
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.0322000

Climbing The Hill to Understand The Code
DONI PRACNER1, MARTIN WARD2, NATAŠA SUKUR1 and ZORAN BUDIMAC1
1University of Novi Sad, Faculty of Sciences, Department of Mathematics and Informatics, Trg Dositeja Obradovića 4, Novi Sad, 21000, Serbia (email:
doni.pracner@dmi.uns.ac.rs, natasa.sukur@dmi.uns.ac.rs, zjb@dmi.uns.ac.rs)
2Software Migrations Ltd, The Old Church, 48 Verulam Road, St. Albans, Hertfordshire, AL3 4DH United Kingdom, (email: martin@gkc.org.uk

Corresponding author: Doni Pracner (email: doni.pracner@dmi.uns.ac.rs).

The authors from the University of Novi Sad gratefully acknowledge the financial support of the Ministry of Science, Technological
Development and Innovation of the Republic of Serbia (Grants No. 451-03-66/2024-03/200125 & 451-03-65/2024-03/200125).

ABSTRACT Software maintenance takes up a disproportionately large amount of time in the modern
software life cycle. One of the common problems is understanding the original code that is being restructured
and improved and this is especially true with low-level code. This paper investigates the results and properties
of an automated process that can raise the abstraction level of code from low-level operations to high-
level structures. The process is made of independent components and can be adapted to different scenarios.
The automated improvements implementation relies on the program transformation system FermaT and its
catalogue of semantics-preserving transformations. The process uses hill climbing and ametric for the fitness
function of the programs. This component was made to work on general inputs, without explicit knowledge
of the type of origin of the program. The paper explores how different inputs are actually handled by the
system, what are the properties and how these can be used for further improvements. Two main types of
inputs are shown, x86 assembly and MicroJava bytecode. These two have many operational differences, and
the translator tools introduce some more, but nonetheless, the same process can handle all of these and, on
average, improve the Structure metric (a good approximation of the complexity of the code) by around 85%.

INDEX TERMS Automated code transformation, Bytecode, Assembly, Program comprehension

I. INTRODUCTION
Computers are integrated in almost every aspect of our lives,
and with them a huge amount of software that they run.
The software that runs even on relatively simple devices can
be quite complex. Since software is hard to develop, and
easy to copy this in turn leads to a lot of software reuse
and dependencies. Maintenance becomes harder as time goes
on, and often the first hurdle to overcome is to understand
what the original logic of the code is. This is especially true
when working with low-level code, partly due to the inherent
difficulties of the logic of such programs, but also due to fewer
and fewer developers having practical experiences with such
languages.

This paper analyses a previously presented approach that
enables automatic restructuring and raising the abstraction
level of low-level source code. A higher-level representation
makes it easier to understand the underlying logic, which
in turn reduces maintenance time. The process consists of
several stages and mostly independent tools, designed with
the concepts of flexibility and adaptability in mind (Fig. 1).

The core part of the process is an automated transformation
system. It relies on a hill climbing algorithm, where progress
is always made towards a better program, as decided by the

fitness function used. The system uses semantics-preserving
transformations, which means the logic is always maintained
and there is no need for a strong test suite to verify the
end results, while the process is guided towards a higher-
level program. The process uses the FermaT transformation
system [1] which operates on and is written in WSL (Wide
Spectrum Language). FermaT has been successfully used
in restructuring large scale industrial programs, for instance
transforming legacy assembly intomaintainable C or COBOL
code. The automated transformation component in this pro-
cess is called HCF, short for hill climbing in Fermat.

FIGURE 1. Overview of the process discussed

Apart from the automated transformations, translators to
WSL are needed for each input program type. This paper will
present experiments on two main input groups, one written in

VOLUME 11, 2023 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3389500

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Pracner et al.: Climbing The Hill to Understand The Code

x86 assembly, and the other in MicroJava bytecode [2]. The
appropriate translations result in low-level programs in WSL,
which will then be transformed to higher-level versions.

The core transformation system is independent from the
input languages and makes no assumptions about how the
input WSL was created. The end result of the presented
process is, in a best case scenario, a high-level version of the
program. At worst, only a part of the reengineering is done
automatically, but it still results in a program that is easier to
understand and it can save many hours of work on manual
restructuring.

In this paper the focus is on the ability of the central part
of the process (HCF) to handle different types of inputs, and
to better understand the process itself. This should give us an
insight of the strengths and weaknesses of the system, where
it can be applied in the future, how it can be improved, and
what alternatives can be used.

The rest of this paper is organised as follows. Section II
presents the related work and approaches. Section III shows
more details about FermaT, the system that is used in this
process and some of the previous usages of the system. Sec-
tion IV presents the details of the main process of this paper,
the input programs, and the results achieved. It also gives the
details on how to reproduce the results. Finally, Section V
gives a short overview of the paper and options for future
work.

II. RELATED WORK AND APPROACHES
The work of restructuring programs to high-level constructs
is in many ways the same as that of decompilers. They try to
reconstruct the original program that was the source for the
executable code at hand. Decompilers are generally written
with a very specific input language and targeted structures to
be recognised. They also tend to have a fixed output language,
although sometimes it is an intermediary representation and
can be exported to multiple languages. The main difference in
this paper is that the central steps of automated restructuring
should be largely independent from the inputs (as will be
shown in later sections).

Some of the earliest work in decompilation dates back to
the 1960’s, but most of the modern understanding of decom-
pilers is mostly traced back to Cristina Cifuentes’ PhD thesis
which presented a 80286 decompiler to C [3]. One of the big
problems for decompilers is the optimisations done by com-
pilers which make it harder to reconstruct the original source
code. For instance, a tool developed to produce C language
code from SPARC assembly, asm2c, was able to reduce the
size of programs by 66% on non-optimised assembly and by
about 5% on optimised versions [4]. An important aspect of
the end results is the correctness, since some abstractions can
be wrongly interpreted. Phoenix, a GNU C decompiler, was
proven on a set of programs from coreutils to outperform the
de facto industry standard tool IDA Hex-Rays1 [5]. Phoenix is
based on the CMU Binary Analysis Platform (BAP), which

1https://www.hex-rays.com/products/decompiler/index.shtml

translates assembly into an intermediate language to help
program verification [6]. Large efforts are spent on removing
jumps in code. Dream was written as an IDA plugin, with the
goal of producing goto-free output, and made more compact
results on the GNU coreutils utilities than both Phoenix and
Hex-Rays [7].
Decompilingmachine code generated for virtual machines,

such as the bytecode generated by Java compilers, provides
somewhat different problems than when working with assem-
bly made directly for processors. Some tasks are easier, due
to the more direct organisation of many structures and more
embedded data related to classes, method names, parameters,
etc. There is less optimisation done by the compiler itself,
since some of them are done by the virtual machine itself
when doing just-in-time translations. This again makes the
job of decompiling easier. On the other hand the object ori-
ented nature of code, with run-time types, inheritance, inter-
faces and exception handling adds new layers of problems.
While many developers believe that Java bytecode can be

fully decompiled in most cases to the levels of human written
code, even the best decompilers are not always successful.
Research on a sizeable sample set showed that the best can
decompile about 80% of the programs, while the rest can
include faults or even not be compilable [8].

