
ConSUS :
A Scalable Approach to Conditioned Slicing

M. Daoudi, L. Ouarbya,
J. Howroyd & S. Danicic

Goldsmiths College
University of London
London SE14 6NW

United Kingdom

Mark Harman
Brunel University

Uxbridge
Middlesex
UB8 3PH

United Kingdom

Chris Fox
University of Essex

Wivenhoe Park
Colchester
CO4 3SQ

United Kingdom

M. P. Ward
Software Technology Research Lab

De Montfort University
The Gateway,

Leicester LE1 9BH
United Kingdom

Keywords: Conditioned Slicing, FermaT, Program Comprehension.

Abstract

Conditioned slicing can be applied to reverse engineer-
ing problems which involve the extraction of executable
fragments of code in the context of some criteria of interest.
This paper introduces ConSUS, a conditioner for the Wide
Spectrum Language, WSL. The symbolic executor of Con-
SUS prunes the symbolic execution paths, and its predicate
reasoning system uses the FermaT simplify transforma-
tion in place of a more conventional theorem prover. We
show that this combination of pruning and simplification-
as-reasoner leads to a more scalable approach to condi-
tioning.

1 Introduction

Program slicing is a source code extraction technique
that allows a reverse engineer to extract an executable sub-
program based upon a slicing criterion. The original formu-
lation of slicing [24] was static. That is, the slicing criterion
contained no information about the input to the program.
Later work on slicing created different paradigms for slic-
ing including dynamic slicing [1, 17] (for which the input
is known) and quasi-static slicing [19] (for which an input
prefix is known).

The way in which slicing produces an executable sub-
program, based upon some criterion of interest, gives rise
to applications in re-engineering. For example, slicing has
been suggested as a tool for the integration of two different
versions of a program [16]. It also forms part of approaches
to decompilation [5, 6] and has been put forward as part of
a tool-assisted approach to program comprehension [2, 10,

12].
This paper is concerned with a variation of slicing called

conditioned slicing1 [3, 13]. Conditioned slicing forms a
theoretical bridge between the two extremes of static and
dynamic slicing. It augments the traditional slicing crite-
rion with a condition which captures a set of initial pro-
gram states of interest. This additional condition can be
used to simplify the program before applying a traditional
static slicing algorithm. Such pre-simplification is called
conditioning, and it is achieved by eliminating statements
which do not contribute to the computation of the variables
of interest when the program is executed in an initial state
which satisfies the condition.

Conditioned slicing further extends the applicability of
traditional slicing to problems in reverse engineering, be-
cause the additional ability to express conditions allows the
reverse engineer to refine the code extraction to conditions
of interest. For example, Canfora et al. [4] show how a
form of conditioning can be used to isolate reusable func-
tions from large monolithic chunks of code. De Lucia et al.
[10] show how conditioned slicing can be used as part of an
approach to the initial code comprehension which typically
precedes reverse engineering tasks. Cimitile et al. [8, 7]
show that conditioned slicing and related techniques can be
used to extract and reuse functions during reverse and re-
engineering.

The conditioned slicing criterion is a triple,
���������	��


where
�

is some condition of interest and
�����
��


are the
two components of the static slicing criterion. In this paper,
we shall be concerned with the conditioning phase of condi-
tioned slicing, and so the criterion of interest is simply some

1A similar approach called constrained slicing was introduced by Field
et al. [11].

1



condition. Where no condition is given, the system will thus
simply attempt to remove infeasible paths (a useful step
in itself). The paper introduces the ConSUS conditioning
system, which is implemented for the Wide Spectrum Lan-
guage, WSL [21]. WSL is the language used in the FermaT
Transformation system [20] and which has been previously
used as part of a transformation-based approach to reverse
engineering [23]. We chose WSL to allow us to combine
our work on conditioning with our work on slicing [22] and
amorphous slicing [12, 14, 18]. This will (ultimately) allow
us to produce an amorphous conditioned slicer.

WSL uses an Algol-like syntax, but has additional facil-
ities to make it wide-spectrum and to allow transformations
to be expressed within WSL itself. Space prevents a full
explanation of the WSL syntax and semantics.

As an example (both of WSL and of the way in which
conditioning identifies sub-programs) consider the Taxation
program in Figure 1. The figure contains a fragment2 of a
program which encodes the UK tax regulations in the tax
year April 1998 to April 1999. Each person has a per-
sonal allowance which is an amount of un-taxed income.
The size of this personal allowance depends upon the sta-
tus of the person, which is encoded in the boolean variables
blind, married and widowed, and the integer variable
age. For example, given the condition

age ��� 65 AND age � 75 AND income=36000
AND blind=0 AND married=1

conditioning the program identifies the statements which
appear boxed in the figure. This is useful because it allows
the reverse engineer to isolate a sub-computation concerned
with the initial condition of interest. The sub-program ex-
tracted can be compiled and executed as a separate code
unit. It will be guaranteed to mimic the behaviour of the
original if the initial condition is met.

