =x x n n

3.2 Exponentiation Program

2

2

2

2

2

2

2

2

2

=
, ,
, ,

Now apply the transformation \entire loop unrolling" (from [23]) to insert a (modi�ed) copy of the
loop after the statement , , :

=
, ,

=
, ,
, ,

, ,

This can be simpli�ed (since is true within the loop) to give:

=
, ,

=
, ,

, ,

Since holds within the body of the outer loop and is preserved by the body of the inner loop
it must be invariant over the inner loop. Thus the test = can be removed from the condition on
the inner loop. Next, apply \loop unrolling" (from [23]) to insert a copy of the of the outer
loop after the inner loop. On termination of the inner loop we must have (since we cannot
have) so we can simplify the inserted statement to get:

=
, ,

, ,
, ,
, ,

We can \roll up" the statement before the inner loop (the converse transformation to loop unrolling
in [23]) and simplify to get the �nal version:

=

, ,
, ,

7

>

6
h i h i
h i h i

h i h i

6
h i h i

^ 6
h i h i
h i h i

h i h i

6
h i h i

^ 6
h i h i

h i h i

6

6
h i h i

h i h i
h i h i
h i h i

6

h i h i
h i h i

body

z:=1;
while n 0 do

if even(n) then x n := x n/2
else z n := x.z n-1 � od

x n := x n/2

z:=1;
while n 0 do

if even(n) then x n := x n/2 ;
while even(n) n 0 do

if even(n) then x n := x n/2 ;
else z n := x.z n-1 � od

else z n := x.z n-1 � od

even(n)

z:=1;
while n 0 do

if even(n) then x n := x n/2 ;
while even(n) n 0 do

x n := x n/2 od
else z n := x.z n-1 � od

n 0
n 0

odd(n)
n=0

z:=1;
while n 0 do

if even(n) then x n := x n/2 ;
while even(n) do

x n := x n/2 od;
z n := x.z n-1

else z n := x.z n-1 � od

z:=1;
while n 0 do

while even(n) do
x n := x n/2 od;

z n := z.x n-1 od

The �rst prototype of the tool is currently being implemented on an IBM RT 6150 workstation.
The core of the tool is being implemented in Common Lisp, the user communicates with this core
via an X-Windows WIMP interface. A front end for Assembler language is under construction: this
will read in an assembler listing �le and translate it into low-level WSL (Wide-Spectrum Language)
code. WSL is a language we have developed which covers the whole spectrum of operations, from
the low-level operations used in Assembler code, to high-level abstract speci�cations. The language
has been designed to have a simple semantics and be easy to manipulate. The aim is to use
transformations to turn the low-level WSL code into equivalent high-level code and speci�cations
which will be easier to understand and maintain.

Much of the structure editor and parts of the program transformer have already been implemented,
it is hoped that ultimately most of the system will itself be written in WSL and that therefore the
system can be used to maintain its own source code.

Proponents of program transformation systems have seen their value largely as an aid to program
development [5], however the Ward theory of program transformations [23] has proved valuable in
attacking the problems faced by maintenance programmers as well as development programmers.
This has led to the development of the Maintainer's Assistant as an interactive system for maintain-
ing programs which is based on program transformations. The transformations are used to derive
the speci�cation of a section of a program, to present the program in di�erent but equivalent forms
as an aid to program analysis, and for general restructuring functions. The Maintainers Assistant
also includes powerful editing functions and a mechanism for recording the editing history.

The authors would like to express their appreciation to Barry Cornelius and David Bittlestone for
helpful comments made about an earlier draft of this paper.

This work was supported by a grant from the Alvey Directorate. F.W. Calliss is supported by a
Science and Engineering Research Council Studentship.

8

4 Current Status

5 Conclusion

6 Acknowledgements

[1] Arsac, J., \Syntactic Source to Source Program Transformations and Program Manipulation",
, vol. 22, no. 1, pp. 43{54, January 1979.

[2] Arsac, J., \Transformation of Recursive Procedures", in [18], pp .211{265, 1982.