Another major branch of research in code maintenance is
automated program repair. While having different goals than
the approach in this paper, which focuses on understanding
the code, there are some similarities. Specifically, we will
mention some approaches that also use fitness function to
guide and evaluate their processes.
The GenProg system has an approach to automated soft-

ware repair via genetic programming [9]. The code itself is
represented as a sequence of statements and the genetic opera-
tors are applied on this level, while the fitness of the programs
is decided based on positive and negative run time tests which
represent the desired behaviour and the faults. The mutation
operators weremadewith the assumptions that it is very likely
that elsewhere in the program there are correct versions of the
faulty code. This means that they do not generate entirely new
code, but insert other statements from the program, which
also reduces the search space significantly. The system has
been successfully used with C, assembly and Java bytecode
programs including real world examples such as web servers
and Unix utilities [10], [11]. The main advantages of the
approach are that it can be fully automated and has been
shown to fix real bugs at relatively low costs.
ARJA-e [12] is another evolutionary program repair sys-

tem, aimed at Java code repair. Its predecessor is ARJA [13],
a tool which works on GenProg’s search space, but brings
certain enhancements in terms of the genetic programming
algorithm. ARJA showed its strength in performance when
compared to GenProg as well as in multi-location bug repair.
ARJA-e tries to provide smoother gradients for exploring the
search space by defining the degree to which a modified
program is close to passing a test case.

2 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3389500

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.hex-rays.com/products/decompiler/index.shtml


Pracner et al.: Climbing The Hill to Understand The Code

Another common problem for automated program repair is
the tendency to overfit the patch to the tests. This was proven
with formal methods on a set of tools and Java programs
annotated with Java Modelling Language (JML) [14].

Hill climbing is not a frequent approach in automated pro-
gram restructuring. It has been briefly considered by Arcuri
and Yao [15] and not analysed into depth due to its tendency
towards local optimums. Despite of this, the results of this
paper prove in practice that good results are possible with it.

A program transformation can in general be defined as
any action that takes a program as an input and gives a
different program as its output. This can then be something
as simple as a change of variable, swapping branches of a
conditional statement, or a complete rewrite. For instance, a
patch for a software fault could be viewed as a transformation.
Many systems use a self modifying (or meta-programming)
approach, which means the same language is used to write the
program beingmodified and the program and transformations
that modifies it, Meta-programming is in some contexts used
in general for languages which are primarily meant to write
other programs.
Rascal is an example of a domain specific language (DSL)

built around the idea of meta-programming and building tools
for program manipulation [16]. It can be used for refac-
toring and analysing existing program, or construction of
other DSLs. It has been used on C, Java, and PHP among
others [17].

A special class are transformations that preserve the seman-
tics of the program. These can then be applied with no fear
of changing what the programs does, while allowing changes
in the structure. On the other hand, these can not be used
exclusively for applications such as program repair or intro-
ducing new features, since this inherently has to change the
semantics. Transformations can be used to improve existing
programs (or specifications, or models) or to add new features
to them. For example, it is possible to extract models from
source code that can give a better insight into the original
code and enable the usage of high level transformations.
Gra2MoL is a tool that can extract models from any text
that conforms to grammars [18]. Formal methods can also be
used for verifying model transformations done in non-formal
ways [19].

The FermaT transformation system and the languageWSL
are an example of a self modifying (or meta-programming)
approach, which means the same language is used to write the
program beingmodified and the program thatmodifies it [20].
More detail about this system is given in Section III. One
of the advantages of the system is that it is based on formal
proof of semantic equivalence. Provided the transformations
have been implemented correctly, they can be applied freely
with a guarantee that semantic equivalence is preserved, and
therefore that no security holes have been introduced, or any
loss of functionality was caused by the transformations. In
contrast, many systems work by making changes to the code
and then running regression tests to see if the functionality

has changed. This cannot catch changes to the functionality
which are not explicitly tested for and canmiss subtle changes
to the behaviour of the program. For example, if the program
includes security code checks which are not tested for in
the regression tests, then a transformation which removes
these checks (and therefore introduces a security hole) will be
considered a ‘‘success’’: it has reduced the size of the program
while still passing all tests! An example of such a test is code
which sanitises user input to prevent SQL injection attacks. If
the regression tests do not explicitly test for SQL injection,
then this code will likely be removed and a security hole
created.

III. PROGRAM TRANSFORMATIONS IN FERMAT
This section covers the existing transformation system Fer-
maT that is used in the main transformation component HCF.
It also presents some of the previous usages of the system for
code transformations and restructuring.
FermaT is the current implementation ofWSL (Wide Spec-

trum Language) [21]. FermaT provides a whole catalogue
of semantics preserving transformations that are at the core
of the system. It also provides structures that are able to
represent everything from low-level structures up to high-
level abstract specifications.
An action system is a specific structure in WSL with the

goal of representing messy (‘‘spaghetti’’) code with a lot of
jumps and go-to style commands in such a way that can be
mixed with the higher-level structures and eventually con-
verted into them. This type of program is common for legacy
libraries and low level code in general. An action system
consists of a number of actions, each defined by its name and
containing a block of code. It can be viewed as a collection
of procedures with no parameters. Additionally, the execution
of the whole system can be interrupted at any point. Action
systems were originally introduced by Jacques Arsac [22],
[23]. Two examples are shown in Fig. 2. The action whose
name is used at the beginning of the system is the one from
which the execution starts, while CALL commands are used to
jump to other actions. Once that action ends, execution will
be returned to the caller. The whole action system stops its
execution once the start action finishes, or if there is a call to
a special name ‘‘Z’’ which terminates the system.
Depending on how the jumps and returns are used there

are three types of action systems. The first one is recursive
in which all the calls are returned normally, like the first
example shown in Fig. 2. This is what is commonly expected
out of recursive procedures. The second one is the regular
system in which none of the calls ever return – the system
is terminated by a CALL Z (second example in the Figure).
Regular action systems have some advantages in transforma-
tions. For instance, since the calls are not returning, then any
code that comes after a CALL command can be ignored, and
CALL commands are therefore just simple jumps. There are
transformations in FermaT that can only be applied to regular
systems and in turn produce regular systems (with obvious
exceptions such as converting an action system into ‘‘normal’’

VOLUME 11, 2023 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3389500

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Pracner et al.: Climbing The Hill to Understand The Code

ACTIONS start:
sidequest ==

PRINT("sidequest")
END
start ==

PRINT("start");
CALL sidequest;
PRINT("we are back

");
CALL final;
PRINT("the end")

END
final ==

PRINT("final")
END

ENDACTIONS

ACTIONS start:
middle ==
PRINT("middle");
CALL final

END
start ==
PRINT("start");
CALL middle;

END
final ==
PRINT("final");
CALL Z

END
ENDACTIONS

FIGURE 2. A recursive and a regular action system

code). The third type is the hybrid action system which is any
combination of both returning and non-returning calls.

The tools used in this paper (asm2wsl and mjc2wsl) trans-
lated low-level code to both regular and recursive action
systems, as will be shown in Section IV-A.