After conditioning a program, a conditioned slice can
be obtained by applying static slicing to the conditioned
program. For example, the conditioned slice on the vari-
able tax for the condition above is depicted in Figure 1,
by shading the lines of the conditioned program which are
identified by static slicing.

This paper describes the ConSUS system, focusing upon
its approach to symbolic execution and to determining the
outcome of symbolic predicates. These two features have
been designed to allow the technique to scale more readily
to larger systems. The principal contributions of this paper
are

� An approach to symbolic execution is used which ex-
ploits the simplification embodied in conditioning to
prune symbolic paths before they are created, speed-
ing up the analysis.

2This is WSL version of the C program previously used in [9].

� A new implementation for reasoning about symbolic
states and path conditions is introduced, which uses the
FermaT simplify transformation to decide proposi-
tions.

� Initial empirical results are presented which show that
the approach scales reasonably well (our experiments
fit quadratic curves).

The rest of this paper is organized as follows. Section 2
introduces an integrated approach to symbolic execution
which combines conditioning and symbolic execution to
prune paths as the symbolic execution proceeds. Section 3
describes our use of the FermaT Simplify transforma-
tion to achieve a form of super-lightweight theorem prov-
ing, which is required to determine the outcome of sym-
bolic predicates in a symbolic conditioned-state pair. Sec-
tion 4 presents the results of an empirical investigation into
the performance of the approach and section 5 concludes
with directions for further work.

2 Symbolic Execution

The ConSUS tool uses a three phase approach:

1. Symbolically Execute: to propagate assertions through
the program where possible;

2. Produce a Conditioned Program: eliminate statements
which are never executed under the given condition;

3. Perform Static Slicing

Steps 1 and 2 are integrated into a single symbolic execu-
tor and conditioner. This allows the conditioning to prune
the execution traces to be considered for symbolic execu-
tion. The slicer we use handles side effects across procedure
calls, but the details are beyond the scope of this paper3.

For conditioning a program, we need not only a sym-
bolic state, but a set of path conditions which represents
the sequences of conditions which must be true in order for
a given symbolic state to pertain at a given point. These
symbolic paths are built up as the symbolic executor moves
through the program. Because there are typically several
feasible paths, the overall symbolic state, which we call���	��

�������

, contains a set of pairs. Each pair consists of a
symbolic path condition and a symbolic state.

More formally, a
���	��
��������

for a program � is defined
as: � ����� � ��� 
����� �"!
where each pair

�#�$� � ��� 

corresponds to a conditioned-state.�$�

is a boolean expression representing the conditions under
3Note to Referee: A separate paper has been submitted to WCRE which

describes the slicer and the way in which it handles side effects.

2



IF (age>=75) THEN personal := 5980
ELSE IF (age>=65) THEN personal := 5720

ELSE personal := 4335 FI FI;

IF (age>=65 AND income >16800) THEN

IF (4335 > personal-((income-16800) / 2)) THEN personal := 4335

ELSE personal := personal-((income-16800) / 2) FI FI;

IF (blind =1) THEN personal := personal + 1380 FI;

IF (married=1 AND age >=75) THEN pc10 := 6692

ELSE IF (married=1 AND age >= 65) THEN pc10 := 6625

ELSE IF (married=1 OR widow=1) THEN pc10 := 3470
ELSE pc10 := 1500 FI FI FI;

IF (married=1 AND age >= 65 AND income > 16800) THEN

IF (3470 > pc10-(income-16800) / 2) THEN pc10 := 3470

ELSE pc10 := pc10-((income-16800) / 2) FI FI;

IF (income - personal <= 0) THEN tax := 0

ELSE income := income - personal ;

IF (income <= pc10) THEN tax := income * rate10

ELSE tax := pc10 * rate10 ;

income := income - pc10 ;

IF (income <= 28000) THEN tax := tax + income * rate23

ELSE tax := tax + 28000 * rate23 ;

income := income - 28000 ;

tax := tax + income * rate40 FI FI FI;

Key

Original Program: Unboxed lines of code

Conditioned program: boxed lines of code

Condition: age � =65 AND age � 75 AND income=36000 AND blind=0 AND married=1

Conditioned slice: shaded boxed lines of code

Figure 1. A Fragment of the Taxation Calculation Program in WSL

3



which a possible path to a statement is taken.
� �

represents
the symbolic state of the variables on that path. We think
of

� �
as a function that maps program variables into their

symbolic value:

� ��� � ��� � �����#� 
	��

����� � 
 

��� � 


The variables in the program will have the symbolic values
given in the first element of the pair if the conditions in the
second element are true.
The symbolic execution starts with an empty symbolic state,
and a null path condition, which can be interpreted as the
universally valid true proposition.
In order to condition a program � , we define the following
functions :

��� � ��� � � ��� � � � ������� ����� ���	��
���� ����� � ������� ���

� ���	����� � ����� � � ������� ����� � ����
��������	� ���	��

�������

� ��� � ����� � � ������� ����� � ����� � ���	��
��������

� �"!���� � 

����� � 
 

��� � � 
����������#

���$� � 
 
���� �

� �����%! � � �&�����#� � � 

���$� � 
 
���� � � �(' �*) �,+ �

The function � � ��� � � ��� � , takes a program,
�

and a���	��
��������
, - , and produces the program which results from

conditioning
�

with respect to - . Thus � � ��� � � ��� � is the
top level function which is used to condition a program. The
function

���	����� � �����
takes a program,

�
and a

���	��

�������
, - ,

and returns the new
���	��
���� ���

that results from symbolically
executing

�
in

���	��
��������
. The function

� ������� � �����
will be

defined in terms of a function over individual conditioned-
state pairs, called

��� � �����
. In order to define � � ��� � � ��� �

and
� �	�.��� � �����

, we require two auxiliary functions
�"!����

and
�����%!��

.
�"! ���

takes and expression,
�

and a state and re-
turns the expression which results from evaluating

�
in the

symbolic state,
�

. This is obtained by substituting variables
mentioned in

�
for the symbolic values they denote in

�
.

The function
�����%!��

denotes the theorem prover at the heart
of the conditioner. This is a detachable component of the
conditioner. ConSUS uses the FermaT simplify trans-
formation to implement a super-lightweight theorem prover,
in a manner described in the next section. In this section the�����%!��

function will be treated as a black box, which takes a
symbolic boolean expression over inequalities between in-
teger arithmatic expressions

�
and returns one of three pos-

sible values. The returned value
'

, indicates that
�

can be
proved to be true. The returned value

)
, indicates that

�
can

be proved to be false. The returned value
+

, indicates that
�

can be proved neither to be true nor to be false.
Of course, the fact that some boolean expression

�
can be

proved to be neither true nor false does not provide any in-
formation and there will be some provable booleans which
our system (and which any conceivable replacement) will
fail to decide. However, the approach will be safe, so that�����%! �

will correctly decide a subset of those statements
which are tautologies and contradictions.

Also for each statement / , the set of post conditioned-
state’s corresponding to a set

� ��� � � � � 
 � �� �"!
of prior

conditioned-state’s is formed by union as :

���	�.�0� � � ��� � / �
� �#� � � � � 
 � �� � ! 
 �

�1
� � ! ���

� ����� � / � �#� � � � � 
 


We will describe the conditioning of a subset of 23/54 ,
which includes sufficient features to explain the approach.

2.1 Conditioning A Sequence Of Statements

Conditioning a sequence of statements / !%6 /�7 is defined in
the following two steps:

���	����� � ����� � / !"6 /87 � � ����
�������� 
 � DF

� ������� � ����� � /87 �:9 


� � ��� � � ��� � � / !%6 /87 � ���	��
���� ��� 

� DF

� � ��� �	� ��� � � / ! � ���	��
�������� 
;6 � � ��� �	� ��� � � /87 �*9 


where :9 � ���	�.�0� � � ��� � / ! � � �	��
�������� 


2.2 Conditioning An Assignment Statement

Let / � DF

!
:=

�
.

The � � ��� � � ��� � function is defined as follows:

� � ��� � � ��� � � ! :=
� � � �	��
�������� 
 � DF

!
:=

�

The set
��� � ����� � �

:=
� � �#� � � � � 
 


of post conditioned-state
pairs corresponding to a prior conditioned-state

��� � � � � 

is

formed by adding to each symbolic state the fact that the
variables on the left-side of the assignment statement is
bound to the value of the expression on the right side, where
all variables occurring in the expression are replaced by
their current symbolic values given in the respective state.
Any variable occurring in the expression which does not al-
ready have a symbolic value in the relevant state is assigned
a unique symbolic constant value (rather like a skolem con-
stant).
The

��� � �����
function is defined as follows:

��� � ����� � !
:=

� � �#�$� � ��� 
 
 � DF

� �#����< � �=� �(! ��� � � � ��� 
 � � �$� 
 �

4



where
<

, is the assignment function update function
defined below

� < � � DF

��� ! � ��� � � ! � ����� ��� � ! � ����� �
	���
 ����� � ! � ������� � 
 �

2.3 Conditioning An IF Statement

Let / � DF if B then / !
else /�7 fi.