[3] Back, R.J.R., , Mathematical Centre Tracts 131,
Mathematisch Centrum, 1980.

[4] Bauer, F.L., \Programming as an Evolutionary Process", in [15], pp. 153{182, 1976.

[5] Bauer, F.L., \Program Development By Stepwise Transformations { the Project CIP", in [16],
pp. 237{266, 1979.

[6] Calliss, F.W. and Cornelius, B.J., \Dynamic Data Flow Analysis of C Programs", in
,

Volume II, Software Track, IEEE Computer Society Press, pp. 518{523, January 1988.

[7] Calliss, F.W., Khalil, M.M., Munro, M. and Ward, M., \A Knowledge{Based System for
Software Maintenance", to appear in

.

[8] Cornelius, B.J. and Kirby, G.H., \A Programming Technique for Recursive Procedures",",
BIT vol. 16, 1976, pp. 125{132.

[9] Dijkstra, E.W., , Prentice{Hall International, 1972.

[10] Fenton, M., , B.E.M. Microsystems,
1986.

[11] Fletton, N.T. and Munro, M., \Redocumenting Software Systems using Hypertext Techno-
logy", to appear in .

[12] Foster, J. and Munro, M., \A Documentation Method Based on Cross{Referencing", in
, IEEE Computer Society Press,

pp. 181{185, September 1987.

[13] Gri�ths, M., \Program Production by Successive Transformation", in [15] pp. 125-152, 1979.

[14] Gri�ths, M., \Development of the Schorr{Waite Algorithm", in [16] pp. 464{471, 1979.

[15] Bauer, F.L. and Samelson, K., (Eds), , Lecture Notes in
Computer Science, Volume 46, Springer{Verlag, 1976.

[16] Goos, G. and Hartmanis, H., (Eds), \Program Construction", Lecture Notes in Computer
Science, Volume 69., Springer{Verlag, 1979.

[17] Munro, M. and Robson, D.J., \An Interactive Cross Reference Tool for use in Software Main-
tenance", in

, Volume II, Software Track, Western Periodicals Company, pp. 64{70, January 1987.

[18] Neel, D. (Ed), , Cambridge University Press,
1982.

[19] Osterweil, L.J. and Fosdick, L.D., \DAVE { A Validation Error Detection and Documentation
System for FORTRAN Programs", , vol. 6, no. 4, pp. 473{
486, October{December 1976.

9

Communications of the ACM

Correctness Preserving Program Re�nements

Pro-

ceedings of the Twenty First Hawaii International Conference on System Sciences { 1988

Proceedings of the Conference on Software Maintenance

{ 1988

A Discipline of Programming

Developing in DataFlex, Book 2, Reports and other outputs

Proceedings of the Conference on Software Maintenance { 1988

Pro-

ceedings of the Conference on Software Maintenance { 1987

Language Hierarchies and Interfaces

Proceedings of the Twentieth Hawaii International Conference on System Sciences

{ 1987

Tools and Notations for Program Construction

Software { Practice and Experience

References

[20] Peterson ,W.W., Kasami, T., and Tokura, N., \On the Capabilities of While, Repeat and Exit
Statements", , vol. 16, no. 8, pp. 503{512, August 1973.

[21] Ryder, B.G., \Constructing the Call Graph of a Program",
, vol. SE{5, no. 3, pp. 216{226, May 1979.

[22] Ryder, B.G., \An Application of Static Program Analysis to Software Maintenance", in
,

Volume II, Software Track, Western Periodicals Company, pp. 171{179, January 1987.

[23] Ward, M., , D.Phil Thesis, Oxford Univer-
sity, 1988.

[24] Ward, M., \Transforming a Program into a Speci�cation", University of Durham, Computer
Science Technical Report 88/1. Also being reviewed for publication.

10

Communications of the ACM

IEEE Transactions on Software

Engineering

Proceedings of the Twentieth Hawaii International Conference on System Sciences { 1987

Proving Program Re�nements and Transformations