FermaT and WSL are successfully used by Software Mi-
grations Ltd for migrating large, industrial assembly systems
to C or COBOL, sometimes having millions of lines of
code [1], [21]. The process typically involves three stages,
similar to the process presented in this paper. First the assem-
bly source code is translated to WSL. The translators used
in these projects generated regular action systems, and would
try to capture the semantics of assembler programs, without
worrying about efficiency at this stage. Additional files that
map the memory structures from assembly would also be
created at this stage. In the second stage, the WSL is restruc-
tured. This part relies on the strengths of the transformations
and the expertise of the developers to select the appropriate
ones. This led to the development of ‘‘meta transformations’’,
that primarily combine other transformations in useful ways.
Themain result of these improvements was the Fix_Assembler
transformation that would automate most of the needed work.
The migration process is totally automated (so the developers
do not have to select transformations), but the translation and
transformation process may need to be "tuned" to accommo-
date new styles of programming or new style requirements
on the generated code (for example: do not nest IF statements
more than N levels deep). Finally, the last stage is to translate
WSL to the target language. This part starts with additional
transformations to theWSL code to bring it closer to the target
language. For instance, COBOL has a lot of restrictions and it
is easier to make initial transformations than to write a more
complex translator. The translators would combine the initial
stored data about the memory mappings to produce the final
high-level code.

IV. HILL CLIMBING APPROACH TO AUTOMATISING
This section presents the main process analysed in this paper
and its components. It also introduces the sample sets that the

experiments were ran on and the results of their transforma-
tions. Then some of the properties of the process are analysed
in more depth.
The process analysed in this paper transforms a low-level

source code to a higher-level version of it. The overview of
the process is shown in Fig. 1. It is structured such that it has
relatively independent components which gives it flexibility.
The basics of most of the components were presented in
earlier papers ( [24], [25]), and in this paper they are all
brought together for a deeper analysis of the whole.
There are two basic steps, translation and transformation.

Any input program must first be translated to WSL, which
is the language that is used by the FermaT transformation
system. To achieve this, translators were written for two main
input types which will be presented further in this section.
Once the code is presented as a low-level WSL code, it can
be transformed to a higher-level version.
Transformations can be chosen and applied ‘‘manually’’

by a user through a graphical UI such as FME [26], using
command line tools or by writing programs that will apply
them. This requires a developer who has experience in using
FermaT and preferably understands (at least to an extent) the
original languages and concepts.
The transformation component used here offers an auto-

mated approach, that requires no domain knowledge. Fermat
transformation catalogue offers a large number of transforma-
tions that are semantics preserving, which mean they can be
freely applied without the risks of changing the logic of the
code. On the other hand, the code itself can change, which can
be used to gain more understandable programs. To automate
the process, the hill climbing algorithm was implemented,
which tries to make improvements until it reaches the top of
a ‘‘hill’’, i.e., no transformations lead to a ‘‘better’’ program.
A central problem to this approach is how to measure which
program is more high-level and understandable. In this paper
we define a fitness function that represents this relation. The
term is used in genetic algorithms for the same purpose. At its
core the system will try transformations from a list, and if any
of them shows an improvement, this new improved program
will be used for the next loop of transformations. Another
problem that is inherent to this algorithm is that it can result
in local optimums, which will be discussed later.

The ease of understanding a piece of code is hard to mea-
sure. Even the terms such as understandability and readability
are not universally applied. Findingmetrics that correlate well
with human cognition is an ongoing task that still has no final
conclusions [27]. For the purposes of this paper, we will not
go into separating such terms and use them in a general way.

The implementation in this paper uses a fitness function
that will compare the metrics of two programs. The Structure
metric is defined in FermaT with the purpose of showing the
elusive property of structuredness. The implementation of the
metric is a weighted sum of the elements of the program,
with simpler program structures having lower weights. The
numbers were assigned according to the domain knowledge
of the authors of FermaT. In practice, this choice leads to good

4 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3389500

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Pracner et al.: Climbing The Hill to Understand The Code

results in most cases and is therefore used in the paper as an
approximation of the ease of understanding the programs.

The nature of the algorithm guarantees that every next
iteration of the program will have a lower Structure metric
number. An example of the changes in each successive ver-
sion is shown in Fig. 3. This shape is pretty common for all the
samples, the angle of the declinewill somewhat oscillate, with
usually one really big step down. This is usually the moment
in the process when the action systems get removed, or are
significantly restructured. This point is commonly before the
half point of the process.

FIGURE 3. Metrics change during the process (RekFib example)

A. INPUT PROGRAM GROUPS AND TYPES
This paper presents results of transformations on programs
which come from two different low-level languages: x86
assembly and MicroJava bytecode. Since these need to be
translated to WSL for the transformations to be applied, two
different translation tools are used as well. The tools them-
selves have some similarities in approaches, but also some
important inherent differences in the way they generate code.

1) x86 Assembly Programs
One of the tools developed for this research is asm2wsl, which
translates a subset of x86 assembly to WSL, enabling the
further steps of transformation [24]. More specifically it sup-
ports the MASM (Microsoft Assembly) and TASM (Turbo
Assembly) dialects of assembly languages [28], [29]. The
basic principle of the translation is to have a virtual processor,
whose state (registers, stacks, etc) are presented by global
variables. Then the individual commands can be translated
as operations on these, with all of their side effects (for
example, subtraction will set several flags in the processor).
There is a limited support for procedures in the translator.
Inputs and outputs tend to be very reliant on interrupts in
these types of programs. To make the translator simpler, and
comparisons more fair, several macro names were defined for
these operations which are then recognised and the calls are
directly translated to the appropriate print or read statements.

When the programs are later compared, the macro definitions
that were not translated are not counted in the metrics.
Labels and jumps are presented with the usage of actions in

an action system, with the presumption that none of the calls
will return, and instead the special CALL Z is used to end
the execution. Therefore, the resulting action system is of a
regular type and this can make some of the transformations
very efficient on them. Examples of translated jumps and a
loop are given in Fig. 4.

je exit →
IF flag_z = 1 THEN CALL exit

FI;

ja greater →
IF flag_z = 0 AND flag_c = 0

THEN CALL greater FI;

jmp compare →
CALL compare;

....
theloop:

pop ax
add dx, ax
loop theloop
....

→
....

CALL theloop
END
theloop ==
POP(ax, stack);
overflow := 65536; dx := dx

+ ax;
IF dx >= overflow
THEN dx := dx MOD overflow;

flag_o :=1; flag_c :=
1;

ELSE flag_o :=0; flag_c :=
0; FI;

cx := cx - 1;
IF cx>0 THEN CALL theloop

ELSE CALL dummy21 FI
END
dummy21 ==

....

FIGURE 4. asm2wsl translations – examples of jumps and label handling

The resulting programs usually have several times more
statements than the assembly counterparts, due to the
‘‘spelled out’’ nature of all the effects of the commands.
This is not a problem, since this verbosity is handled by the
transformations, as will be shown in later sections.

The sample set used in this paper is named asm-a, and
contains programs that are mostly classic algorithms like the
Greatest Common Divisor, sometimes with variants included
to analyse how the same programs will be transformed if
recursion is used, or different inputs are included.