Given a set
� ��� � � � � 
 � �� �"!

of prior conditioned-state’s, the
post conditioned-state’s and the conditioned statement are
now defined.
Define for each new path condition

� �
, from a conditioned-

state
����� � ��� 


say, the true and false path conditions
����

and����
, respectively, by

� �� � DF

��� 	 �(! ��� � � � �$� 

� �� � DF

�$� 	 �"! ��� � � � � �$� 


Then
A set Update( / ,

�#�$� � �$� 

) of post conditioned-state’s cor-

responding to a prior conditioned-state
�#� � � �$� 


is given
according to whether

� � � DF

� ��� �"! ��� � � � � � 


is provably true or false or otherwise as follows:

� If prove
� � ��
 �

'
then

Update( / ,
���$� � ��� 


) � DF Update( / !
,
����� � ���� 


)

� If prove
� � � 
 � )

then
Update( / ,

��� � � � � 

) � DF Update( / 7 , ��� � � ���� 


)

� Otherwise

��� � ����� �
S
� �#��� � ����
 


� DF

��� � ����� � / ! � �#�$� � � �� 
 
�� ��� � ����� � /87 � �#�$� � � �� 
 


� � ��� � � ��� � � / �
� ��� � � � � 
 � �� �"! 


is defined according to
whether for all

� ��� � � �!�"� � �
, it is the case that � � is

provably true, or provably false or neither, as follows :

� If prove
� � ��
 �

'
for all

�
then

� � ��� � � ��� � � S �
� �#� � � � � 
�� �� �"! 


� DF
� � ��� � � ��� � � / ! � � �#� � � � �� 
 � �� �"! 


� If prove
� � � 
 � )

for all
�

then

� � ��� � � ��� � � S �
� ����� � ��� 
�� �� �"! 


� DF

� � ��� � � ��� � � /87 �
� �#��� � � �� 
 ���� �"! 


� Otherwise

� � ��� � � ��� � � S �
� �#�$� � �$��
�� �� �"! 


� DF

� � � �$#$� � / �! �%��
�� / �7 � �

where :
/ �! � � � ��� � � ��� � � / ! � � �#�$� � ���� 
 � �� �"! 

/ �7 � � � ��� � � ��� � � /�7 �

� �#�$� � ���� 
 � �� � ! 


x := 0 ; x := 0 ;
y := 1 ; y := 1 ;
if x % 0

then if y % 2
then n := 3;
else n := 4; n := 4;

fi;
else n := 5;

fi;
if n % 3

then a := 5;
else a := 7; a := 7;

if ;
Original program & Conditioned program &�'

Figure 2. Conditioning an IF statement

Figure 2 illustrates a basic example of this analysis us-
ing a four-statement program containing two assignments
followed by two IF statements.
The set of conditioned-states (

���	��

�������
) after the execu-

tion of the two initial assignments is (")+* )�,.-�/10�-$)324-$560878-:9�;=<4>=0+?"@
At the first predicate 9�;=<4>BAC/D%E/ is sent to the sim-
plifier and is simplified to True. As a result, the false
branch of the IF statement is removed and

� �	��
��������
be-

comes (")�* )3,.-F/10F-$)�2G-6560H78-:9�; <I>�JK/L%M/10+? . At the nested pred-
icate 9�;=<4>�JN/O%P/MA�5Q%PR is sent to the simplifier
and is simplified to False. As a result, the true branch
of the nested IF statement is removed and

� ����
��������
be-

comes (")+* )3,.-F/10F-6)32G-6560F-6)3ST-:U"0H78-+9�;=<4>VJK/K%W/XJZY[):5\%]R10+0+?"@ Fi-
nally 9�;=<4>^JN/_%`/
JaY[)+5M%`R10:0QAbUc%`d is simpli-
fied to False resulting, in the removal of the true part
of the IF program statement, and

���	��

�������
becoming

(")+* )�,.-�/10F-6)324-$560F-6)3ST-+U"0�-$)�eG-Ffg0878-:9�;=<4>hJi/�%j/�J�Yi):5V%NR10+0kJ�Yi)3Ul%Nd10�?
2.4 Conditioning A WHILE Statement

Let
/ � DF while B do /im od

and � � � DF

� ��� �(! ��� � � � � � 

There are three cases to consider :

� If prove
� � � 
 � ) then

��� � ����� � / � �#�$� � �$� 
 
 � DF

� �#��� � � �� 
 �

5



A negation of the the condition
�

is added to a
copy of each of the current conditioned-state pairs,
replacing all variables by their symbolic values in the
corresponding symbolic states.