VOLUME 11, 2023 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3389500

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Pracner et al.: Climbing The Hill to Understand The Code

2) MicroJava Bytecode

The second type of inputs are based on a virtual machine
bytecode. In particular a tool for translating MicroJava Byte-
code, mjc2wsl was developed [25]. MicroJava is a subset of
Java, developed mainly for teaching purposes, with a few
reductions and simplifications made to make it a doable
project for students, while still retaining the main features of
a complete language [2]. An example of MicroJava and its
compiled version is shown in Fig. 5.

The programs used here were written in MicroJava, but
only their compiled, low-level bytecode versions, are used in
the process. The end results are later on compared with the
original programs as another evaluation of the efficacy of the
process.

program P
{
void main()
int i;
{

i = 0;
while (i < 5) {

print(i);
i = i + 1;

}
}

}

14: enter 0 1
17: const_0
18: store_0
19: load_0
20: const_5
21: jge 13 (=34)
24: load_0
25: const_0
26: print
27: load_0
28: const_1
29: add
30: store_0
31: jmp -12

(=19)
34: exit
35: return

FIGURE 5. MicroJava code and the translated bytecode (‘‘while-print’’
program)

The translator has similarities and differences to the pre-
viously mentioned asm2wsl. It does use similar concepts of
making a virtual machine with the generated code, using vari-
ables that represent the state of stacks and execution (some
examples shown in Fig. 6). The commands are then translated
to show all of their side effects. A full translation (and the
later transformation) of the program shown in Fig. 5 is given
in Appendix A. The main difference is that here almost each
command is translated as its own action in an action system,
and all of the calls are supposed to return to their sources,
making this a recursive action system (Section III).

C:"#15 (const_0)";
PUSH(mjvm_estack,0);

C:"#23 (add)";
VAR < tempa := 0, tempb := 0, tempres := 0 > :
POP(tempa, mjvm_estack);
POP(tempb, mjvm_estack);
tempres := tempb + tempa;
PUSH(mjvm_estack,tempres);
ENDVAR;

FIGURE 6. Examples of translation of bytecode instructions to WSL
(original address and instruction is given in a comment)

During the initial development of the tool, several ways
to translate particular structures were introduced and made
available through switches. This was in part made to see how
these different translations of the same inputs will be handled
by the transformation scripts. These include: making local
variables in a procedure as an array, or separate variables;
leaving temporary variables global or making them as local
as possible; making stack operations use pop and push, or
the direct list operations head and tail. The three mentioned
switches were used in all the combinations, generating 8 types
of translations of the same programs from the alpha-mj set.
The resulting data set was named alpha-wsl-v8. All of these
were then transformed to see which combinations are the
most appropriate.
The experiments showed that the best combination, both

in terms of average improvements of the Structure metric
and in the length of the process is push-pop/local variable
blocks/separate local variables (internally marked pp-lo-sp).
A close second was to use local variables as arrays. Use
of global variables would usually result in the same end
programs, but the process would be much longer.
The sample set forMicroJava programs is named alpha-mj-

exp, containing programs that vary from input/output demon-
strations to sorting algorithms and palindrome checks.

B. OVERVIEW OF THE RESULTS OF TRANSFORMATIONS

This section will analyse the results of the hill climbing
algorithm applied to the translated low-level version of the
programs (shown in the previous sections).
As mentioned previously, the translators presented gen-

erate several times more statements than the original input
programs. This is due to the more explicit handling of side
effects of the original commands, such as setting processor
flags, interacting with stacks, etc. The later transformation
processes are not only able to reduce all of these expansions,
but actually can result in shorter programs than the originals.
The changes of program sizes in assembly and bytecode can
be seen in Fig. 7. For assembly there are three stages shown,
the original inputs, the translations, and the transformed pro-
grams. For MicroJava, there is an additional column which
shows the size of the original high-level programs. However,
it should be noted again that the process starts from the low-
level programs, and the high-level versions are only used for
later comparison and are not available to the process as any
sort of a guide.
As explained in the previous sections, the translations add

statements to simulate the side effects of the original code on
a virtual processor, and are several times larger than the orig-
inals. For assembly, this means on average each instruction
will be translated to just a bit over 2 WSL statements. With
bytecode, this is closer to 4 statements in the translations.
The automated transformations are very good at removing
this added complexity, and the final results are smaller than
the input low-level programs (0.42 times smaller for assembly
and 0.52 for bytecode).

6 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3389500

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Pracner et al.: Climbing The Hill to Understand The Code

asm wsl wsl-t
0

20

40

60

80

100

S
ta
te
m
e
n
ts

(a) asm-a

mj mjc wsl wsl-t
1

10

100

1000

10000

S
ta

te
m

e
n

ts
; 

lo
g

 s
c
a
le

(b) alpha-mj-exp

FIGURE 7. Program sizes in different stages

As an example input, a recursive Fibonacci implementation
inMicroJava translates about 80 bytecode statements into 250
WSL lines. HCF can then reduce this to the high-level version
shown in Fig. 8. Appendix A shows the full translation and the
transformed end result of the program ‘‘while-print’’ (shown
in Fig. 5).

BEGIN
PRINFLUSH(@Format(3, a14(0)));
PRINFLUSH(@Format(3, a14(2)));
PRINFLUSH(@Format(3, a14(7)))

WHERE
FUNCT a14(par1) ==

VAR < >:
SKIP;
(IF par1 = 1
THEN 1
ELSE IF par1 <> 0

THEN a14(par1 - 2)
+ a14(par1 - 1)

ELSE 0 FI FI) END
END

FIGURE 8. Recursive Fibonacci example – automatically restructured WSL

The core part of the presented process is the automated
transformation. The improvements made can be compared
using the available metrics in FermaT. These can be seen in
Table 1 for assembly samples. Significant drops are noticable
in almost all metrics. The exception is McCabe’s Essential

metrics, which is usually unchanged and in one example it
increases due to some of the introduced loops.

TABLE 1. asm-a transformation metrics

Metric WSL WSL-t % diff

McCabe Cyclo 7.40 ± 3 3.60 ± 1 41.60 ± 30
McCabe Essential 1.00 ± 0 1.10 ± 0 −10.00 ± 32
Statements 62.30 ± 15 16.00 ± 9 73.90 ± 14
Expressions 84.20 ± 28 31.50 ± 20 63.80 ± 14
CFDF 88.60 ± 16 22.80 ± 9 73.90 ± 8
Size 327.40 ± 71 95.30 ± 51 70.90 ± 13
Structure 947.70 ± 199 206.90 ± 119 78.20 ± 10

The comparison for bytecode samples is given in Table 2.
Here, all the metrics show reductions in the process. The low-
est changes are again with McCabe’s metrics, around 60%.
This is mostly due to both of those not having high starting
numbers. The number of expressions gets reduced by 73%,
while the other metrics are in the high 80% ranges.

TABLE 2. alpha-mj-exp transformation metrics

Metric WSL WSL-t % diff

McCabe Cyclo 12.29 ± 11 5.07 ± 4 60.29 ± 15
McCabe Essential 3.50 ± 2 1.04 ± 0 62.32 ± 15
Statements 300.36 ± 306 38.64 ± 44 88.50 ± 6
Expressions 242.25 ± 251 73.89 ± 86 73.61 ± 11
CFDF 440.00 ± 457 59.32 ± 77 89.46 ± 8
Size 1368.04 ± 1365 225.04 ± 247 85.21 ± 7
Structure 4206.64 ± 4255 475.96 ± 519 89.61 ± 5

Overall, even though the two types of inputs have a lot
of differences in them (recursive and regular (non-recursive)
action systems being the biggest), the improvements made by
HCF are similar and comparable.

C. PROPERTIES OF THE PROCESS
After giving an overview of the metrics improvements in the
experiments, this subsection will try to answer some more
general questions about the properties of the process.
RQ1: What is the quality of outputs of the automated

system in general?
The transformation script is designed so that it works with

any general WSL program, not just with the ones obtained
from the mentioned translation tools.
The translated programs that are the input for the transfor-

mations had a lot of differences between them. With asm2wsl
the resulting program is a regular action system, where none
of the calls return, and the execution endswhen the predefined
z action is called. On the other hand, mjc2wsl creates the
opposite, a recursive action system, in which all of the calls
return and the execution ends when the first called action
is done. With asm2wsl individual actions represent labels
in the original program, and can consist of any number of
instructions, while mjc2wsl creates a single action for each
of the instructions in the original bytecode.
Both tools feature switches that can change some aspects of

the output code and the way it is organised. There are versions

VOLUME 11, 2023 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3389500

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Pracner et al.: Climbing The Hill to Understand The Code

with mostly global variables that are reused a lot, and others
with a lot of small scope local variables. Local variables for a
procedure (stack frames) were also treated in different ways.
There were different ways in which the stacks were accessed.
However all of these types of outputs were automatically
transformed with the same transformation script, admittedly
with some variation in the quality of end results.

The same script was also used successfully on some hand-
written WSL programs, including the transformer itself.

The quality of the end result of automated transformations
is heavily reliant on the used fitness function that guides the
process. In these experiments this was the custom structure
metric. It was successful in restructuring and reducing the
metrics of the programs generated with the tools presented
in this paper. However, with other input programs it could
prove to be less successful. In general, it is impossible to
find a universally good fitness function. The ‘‘no free lunch’’
theorem for search and optimisation states that for any search
algorithm that is well suited for one class of problems, there
is a separate class that will offset this advantage [30]. Of
course, this holds when all possible inputs are taken into
consideration, and there is no prior knowledge of the input
space at hand. For this process in particular, the worst possible
input would be one where no transformation can lead to the
reduction of the fitness function. In that case the end result
would be the same as the original input. This also means that
the process can not ‘‘corrupt’’ a program and lead it to a worse
state, at least not according to the fitness function.

When considering the input programs that were the main
target of this research, there are characteristics that can be
taken into account. They do not feature high-level structures
and in general have a large amount of labels and jumps that
can be restructured. Since these start programs will have
higher values for the structure metric than even a modestly
structured equivalent program, it is likely that, on average,
this fitness function is adequate for this class of problem. Of
course, it is always an open question whether there is a better
function and algorithm.

There is no guarantee of the end result being the global
optimum, which is due to the inherent problems of the hill
climbing algorithm and it being able to be ‘‘trapped’’ in local
optimums.

For many of the samples the end results could be further
improved by humans. For instance, manual transformations
on one sample could lead to a further simplification in 4 steps,
but the metrics stay the same or even go higher during these
steps and only the final result is ‘‘better’’ according to the
fitness function. For this to be achievable by the automated
process it would need at least 4 steps of look-ahead. However,
it is impossible to know for a given program how many steps
are needed for an improvement, or if there is indeed such a
number, since this is a variation on the halting problem [31].
A potential improvement for these types of problems lies in
using more sensitive fitness functions and potentially more
complex transformations that try more things at once. Both of
these can be very sample specific and also increase the usage

of resources in the process.
RQ2: Can the process lead to worse programs, or get stuck

in an infinite loop?
The current implementation of the process can only result

in improvements to the readability of the program, as defined
by the fitness function. The worst case scenario is an input
program on which no improvements can be made, but this
should imply that it is already well structured and therefore
in no need to be used in the process.
The process is guaranteed to finish on any input program,

given a fitness function that defines strict improvements (does
not allow programs of the same quality to be used), and that
the values are decreasing and can not be negative. This is due
to several facts – the set of transformations available is finite,
so they can be exhausted on a single position in the program.
The algorithm implementation only allows a forward step if
the result is better, therefore there is no possibility of a loop.
Finally, the used fitness function prefers more structured and
shorter programs, so there is no possibility of an infinitely
increasing program.
RQ3: What are the expected execution times of the pro-

cess?
Execution times of the transformation process were com-

pared with the metrics of the input programs on both the as-
sembly and MicroJava samples (Fig.s 9 and 10). The growth
of execution time was not directly proportional to any of the
metrics. That is, there were significant outliers to any of the
trends, and programswith similar metrics can havewildly dif-
ferent transformation times. The properties of the presented
process are such that it is more important what the structures
are in the samples, rather than just how long they are. The
hill climbing algorithm will try to apply transformations to
any part of the programs to find an improvement. If the input
is such that large improvements are found earlier, there will
be fewer places to test transformations later on, significantly
reducing the execution time.

0.1 1 10 100

Time (sec); log scale

1

10

100

1000

10000

M
e
tr

ic
 v

a
lu

e
s;

 l
o
g
 s

ca
le

P1-Structure
P1-Size
P1-Statements
P1-Expressions
P1-CFDF
P1-McCabe Cyclo
P1-McCabe Essential

FIGURE 9. Transformation execution times for assembly samples

It is early to make generalised statements about execution
times for all possible input programs. While the samples here
had many differences between them (different languages,
action system handling, etc), there could be other types of

8 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3389500

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Pracner et al.: Climbing The Hill to Understand The Code

0.1 1 10 100 1000 10000

Time (sec); log scale

1

10

100

1000

10000

100000

M
e
tr

ic
s 

v
a
lu

e
s;

 l
o
g
 s

ca
le

P1-Structure
P1-Size
P1-Statements
P1-Expressions
P1-CFDF
P1-McCabe Cyclo
P1-McCabe Essential

FIGURE 10. Transformation execution times for the MicroJava
alpha-mj-exp set

inputs that behave significantly different. With that taken
into consideration, we can say that there is an expectation
that larger and more complex programs will take longer to
transform, it is just not clear, or predictable how much longer,
since there is no direct proportions to any of the metrics.

Apart from execution times in seconds, the length of the
process could be measured in the number of transformations.
This gives a machine independent figure where performance
is not important. In the tests in this paper, shorter programs
need a few thousand transformations tried (depending on the
computer, performed in less than a second), while the more
complex tested samples take almost three million transfor-
mations tested. The number of transformations selected to be
applied from all of those tested varies a lot between samples.
It is usually in the order of magnitude of 1 in a 1000. On
some of the simplest samples it can be as high as 1 in 40,
again showing that the inherent complexity of the samples
influences the behaviour of the whole process.