� If prove
� � � 
 �

'
then

��� � ����� � / � �#� � � � � 
 
 � DF��� � ����� � / � �#� �� � � � 	 �"!���� � � � � �� 
 	j� �"! ��� � � � � � �� 
 
 


where :� '� : is the symbolic state at the start of the final iteration.� ' '� : is the symbolic state obtained after the final iteration.

The loop body /im is executed at least once. If
the loop terminates, then at the final execution of /�m
the loop may or may not have already been executed.
In general it will have been executed several times
before. It is not easy to obtain precise symbolic
representations of any variables which might have
been assigned values during previous iterations of the
loop.
The approach proceeds as follows:

1. To a copy of all the prior conditioned-state pairs
is added the fact that the condition

�
is initially

true.

2. Conceptually, / m is then symbolically executed
just once, in the context of the conditioned-state
pairs that result, except that any variables which
might have been assigned values in previous iter-
ations around the loop are treated as if they have
previously been assigned values that are unique
symbolic constants.

3. As the loop condition must have been true at
the start of the start of the final iteration, and
false following the final iteration, to each of the
conditioned-state pairs that result from the final
iteration, the algorithm adds the loop condition,
as evaluated in the symbolic states in the begin-
ning of the final iteration, and the negation of the
loop condition as evaluated at the end of the final
iteration.

� Otherwise
The union of the conditioned-state’s that result from
the previous two cases is formed.

The Conditioned statement
� � ��� �	� ��� � � / �

� �#��� � ����
�� �� �"! 

is defined according to whether for all

� � � � � � �!�"� � � ; � � is
provably false or otherwise, as follows :

x := 0; x := 0;
y := 2; y := 2;
while x � 0 do

y := 1;
x := x � 1;

od;
if y � 2;

then n := 4; n := 4;
else n := 5;

fi;
while n � 2 do while n � 2 do

@PRINT(n); @PRINT(n) ;
n := n � 1; n := n � 1;

od; od:
if n � 2

then a:=6;
else a:=7; a := 7;

fi;
Original program

�
Conditioned program

� '
Figure 3. Conditioning a WHILE Loop

� If
�$�%�%! � � � � 
 � ) for all

�
then

� � ��� �	� ��� � � / �
� �#��� � ��� 
�� �� �"! 
 � DF


���� �

� Otherwise� � ��� �	� ��� � � / �
� �#��� � ��� 
�� �� �"! 
 � DF � #������ � � � / �m � �

where :
/ �m � � � ��� � � ��� � � / m �

� �#� �� � � � 	 �"! ��� � � � � �� 
 � �� � ! 

Figure 3 illustrates the effect of conditioning on a

WHILE loop.

2.5 Conditioning An Assert Statement

Let / � DF

� � �
where

� � �
is an assertion statement.

Such a statement acts as a partial skip statement, and can be
thought of as being equivalent to

� #����#� � � � � 
�� � � � �
That is, if the condition

�
is true, then the statement ter-

minates immediately without changing any variables, oth-
erwise it fails to terminate [13]. Moreover, an assert state-
ment is very helpful from a practical point of view as we
can insert the conditioned slicing criterion directly into the
program as program code. For an assert, the functions� � ��� � � ��� � and

���	����� � �����
are defined as follows:

��� � ����� � � � � � �#�$� � �$��
 


�
	
� 
�

� �#� � � � � 
 � � ��
 � �����%!�� � � � 
 �
'

� �#� � �*) 
 � � ��
 � �����%!�� � � � 
 � )� �#� � � ���� 
 � � �$#��"� � ��
��

6



� � ��� � � ��� � � � � � � � ����
�������� 


�

	





� 





�

/ ��� � � ��
 � �$�%�%! � � � � 
 �
'

� �;�%� � � ��
 � �$�%�%! � � � � 
 � )
� � � � �$#$�"� � � 
��

3 Super-lightweight Theorem Proving with
FermaT’s simplify Transformation

Beside having its own parser, a major reason behind im-
plementing a conditioned slicer in WSL was the many avail-
able transformations in FermaT. The ability to simplify con-
ditions is important for any conditioned slicer. An obvious
solution is to use an existing theorem prover; previous ap-
proaches to conditioned slicing either used this approach or
suggested that it should be used [3, 9]. Unfortunately, the
use of a theorem prover can impose a large overhead in both
memory and CPU time.

The theorems of relevance in ConSUS typically involve
inequalities over arithmetic expressions. There may be
techniques that are more appropriate for these kinds of theo-
rems than general purpose theorem provers. One such tech-
nique is the one adapted by the built in simplifier in the Fer-
maT workbench.

3.1 Advantages and Disadvantages

The FermaT expression and condition simplifier’s de-
sign is aimed at providing a fast and efficient simplification
for common expressions and conditions which occur during
transformation, while providing a fast response on expres-
sions and conditions which cannot be easily simplified.

For scalability, the requirements for an expression and
condition simplifier for the FermaT transformation system
were for it to be :

1. Efficient, especially on small expressions.

2. Easily extendible. It would be difficult to attempt to
simplify all possible expressions which are capable of
simplification. Since we must be content with a less-
than-complete implementation, it is important to be
able to add new simplification rules as and when nec-
essary;

3. Easy to prove correct. Clearly a faulty simplifier will
generate faulty transformations and incorrect code. If
the simplifier is to be easily extended, then it is impor-
tant that we can prove the correctness of the extended
simplifier equally easily.

4 Empirical Validation

We considered four classes of programs F, T, SN, and
NSN. The programs in each class are formed from program
fragments with multiple repetitions of one of these frag-
ments. This gives us a systematic approach to testing the
scalability of ConSUS.

The programs of class F are generated from the frag-
ments shown in Figure 4 with multiple repetitions of the
second fragment. This set of programs tests the condition-
ing process of ConSUS on sequential if statements where
the conditions are testing equality of arithmetic expressions
(as opposed to inequalities). Here the paths through the rep-
etitions of the second fragment is always the same.

The T-class of programs is generated in the same manner
using the fragments in Figure 5, again repeating the second
fragment. The conditions of the IF statements involve in-
equalities and a logical OR. Furthermore, this class of pro-
grams involves greater symbolic evaluation than the F-class,
as the program variables get updated continually (for exam-
ple,

� � � ��� � ) where as in the F-class the variables are as-
signed constant numeric values (for example,

� � ��� ). Here
the paths through the repetitions of the second fragment al-
ternate for each repetition; with

� � � true and
� � � � 
 OR� � ��� 
 false first, and then vice-verse.

The SN-class of programs are generated from the pro-
gram fragments in Figure 6 by inserting multiple copies
of the middle program fragment into the then branch of
the previous IF statement, and adding an appropriate num-
ber of fi’s in the third fragment. This produces an arbi-
trarily large nesting of IF statements. The NSN-class is
formed in exactly the same way except the initial fragment
is excluded. The difference between these two program
classes is that in NSN no simplification can be performed
by ConSUS where as in SN the path through the programs
is uniquely determined. With these two classes the perfor-
mance of ConSUS is tested in the presence of nested if state-
ments in best and worse case scenarios.

The results of running ConSUS on a set of programs from
each class are shown in Figures 8, 7, 9 and 10. These results
were obtained on a Dual Pentium III with

� �����
	
MHz and

512MB RAM running Linux. The graphs show the time
taken in seconds by ConSUS to condition a program of a
given class, plotted against the size of the program in lines
of code.

Least squares regression was performed on the data sets
for the following models:

� linear model � � �����,�
;

� exponential model � � � �
���
;

� power law model � � ��� �
;

� quadratic model � � �����,��� � � 7 .

7



y
� � 1; x

� � 0;
if x � 0

then if y � 2
then n

� � 3
else n

� � 5;
fi;

else n
� � 5

fi;
if n � 3

then a
� � 4

else a
� � 5

fi;

Figure 4. F1-Style Program

y
� � 0; x

� � 1;
c
� � 2; b

� � c+1;
if b � c

then x
� � x � 1; y

� � y � 2;
b
� � b � 1; c

� � c � 2
else x

� � x � 2; y
� � y � 1;

b
� � b � 2; c

� � c � 1
fi;
if (b � c) � 9 (x � y)

then x
� � x � 2; y

� � y � 1;
b
� � b � 2; c

� � c � 1
else x

� � x � 1; y
� � y � 2;

b
� � b � 1; c

� � c � 2
fi;

Figure 5. T1-Style Program

The quadratic model (with two degrees of freedom) gave
the best fit to the data. The other models being significantly
worse even for models of one degree of freedom. The least
squares quadratic polynomials are given below each figure
along with the coefficient of determination

9 7 .
For an analysis as complex and semantically-intricate as

conditioning, it is unreasonable to expect linear or near lin-
ear performance, so quadratic complexity would appear to
be the best we can hope for. This is because conditioning in-
volves theorem proving (of a kind) and symbolic execution
which can be computationally expensive.