D. REPRODUCIBILITY
The experiments presented in this paper used FermaT ver-
sion 18g, available from out git repository2. The translation
tools are available from their repositories: asm2wsl, version
0.813; mjc2wsl, version 1.1.14, parameters used were ‘‘pp-
lo-sp’’. The used HCF script is also available as part of the
mjc2wsl repository in the ‘‘src-wsl’’ folder.
The data sets are available at in the repositories of the

translators, in the ‘‘samples’’ folders. They are also available
combined with the translations and transformations discussed
in this paper on the project web site5.

V. CONCLUSIONS AND FUTURE WORK
This paper presents a new analysis of an automated approach
to restructuring low-level code into high-level structures. The
main goal is to help understanding systems that are only
available as low-level source and starting the maintenance
and/or migration processes of those systems, but the approach
could be applied to any system where there is a need to
restructure and comprehend the program.

2https://gitlab.com/clatu/fermat3/-/tags/fermat-18-g
3https://gitlab.com/clatu/asm2wsl/-/tags/v0.81
4https://github.com/quinnuendo/mjc2wsl/releases/tag/v1.1.1
5https://perun.pmf.uns.ac.rs/pracner/transformations#datasets

The HCF process relies on using the hill climbing algo-
rithm combined with trying transformations from a selected
set in the FermaT catalogue on the input programs and choos-
ing those that lead to better programs based on the Structure
metric. The system uses semantics preserving transforma-
tions, therefore guarantees no loss of functionality and does
not rely on external tests to verify the end results. The process
itself was presented on a smaller set of MicroJava samples in
an earlier paper [25].
This paper analyses the process in more depth. It presents

the results achieved on two input groups, obtained from differ-
ent languages and translators that produced different types of
action systems (structure that emulates the jump heavy low-
level programs). The goal is to better understand the limits
of the current process, where can it be best applied and what
improvements could be made.
Experiments that were run on several types of input pro-

grams showed that the results can be on a level of hu-
man written high-level code. When comparing the end re-
sults with low-level original source code, there was always
significant improvement in the metrics (the assembly code
had around 78% on average, while MicroJava bytecode had
improvements at around 89% on average). For some input
samples the original high-level source code was available for
comparison. For these, the end result metrics of the auto-
matically transformed programs were similar to the originals.
Some samples ended up being better (metrics-wise) than the
originals, while there are some that retained some of the low-
level complexities. The details of the experiments are given
in Section IV.
The transformation process used make no assumptions

about the input programs, i.e., they can be applied to any type
of input and are not dependant on the translators used. The
end results can vary in quality for different types of programs,
since the transformations were chosen specifically to raise
the level of abstraction. This means that for some specific
inputs the improvements might be minimal, but even then
the programs will keep their semantics, in other words, the
program will not be ‘‘ruined’’.
The fitness function used was a built-in metric that gives

the ‘‘weight’’ of structures in a program. This was used as
an approximation of the understandability of a program, and
while it can not be said to be perfect, it showed good results
in practice in guiding the process. The developed tools gen-
erate different types of low-level programs, and also feature
parameters to additionally change theway some structures are
translated. All of these variations were handled with the same
automated transformation program. The different translations
of the same programs had different percentages of metrics
improvements. Better results were almost always achieved in
significantly less time. This is a direct consequence of the
algorithm that tries all the transformations on all parts of a
program. As soon as there is success, the process is sped up
since there are fewer application targets.

VOLUME 11, 2023 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3389500

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://gitlab.com/clatu/fermat3/-/tags/fermat-18-g
https://gitlab.com/clatu/asm2wsl/-/tags/v0.81
https://github.com/quinnuendo/mjc2wsl/releases/tag/v1.1.1
https://perun.pmf.uns.ac.rs/pracner/transformations#datasets


Pracner et al.: Climbing The Hill to Understand The Code

A. FUTURE WORK OPTIONS
By the very definition of the hill climbing process, it is very
dependant on the choice of its fitness function. This paper
presents results based on the custom Structure metric. The
metric was giving good results, while also being computa-
tionally very efficient. However there is a lot of room to ex-
plore other fitness functions and potentially combine metrics
in them depending on some attributes of the sample under
hand. Some of this work has already been started in [32],
where it was shown that many of the alternative metrics and
even some combinations of metrics do not lead to significant
improvements over the Structure metric. Further research into
other options for fitness functions is still needed.

The hill climbing process itself could also be further im-
proved with changes to the transformations used. There is a
large amount of data about the transformations tried during
these experiments which could be analysed to change these
sets. Different sets are tried in the stages of the process and
are sometimes grouped up. These choices were made based
on the domain knowledge of the author of the transformation
system and some early experiments, but some further tweaks
and experiments based on the collected data could also be
used. The process could also be expanded to test more steps
ahead, although this would lead to an exponential increase
in time needed with the current implementation. Therefore,
heuristics are needed to cut short the exponential time in-
crease by prioritising transformations that have proved useful
in combinations in similar code and stopping the search after
a specified amount of time has elapsed or a specified number
of transformations have been tested with no improvements
found.

With an exhaustive search, as with the current system
which tries every transformation and each of the selected
pairs of transformations at every position, the search order
only affects efficiency since any valid transformation will
eventually be found. But with a deeper look ahead, an exhaus-
tive search is impractical and search order therefore becomes
more important.

With the current system, multiple cores are only exploited
to process multiple programs in parallel, but the search pro-
cess is ‘‘embarrassingly parallel’’ since at any point the set of
transformations and application points to be searched can be
divided equally between multiple processors [33].

Other searching approaches could also be tested in the
future to avoid the tendency towards local optima that hill
climbing has. One of these is the tabu algorithm, which is
similar, but allows steps towards worse solutions where no
better ones can be found [34]. Variations of evolutionary
algorithms could also be tested. The transformations could be
used as mutation operators, while the metrics would remain to
be the fitness evaluation. Another replacement could an arti-
ficial intelligence search technique. Initial experiments were
already made with Reinforcement Learning as a replacement
for the hill climbing approach [35].

The current process works onWSL directly, which requires
programs to be translated to it, and in many cases it would

be convenient to translate the results back to the starting lan-
guage. To be able to use this system more widely, developing
more translators is a necessity. In general, experiments with
more programs from different sources are needed to check
what the outcomes can be.
On the other hand, the approach with hill climbing could

also be used with other transformation systems, not just Fer-
maT. This could be useful for systems that already operate on
the target languages. It is important to note that any system
that does not feature semantic preserving transformations
would also need additional verification that the behaviour of
the program has not changed. For instance, this could be done
with sets of test inputs and outputs ran after each change.
Such verification is potentially resource intensive, while at the
same time a challenge to actually prove that the new program
is equivalent in behaviour.

REFERENCES
[1] M. Ward, ‘‘Pigs from Sausages? Reengineering from Assembler to C via

FermaT Transformations,’’ Science of Computer Programming, Special
Issue on Program Transformation, vol. 52/1-3, pp. 213–255, 2004.

[2] H. Mössenböck, ‘‘Language specification and compiler construction.’’
Handouts for the course, 2024.

[3] C. Cifuentes, Reverse Compilation Techniques. PhD thesis, QUEENS-
LAND UNIVERSITY OF TECHNOLOGY, 1994.

[4] C. Cifuentes, D. Simon, and A. Fraboulet, ‘‘Assembly to high-level lan-
guage translation,’’ in Proceedings of the International Conference on
Software Maintenance, ICSM ’98, (Washington, DC, USA), pp. 228–,
IEEE Computer Society, 1998.

[5] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley, ‘‘Native x86 decompi-
lation using semantics-preserving structural analysis and iterative control-
flow structuring,’’ in Proceedings of the USENIX Security ’13 Symposium,
pp. 353–368, 2013.

[6] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, ‘‘Bap: A binary
analysis platform,’’ in Computer Aided Verification (G. Gopalakrishnan
and S. Qadeer, eds.), (Berlin, Heidelberg), pp. 463–469, Springer Berlin
Heidelberg, 2011.

[7] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith, ‘‘No more
gotos: Decompilation using pattern-independent control-flow structuring
and semantic-preserving transformations,’’ in Network and Distributed
System Security (NDSS) Symposium 2015, The Internet Society, 2015.

[8] N. Harrand, C. Soto-Valero, M. Monperrus, and B. Baudry, ‘‘Java de-
compiler diversity and its application to meta-decompilation,’’ Journal of
Systems and Software, vol. 168, p. 110645, 2020.

[9] C. Le Goues, S. Forrest, and W. Weimer, ‘‘Current challenges in automatic
software repair,’’ Software Quality Journal, vol. 21, no. 3, pp. 421–443,
2013.

[10] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, ‘‘Genprog: A generic
method for automatic software repair,’’ IEEE Trans. Software Eng., vol. 38,
no. 1, pp. 54–72, 2012.

[11] E. M. Schulte, S. Forrest, and W. Weimer, ‘‘Automated program repair
through the evolution of assembly code,’’ in Proceedings of the 25th
IEEE/ACM International Conference on Automated Software Engineering
(ASE ’10) (C. Pecheur, J. Andrews, and E. D. Nitto, eds.), pp. 313–316,
ACM, 2010.

[12] Y. Yuan and W. Banzhaf, ‘‘Toward better evolutionary program repair:
An integrated approach,’’ ACM Transactions on Software Engineering and
Methodology, vol. 29, Jan. 2019.

[13] Y. Yuan and W. Banzhaf, ‘‘Arja: Automated repair of java programs via
multi-objective genetic programming,’’ IEEE Transactions on Software
Engineering, vol. 46, pp. 1040–1067, Oct 2018.

[14] A. Nilizadeh, G. T. Leavens, X.-B. D. Le, C. S. Păsăreanu, and D. R. Cok,
‘‘Exploring true test overfitting in dynamic automated program repair using
formal methods,’’ in 2021 14th IEEE Conference on Software Testing,
Verification and Validation (ICST), pp. 229–240, IEEE, 2021.

[15] A. Arcuri and X. Yao, ‘‘A novel co-evolutionary approach to auto-
matic software bug fixing,’’ in Evolutionary Computation, 2008. CEC

10 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3389500

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Pracner et al.: Climbing The Hill to Understand The Code

2008.(IEEE World Congress on Computational Intelligence). IEEE
Congress on, pp. 162–168, IEEE, 2008.

[16] P. Klint, T. van der Storm, and J. Vinju, ‘‘Easy meta-programming with
rascal,’’ inProceedings of the 3rd International Summer School Conference
on Generative and Transformational Techniques in Software Engineering
III, GTTSE’09, pp. 222–289, Springer-Verlag, 2011.

[17] M. Hills and P. Klint, ‘‘Php air: Analyzing php systems with rascal,’’ in
Software Maintenance, Reengineering and Reverse Engineering (CSMR-
WCRE), 2014 Software EvolutionWeek-IEEEConference on, pp. 454–457,
IEEE, 2014.

[18] J. L. Cánovas Izquierdo and J. García Molina, ‘‘Extracting models from
source code in software modernization,’’ Software & Systems Modeling,
vol. 13, no. 2, pp. 713–734, 2014.

[19] L. Ab. Rahim and J. Whittle, ‘‘A survey of approaches for verifying model
transformations,’’ Software & Systems Modeling, vol. 14, no. 2, pp. 1003–
1028, 2015.

[20] M.Ward andK. H. Bennett, ‘‘Formalmethods for legacy systems,’’ Journal
of Software: Evolution and Process, vol. 7, no. 3, pp. 203–219, 1995.

[21] M. Ward, ‘‘Assembler restructuring in fermat,’’ in SCAM, pp. 147–156,
IEEE, 2013.

[22] J. J. Arsac, ‘‘Syntactic source to source transforms and program manipula-
tion,’’ Communications of the ACM, vol. 22, pp. 43–54, JAN 1979.

[23] J. J. Arsac, ‘‘Transformation of recursive procedures,’’ in Tools and Nota-
tions for Program Construction (D. Neel, ed.), pp. 211–265, Cambridge:
Cambridge University Press, 1982.

[24] D. Pracner and Z. Budimac, ‘‘Transforming low-level languages using Fer-
maT and WSL,’’ in Proceedings of the 2nd Workshop on Software Quality
Analysis, Monitoring, Improvement, and Applications (Z. Budimac, ed.),
vol. 1053 of CEUR-WS.org, pp. 71–78, 2013.

[25] D. Pracner and Z. Budimac, ‘‘Enabling code transformations with FermaT
on simplified bytecode,’’ Journal of Software: Evolution and Process,
vol. 29, no. 5, pp. e1857–n/a, 2017.

[26] M. Ladkau, AWide Spectrum Type System for Transformation Theory. PhD
thesis, De Montfort University, Leicester, 2009.

[27] M. M. n. Barón, M. Wyrich, and S. Wagner, ‘‘An empirical validation
of cognitive complexity as a measure of source code understandability,’’
in Proceedings of the 14th ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), ESEM ’20,
(New York, NY, USA), Association for Computing Machinery, 2020.

[28] Intel Corporation, 80286 Programmer’s Reference Manual, 1987. Avail-
able at http://datasheets.chipdb.org/Intel/x86/286/manuals/286INTEL.zip.

[29] Borland International, Turbo Assembler 2.0 User’s Guide, 1990.
[30] D. H. Wolpert andW. G. Macready, ‘‘No free lunch theorems for optimiza-

tion,’’ IEEE Transactions on Evolutionary Computation, vol. 1, pp. 67–82,
April 1997.

[31] A. M. Turing, ‘‘On computable numbers, with an application to the
entscheidungsproblem,’’Proceedings of the LondonMathematical Society,
vol. s2-42, no. 1, pp. 230–265, 1937.

[32] N. Sukur, D. Pracner, and Z. Budimac, ‘‘Fitness functions and transfor-
mations in an automated process,’’ in SQAMIA 2019, 8th Workshop of
Software Quality, Analysis, Monitoring, Improvement, and Applications
(Z. Budimac and B. Koteska, eds.), pp. 17:01–17:10, CEUR-WS.org, 2019.

[33] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming (revised
ed.). Elsevier, 2012.

[34] F. Glover, ‘‘Tabu search – part 1,’’ ORSA Journal on Computing, vol. 1,
no. 2, pp. 190–206, 1989.