Fortunately, conditioning and conditioned slicing are
typically applied to programs at the unit level, for example
as a support for detailed understanding [10], as a unit level
testing aid [15] or as a unit level reuse and code extraction
tool [8, 7, 4]. For these applications, quadratic performance
is acceptable and the technique therefore appears to scale
well, at least at the unit level.

x
� � 0;

b
� � 1;

c
� � 2;

if x ��� b
then

x
� � x+1;

b
� � b+1;

c
� � c+1;

if b ��� c
then

y
� � 1;

fi;
else y

� � 2;
fi;

Figure 6. Simplifiable Nested Program

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900 1000 1100

T
im

e
 (

in
 s

e
co

n
d
s)

Size of Program (In LoC)

Figure 7. Performance for F-class programs

Least squares quadratic polynomial is

� ��� � ���
��� � � 	��
!
�
	 � �
	 � 	�� � 	���
�� � 	 � 	 � 	 � � � 	������ 7

with
9 7 � 	 � ��� 	 �4� .

8



0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700 800 900 1000 1100

T
im

e
 (

in
 s

e
co

n
d
s)

Size of Program (In LoC)

Figure 8. Performance for T-class programs

Least squares quadratic polynomial is

� � 	 ��� ��� � � � 	 �
!
� � � � 	�� � � � 	 ��
 � � � � � 	 � � � � 	 ��� � 7

with
9 7 � 	 � ��� � ��� .

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700 800 900 1000

T
im

e
 (

in
 s

e
co

n
d
s)

Size of Program (In LoC)

Figure 9. Performance for SN-class programs

Least squares quadratic polynomial is

� � 	 � � 	 � � � � 	
!
� 	 � � 	 ���&� � 	��

! � � � ����� � � � � 	��	��� 7

with
9 7 � 	 � � � � � � .

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900

T
im

e
 (

in
 s

e
co

n
d
s)

Size of Program (In LoC)

Figure 10. Performance for NSN-class pro-
grams

Least squares quadratic polynomial is

� � 	 � � � 	 � � � 	
!
� � � 	 ��� 	&� � 	 �

! ��� � ����� � 	 � � 	 � 
 � 7

with
9 7 � 	 � ��� �
� � .

5 Conclusions

This paper has introduced a conditioner, ConSUS, for the
Wide Spectrum Language WSL. As with previous work the
approach involves both symbolic execution and reasoning
about symbolic predicates to determine whether they either
must be true or false given the information built up in the
symbolic paths traversed.

Unlike previous approaches, the ConSUS system inte-
grates the reasoning and symbolic execution within a sin-
gle system. Our empirical analysis of the approach sug-
gests that for ‘reasonable’ conditioning tasks, the algorithm
is polynomial in the size of the program to be conditioned.

References

[1] H. Agrawal and J. R. Horgan. Dynamic program slicing. In
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 246–256, New York, June
1990.

[2] D. W. Binkley, M. Harman, L. R. Raszewski, and C. Smith.
An empirical study of amorphous slicing as a program com-
prehension support tool. In 
���
 IEEE International Work-
shop on Program Comprehension (IWPC 2000), pages 161–
170, Limerick, Ireland, June 2000. IEEE Computer Society
Press, Los Alamitos, California, USA.

[3] G. Canfora, A. Cimitile, and A. De Lucia. Conditioned pro-
gram slicing. In M. Harman and K. Gallagher, editors, Infor-
mation and Software Technology Special Issue on Program

9



Slicing, volume 40, pages 595–607. Elsevier Science B. V.,
1998.

[4] G. Canfora, A. Cimitile, A. De Lucia, and G. A. D. Lucca.
Software salvaging based on conditions. In International
Conference on Software Maintenance (ICSM’96), pages
424–433, Victoria, Canada, Sept. 1994. IEEE Computer So-
ciety Press, Los Alamitos, California, USA.

[5] C. Cifuentes and A. Fraboulet. Intraprocedural static slicing
of binary executables. In IEEE International Conference
on Software Maintenance (ICSM’97), pages 188–195. IEEE
Computer Society Press, Los Alamitos, California, USA,
1997.

[6] C. Cifuentes and K. J. Gough. Decompilation of binary pro-
grams. Software Practice and Experience, 25(7):811–829,
July 1995.

[7] A. Cimitile, A. De Lucia, and M. Munro. Identifying
reusable functions using specification driven program slic-
ing: a case study. In Proceedings of the IEEE Inter-
national Conference on Software Maintenance (ICSM’95),
pages 124–133, Nice, France, 1995. IEEE Computer Soci-
ety Press, Los Alamitos, California, USA.