[35] N. Sukur, N. Milošević, D. Pracner, and Z. Budimac, ‘‘Automated program
improvement with reinforcement learning and graph neural networks,’’ Soft
Computing, 2023.

APPENDIX A CODE EXAMPLE
An example of the difference from the translated, low-level
version of a program, and the transformed high-level code that
is achieved after applying theHill Climb process. The original
MicroJava program and the compiled version were shown in
Fig. 5.

LOW-LEVEL BYTECODE TRANSLATED TO WSL:

C:" This file was automatically converted from
microjava bytecode

using mjc2wsl v1.1.1
-options:
popPush (pp/ht):true
localVarBlocks (lo/gl):true
localsAsArrays (ar/sp):false
inlinePrint: false

";
BEGIN
VAR < mjvm_flag_jump := 0,

mjvm_arrays := < >,
mjvm_objects := < >,
mjvm_estack := < >,
mjvm_mstack := < > >:

SKIP;
ACTIONS a14:
a14 == PUSH(mjvm_mstack, mjvm_locals_0); CALL

a17 END
a17 == PUSH(mjvm_estack, 0); CALL a18 END
a18 ==
VAR < tempa := 0 >:
POP(tempa, mjvm_estack); mjvm_locals_0 :=

tempa
ENDVAR;
CALL a19 END

a19 ==
VAR < tempa := 0 >:
tempa := mjvm_locals_0; PUSH(mjvm_estack,

tempa)
ENDVAR;
CALL a20 END

a20 == PUSH(mjvm_estack, 5); CALL a21 END
a21 ==
VAR < tempa := 0, tempb := 0 >:
POP(tempa, mjvm_estack);
POP(tempb, mjvm_estack);
IF tempb >= tempa

THEN mjvm_flag_jump := 1
ELSE mjvm_flag_jump := 0 FI ENDVAR;

IF mjvm_flag_jump = 1 THEN CALL a34 ELSE
CALL a24 FI;

SKIP END
a24 ==
VAR < tempa := 0 >:
tempa := mjvm_locals_0; PUSH(mjvm_estack,

tempa)
ENDVAR;
CALL a25 END

a25 == PUSH(mjvm_estack, 0); CALL a26 END
a26 ==
VAR < tempa := 0, tempb := 0 >:
POP(tempa, mjvm_estack);
POP(tempb, mjvm_estack);
Print_MJ(tempb, tempa) ENDVAR;
CALL a27 END

a27 ==
VAR < tempa := 0 >:
tempa := mjvm_locals_0; PUSH(mjvm_estack,

tempa)
ENDVAR;
CALL a28 END

a28 == PUSH(mjvm_estack, 1); CALL a29 END
a29 ==
VAR < tempa := 0, tempb := 0, tempres := 0

>:
POP(tempa, mjvm_estack);
POP(tempb, mjvm_estack);
tempres := tempb + tempa;
PUSH(mjvm_estack, tempres) ENDVAR;
CALL a30 END

a30 ==
VAR < tempa := 0 >:
POP(tempa, mjvm_estack); mjvm_locals_0 :=

tempa
ENDVAR;

VOLUME 11, 2023 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3389500

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

http://datasheets.chipdb.org/Intel/x86/286/manuals/286INTEL.zip


Pracner et al.: Climbing The Hill to Understand The Code

CALL a31 END
a31 == CALL a19; SKIP END
a34 == POP(mjvm_locals_0, mjvm_mstack); CALL

a35 END
a35 == SKIP END
b35 == SKIP END ENDACTIONS;

SKIP ENDVAR
WHERE
FUNCT CHR(num) ==

VAR < >:
SKIP;
(@List_To_String(<num>)) END

PROC Print_MJ(val, format) ==
PRINFLUSH(@Format(format, val)) END

PROC Print_MJ_CHAR(val, format) ==
PRINFLUSH(@Format(format, CHR(val))) END

END

TRANSFORMED HIGH-LEVEL END RESULT:

VAR < mjvm_locals_0 := 0 >:
WHILE mjvm_locals_0 < 5 DO

PRINFLUSH(mjvm_locals_0);
mjvm_locals_0 := mjvm_locals_0 + 1 OD ENDVAR

DONI PRACNER received his diploma in com-
puter science in 2007, M.S. degree in 2010 and his
Ph.D degree in computer science in 2019, all of
them from the University of Novi Sad.

From 2008 to 2019 he was employed as a Teach-
ing Assistant at the Faculty of Sciences, University
of Novi Sad. Since 2019 he holds the position
of assistant professor at the same Faculty. He is
an author of one book and 20 scientific papers
published at journals and conferences. His current

research interests are in Software Evolution and Software Testing, while also
having experiences with Data Mining.

MARTIN P. WARD received the B.A. in math-
ematics from Oxford University in 1983 and the
D.Phil. in computation from Oxford University in
1989.

From 1991 to 1995 he was a Research Fellow
at Durham University. From 1999 to 2017 he was
Reader in Software Engineering at De Montfort
University. Since 1995 he has been Chief Tech-
nology Officer of Software Migrations Ltd. He is
the author of one book, 25 journal papers and 25

conference papers. He developed the FermaT program transformation sys-
tem. His research interests include language oriented programming, program
transformation systems, program slicing and software migration.

Dr Ward was awarded a Royal Society Industry Fellowship in 2009.

NATAŠA SUKUR received her bachelor diploma
in information technologies in 2014 and her mas-
ter’s degree in computer science in 2016, both from
the University of Novi Sad. She is currently pursu-
ing her PhD in computer science at the University
of Novi Sad.

From 2017 to 2023, she worked as a Teaching
Assistant at the Faculty of Sciences, University of
Novi Sad. Since 2023, she has been working as a
Teaching Associate at the same Faculty. She has

published 11 papers in international journals and conferences. She spent
one semester studying at the University of Coimbra in Portugal in 2020,
as a part of Erasmus PhD student exchange program. She has participated
in several national and international research projects. Her main research
fields of interest are software evolution and maintenance, as well as software
quality in general.

ZORAN BUDIMAC was born in 1960, in Sombor,
Serbia. He received his B.S. in computer science
in 1983, M.S. in mathematics in 1991 and Ph.D in
computer science in 1994, all from the University
of Novi Sad.

He got the title of full professor from the Uni-
versity of Novi Sad in 2004. He has published
more than 300 research papers in the areas of agent
technologies, software engineering, learning tech-
nologies, 16 books, one international monograph

and presented his work at more than 180 international conferences. He
delivered numerous invited speeches at different Universities all over the
world (Austria, Australia, Bulgaria, China, Germany, Hungary, Thailand,
Poland, Portugal, Romania, Slovakia, Slovenia, Turkey, and so on). He was
the principal investigator of numerous national and international projects.

12 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3389500

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


	Introduction
	Related Work and Approaches
	Program Transformations in FermaT
	Hill Climbing Approach to Automatising
	Input Program Groups and Types
	x86 Assembly Programs
	MicroJava Bytecode

	Overview of the Results of Transformations
	Properties of The Process
	Reproducibility

	Conclusions and Future Work
	Future Work Options

	REFERENCES
	Code Example
	Doni Pracner
	Martin P. Ward
	Nataša Sukur
	Zoran Budimac