[8] A. Cimitile, A. De Lucia, and M. Munro. Qualifying
reusable functions using symbolic execution. In Proceed-
ings of the ���

�
working conference on reverse engineering,

pages 178–187, Toronto, Canada, 1995. IEEE Computer So-
ciety Press, Los Alamitos, California, USA.

[9] S. Danicic, C. Fox, M. Harman, and R. M. Hierons. ConSIT:
A conditioned program slicer. In IEEE International Confer-
ence on Software Maintenance (ICSM’00), pages 216–226,
San Jose, California, USA, Oct. 2000. IEEE Computer So-
ciety Press, Los Alamitos, California, USA.

[10] A. De Lucia, A. R. Fasolino, and M. Munro. Understand-
ing function behaviours through program slicing. In � ��

IEEE Workshop on Program Comprehension, pages 9–18,
Berlin, Germany, Mar. 1996. IEEE Computer Society Press,
Los Alamitos, California, USA.

[11] J. Field, G. Ramalingam, and F. Tip. Parametric program
slicing. In ��� �

�
ACM Symposium on Principles of Program-

ming Languages, pages 379–392, San Francisco, CA, 1995.
[12] M. Harman and S. Danicic. Amorphous program slicing. In� ��
 IEEE International Workshop on Program Comprenhe-

sion (IWPC’97), pages 70–79, Dearborn, Michigan, USA,
May 1997. IEEE Computer Society Press, Los Alamitos,
California, USA.

[13] M. Harman, R. M. Hierons, S. Danicic, J. Howroyd, and
C. Fox. Pre/post conditioned slicing. In IEEE Inter-
national Conference on Software Maintenance (ICSM’01),
pages 138–147, Florence, Italy, Nov. 2001. IEEE Computer
Society Press, Los Alamitos, California, USA.

[14] M. Harman, L. Hu, X. Zhang, and M. Munro. GUSTT:
An amorphous slicing system which combines slicing and
transformation. In �	� � Workshop on Analysis, Slicing, and
Transformation (AST 2001), pages 271–280, Stuttgart, Oct.
2001. IEEE Computer Society Press, Los Alamitos, Califor-
nia, USA.

[15] R. M. Hierons, M. Harman, C. Fox, L. Ouarbya, and
M. Daoudi. Conditioned slicing supports partition test-
ing. Software Testing, Verification and Reliability, 12:23–28,
Mar. 2002.

[16] S. Horwitz, J. Prins, and T. Reps. Integrating non–interfering
versions of programs. ACM Transactions on Programming
Languages and Systems, 11(3):345–387, July 1989.

[17] B. Korel and J. Laski. Dynamic program slicing. Informa-
tion Processing Letters, 29(3):155–163, Oct. 1988.

[18] Y. Sivagurunathan, M. Harman, and B. Sivagurunathan.
Slice-based dynamic memory modelling – a case study. In
��
���
 IEEE Annual Computer Software and Applications
Conference (COMPSAC 2002), Oxford, UK, Aug. 2002.
IEEE Computer Society Press, Los Alamitos, California,
USA. To Appear.

[19] G. A. Venkatesh. The semantic approach to program slic-
ing. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 26–28, Toronto,
Canada, June 1991. Proceedings in SIGPLAN Notices,
26(6), pp.107–119, 1991.

[20] M. Ward. Assembler to C migration using the FermaT trans-
formation system. In IEEE International Conference on
Software Maintenance (ICSM’99), Oxford, UK, Aug. 1999.
IEEE Computer Society Press, Los Alamitos, California,
USA.

[21] M. Ward. The formal approach to source code analysis
and manipulation. In �	� � IEEE International Workshop on
Source Code Analysis and Manipulation, pages 185–193,
Florence, Italy, 2001. IEEE Computer Society Press, Los
Alamitos, California, USA.

[22] M. Ward. Program slicing via FermaT transformations.
In ��
���
 IEEE Annual Computer Software and Applications
Conference (COMPSAC 2002), Oxford, UK, Aug. 2002.
IEEE Computer Society Press, Los Alamitos, California,
USA. To Appear.

[23] M. Ward and K. Bennett. A practical program transforma-
tion system. In Working Conference on Reverse Engineer-
ing, pages 212–221, Baltimore, MD, USA, May 1993. IEEE
Computer Society Press, Los Alamitos, California, USA.

[24] M. Weiser. Program slicing. IEEE Transactions on Software
Engineering, 10(4):352–357, 1984.

10


